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1. INTRODUCTION

Liang [2] and Tiwari and Zalkikar [5] proved some results concerning the
performance of the empirical Bayes estimator of the scale parameter of Pareto
distribution using a squared error loss function. In fact, Liang [2] relaxed the
conditions imposed by Tiwari and Zalkikar [5] on the prior distribution and
found a rate of convergence of order n− 2

3 – as compared to n− 1
2 found in [5] –

for the sequence of empirical Bayes estimator.
In [4], a weighted squared-error loss function was considered and an em-

pirical Bayes estimator for the scale parameter of Pareto distribution was
proposed. There was assumed that the weights are given by a function which
satisfies certain properties. It was proved that under certain condition, the
empirical Bayes estimator of the scale parameter is asymptotic optimal and
the corresponding rate of convergence is of order n− 2

3 .
In this paper we derive a lower bound for the difference between the

overall Bayes risk of the sequence of empirical Bayes estimators of the scale
parameter of a Pareto distribution found in [4], and the Bayes risk of Bayes
estimator of the same parameter. This difference is taken as a measure of
performance of the empirical Bayes estimators. The loss function we use here
is of weighted quadratic type.

The paper is structured as follows. In Section 2 there is described the
Pareto distribution with a known shape parameter α and unknown scale pa-
rameter θ. Furthermore, the conditions that have to be satisfied in order to
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obtain the results from Sections 4 are stated. We define the Bayes risk for a
weighted squared-error loss and the overall Bayes risk for a sequence of em-
pirical Bayes estimators. Next, asymptotic optimality and rate of convergence
for a sequence of empirical Bayes estimators are defined. Moreover, we recall
some results of Preda and Ciumara [4] that we will apply in order to obtain
the main result of this paper.

In Section 3, considering a uniform distibution for the prior, we find a
lower bound for the difference between overall Bayes risk of the sequence of
empirical Bayes estimators and the the Bayes risk of Bayes estimator.

The result obtained here generalizes the result of Liang [2] in the sense
that if the weights function is constant and equal to unity, then we recover the
case presented there. In fact, if the weights function satisfies certain properties,
then the lower bound is the same as in the squared-error loss function case.

2. PRELIMINARIES

We consider a random variable X having a Pareto distribution for a
given θ. The parameter θ is a value of a random variable Θ that has a prior
distribution function G : (0,∞) → [0, 1]. Then the probability density function
of X|Θ = θ is

f (x|θ) =
αθα

xα+1
,

where x > θ, α > 0 and θ > 0. The shape parameter α is known while the
scale parameter θ is unknown. The marginal density of X is

f(x) =
∫ min(x,m)

0
f (x|θ) dG(θ) =

∫ min(x,m)

0
f (x|θ) g(θ)dθ,

where dG(θ) = g(θ)dθ.
If ϕ(θ) = αθα and u (x) = 1

xα+1 , then f (x|θ) = ϕ(θ)u(x) and

f(x) = u(x)
∫ min(x,m)

0
αθαdG(θ).

We impose (see[2]) the following conditions on the prior distribution G:

(A1) G (m) = 1 for some known positive real number m.
(A2) If a∗ = sup {θ | G(θ) = 0}, then f is a decreasing function in x

on (a∗,m].

As in [4], we consider the weighted squared-error loss L : R2
+ → R+

defined as L (x, θ) = w(θ) (x − θ)2 , with the weights function w : R+ → R∗
+

continuous and differentiable.

The conditions (see[4]) that w has to satisfy are
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(A3) ∃ c1 ∈ R∗
+ such that w (θ) ≤ c1, ∀θ ∈ R+.

(A4) ∃ c2 ∈ R∗
+ such that 0 ≤ w (θ) + θw′(θ) ≤ c2, ∀θ ∈ R+ and

∃ ε > 0 such that w(θ) + θw′(θ) > ε on (0,m].
(A5) ∃ ε0 > 0 such that ε0 < q (x) = E (w(Θ)|X = x), ∀x ∈ (0,m].

Then the Bayes estimator of θ given X = x is

(2.1) ϕG(x) =
E (Θw(Θ)|X = x)
E (w(Θ)|X = x)

,

assuming that all posterior expectations involved in the above expression exist
and E (w(Θ)|X = x) �= 0.

The Bayes risk of ϕG is

R(G,ϕG) = E
(
w(Θ)(ϕG(X) − Θ)2

)
,

where the expectation is taken with respect to (X,Θ).

Let X1,X2, . . . ,Xn be the past data, that are independently and inden-
tically distributed random variables with probability density function f(x).
We denote by Xn = (X1,X2, . . . ,Xn) and ϕn(X) = ϕn (X,Xn) the empirical
Bayes estimator of the parameter θ based on past data Xn and the present
observation X.

Definition 2.1. The conditional Bayes risk of ϕn given Xn is

R (G,ϕn|Xn) = E
(
w(Θ)(ϕn(X) − Θ)2|Xn

)
and the overall Bayes risk of ϕn is

R(G,ϕn) = E (R (G,ϕn|Xn)) .

Here the expectation is taken with respect to Xn.

Because ϕG is the Bayes estimator, we have

R(G,ϕG) ≤ R (G,ϕn|Xn)

∀Xn vector of past data and ∀n ∈ N∗. Moreover,

(2.2) R(G,ϕG) ≤ R(G,ϕn), ∀n ∈ N∗.

Definition 2.2. The nonnegative difference R (G,ϕn) − R(G,ϕG) is a
measure of performance of the empirical Bayes estimator ϕn.

We recall (see [3]) that a sequence of empirical Bayes estimators (ϕn)n≥1
is said to be asymptotically optimal if

R(G,ϕn) − R(G,ϕG) −→
n→∞ 0.
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Moreover, if R(G,ϕn)−R(G,ϕG) = O (αn), where (αn)n≥1 is a sequence
of real numbers αn > 0 and αn −→

n→∞ 0, then (ϕn)n≥1 is said to be asymptoti-
cally optimal with convergence rate of order αn.

In [4] there were proved Theorems 2.1 and 2.2 below.

Theorem 2.1. Under assumption (A1)–(A5), the Bayes estimator of
the scale parameter for Pareto distribution is given by

(2.3) ϕG(x) =

 xw̃(x) − �M(x)
xα+1f(x) if 0 < x ≤ m,

mw̃ (m) − �M(m)
mα+1f(m)

if x > m,

where w̃(x) = w(x)
q(x) , M̃(x) = M(x)

q(x) and M(x) =
∫ x
0 θα+1 (w(θ) + θw′(θ)) dF (θ).

If (bn)n≥1 is a sequence of strictly positive numbers satisfying bn −→
n→∞ 0

and nbn −→
n→∞ ∞, we define

fn(x) =
Fn (x + bn) − Fn(x)

bn
,

where Fn(x) is the empirical distribution function based on X1,X2, . . . ,Xn.
We note that fn(x) can be expressed as

(2.4) fn(x) =
1

nbn

n∑
j=1

I(x,x+bn](Xj).

Moreover, E (fn(x)) −→
n→∞ f(x). Thus, fn(x) is a consistent estimator of f(x)

(see[1]).

In [4], there is constructed a consistent estimator of M(x), namely,

(2.5) Mn(x) =
1
n

n∑
j=1

Xα+1
j

(
w(Xj) + Xjw

′(Xj)
)
I(0,x)(Xj).

Next the empirical Bayes estimator for the scale parameter θ proposed
in [4] is given by

ϕn(X) =

[(
Xw̃(X) − M̃n(X)

Xα+1fn(X)

)
I(0,m](X) ∨ 0

]
+(2.6)

+

[(
mw̃ (m) − M̃n (m)

mα+1fn (m)

)
I(m,∞)(X) ∨ 0

]
,

where M̃n = Mn
q and a ∨ b = max (a, b).
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The asymptotic optimality of empirical Bayes estimator (2.6) is asserted
by the result below.

Theorem 2.2. If (bn)n≥1 is a sequence of strictly positive numbers sat-
isfying bn −→

n→∞ 0 and nbn −→
n→∞ ∞, (ϕn)n is the sequence of empirical Bayes

estimators (2.6) and ϕG is the Bayes estimator (2.3), then

R(G,ϕn) − R(G,ϕG) = O
(

1
n

)
+ O

(
1

nbn

)
+ O (b2

n

)
.

3. A LOWER BOUND FOR R(G, ϕn) − R(G, ϕG)

WHEN G IS A UNIFORM DISTRIBUTION FUNCTION

We suppose that α > 1, m = 1 and G is the uniform on (0, 1) cumulative
distribution function. Therefore, g (θ) = 1 for θ ∈ (0, 1). Then

f(x) =


α

α + 1
if 0 < x ≤ 1

α

α + 1
· 1
xα+1

if x > 1.

It is clear that f is decreasing on (0,∞) and conditions (A1) and (A2) are
fulfilled.

Remark 3.1. For x < 1, with the notation from Section 2 we have
E (fn(x)) = f(x).

We will prove that R(G,ϕn) − R (G,ϕG) ≥ O
(

1
nbn

)
+ O (b2

n

)
. In order

to do this we need some preliminary results which will be proved following the
lines in Liang [2].

First, we take δ ∈ (0, 1
4

)
and for each x ∈ (0, 1 − δ] we define

Bn(x) = I

(
M̃n(x)

xα+1fn(x)
≤ xw̃(x)

)
and

Bc
n(x) = I

(
M̃n(x)

xα+1fn(x)
> xw̃(x)

)
.

Lemma 3.1. We have lim
n→∞E (Bn(x)) = 1 and lim

n→∞E (Bc
n(x)) = 0.

Proof. We consider only the case where n is sufficiently large, such that
bn < δ. Note that for x ∈ (0, 1 − δ] we have E (fn(x)) = f(x) and then

E
(
M̃n(x) − xα+2w̃ (x) fn(x)

)
= M̃(x) − xα+2w̃(x)f(x),
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that we suppose to be finite and different from zero. Next, we evaluate

Var
(
M̃n(x) − xα+2w̃ (x) fn(x)

)
≤

≤ 1
n

1
q2(x)

Var
(
Xα+1

j

(
w(Xj) + Xjw

′(Xj)
)
I(0,x)(Xj)

)
+

+
1
n

x2(α+2)w̃2 (x)
b2
n

Var
(
I(x,x+bn] (Xj)

)
.

Because

Var
(
Xα+1

j

(
w(Xj) + Xjw

′(Xj)
)
I(0,x)(Xj)

)
≤ c2

2

and

Var
(
I(x,x+bn](Xj)

)
=
∫ x+bn

x

α

α + 1
dy −

(∫ x+bn

x

α

α + 1
dy

)2

=

= bnf(x) (1 − f(x)bn) ,

we have

Var
(
M̃n(x) − xα+2w̃ (x) fn(x)

)
≤ 2

n

c2
2

q2(x)
+

2x2(α+2)w̃2(x)f(x)
nbn

−→
n→∞ 0.

Furthermore, the Chebychev inequality ([1]) yields

E (Bc
n(x)) = Pr

(
M̃n(x)

xα+1fn(x)
> xw̃(x)

)
= Pr

{
M̃n(x) − xα+2fn (x) w̃(x)−

−(M̃(x) − xα+2f(x)w̃(x)
)

> −(M̃(x) − xα+2f(x)w̃(x)
)} ≤

≤
Var

(
M̃n(x) − xα+2fn(x)w̃(x)

)
(
M̃ (x) − xα+2w̃(x) α

α+1

)2 −→
n→∞ 0.

Then, lim
n→∞E (Bc

n (x)) = 0 and lim
n→∞E (Bn(x)) = 1. �

Lemma 3.2. We have
∫ 1
0 E

(
q(x) (ϕn(x) − ϕG(x))2

)
f (x) dx ≥ O

(
1

nbn

)
.

Proof. For x ∈ (0, 1) we have ϕG(x) = xw̃(x) − �M(x)
xα+1f(x)

= xw(x)
q(x) −

M(x)
q(x)·xα+1f(x)

and ϕn(x) = xw̃(x) − �Mn(x)
xα+1fn(x)

= xw(x)
q(x) − Mn(x)

q(x)·xα+1fn(x)
. Then

ϕn(x) − ϕG(x) =
1

q (x)

[
Mn(x)

xα+1fn (x)
− M(x)

xα+1f(x)

]
.



7 A lower bound for a measure of performance of an empirical Bayes estimator 263

As in the proof of Theorem 4.1 from [4], we have

R(G,ϕn) − R(G,ϕG) =
∫ 1

0
E
(
q(x) (ϕn (x) − ϕG(x))2

)
f(x)dx+

+E
(
q(1) (ϕn(1) − ϕG(1))2

)
· (1 − F (1)) .

We see that ∫ 1

0
E
(
q(x) (ϕn (x) − ϕG(x))2

)
f(x)dx ≥

≥
∫ 1−δ

0
E
(
q(x) (ϕn(x) − ϕG(x))2 Bn (x)

)
f(x)dx,

where

q(x) (ϕn(x) − ϕG (x))2 Bn(x) =
1

q(x)

(
Mn(x)

xα+1fn(x)
− M(x)

xα+1f(x)

)2

B2
n(x) =

=
1

q(x)

(
α (Mn(x) − M(x)) − (α + 1) M(x) (fn(x) − f(x))

αxα+1fn(x)

)2

B2
n(x).

We know that E (fn(x)) = f(x), Var (fn(x)) = 1
nbn

f(x) (1 − f(x)bn) and
lim

n→∞bn = 0. Therefore, by the Central Limit Theorem ([1]), we get

(α + 1) M(x)√
q(x)

√
nbn (fn(x) − f(x)) d−→

n→∞ N

(
0,

(α + 1)2 M2(x)
q(x)

f(x)

)
.

Moreover,

α
√

nbn√
q(x)

(Mn (x) − M(x)) P−→
n→∞ 0, αxα+1fn(x) P−→

n→∞ αxα+1f(x),

and
lim

n→∞E (Bn(x)) = 1.

It follows from the Slutsky theorem that

√
nbn

 α√
q(x)

(Mn(x) − M(x)) − (α+1)M(x)√
q(x)

(fn (x) − f(x))

αxα+1fn (x)

Bn(x) d−→
n→∞

d−→
n→∞ N

(
0,
(

α + 1
α

)2 M2(x)
x2α+2q(x)f(x)

)
.

Now, we get

lim
n→∞

E
(
nbnq (x) (ϕn(x) − ϕG(x))2 Bn(x)

)
≥
(

α + 1
α

)2 M2(x)
x2α+2q(x)f(x)

,
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for all x ∈ (0, 1 − δ] and bn < δ. By Fatou’s lemma we obtain

lim
n→∞

∫ 1−δ

0
E
(
nbnq(x) (ϕn(x) − ϕG(x))2 Bn(x)

)
f (x) dx ≥

≥
∫ 1−δ

0
lim

n→∞
E
(
nbnq(x) (ϕn (x) − ϕG(x))2 Bn(x)

)
f(x)dx ≥

≥
∫ 1−δ

0

(
M(x)

xα+1f(x)

)2 1
q(x)

dx ≥ ε2

c1 (α + 2)2
(1 − δ)3

3
.

Finally, we have∫ 1

0
E
(
q(x) (ϕn (x) − ϕG(x))2

)
f(x)dx ≥ O

(
1

nbn

)
. �

Lemma 3.3. We have E
(
q(1) (ϕn(1) − ϕG(1))2

)
≥ O (b2

n

)
for α ≥ 1.

Proof. Denote

An =
{√

q(1) |ϕn(1) − ϕG(1)| ≥ cn

}
,

where cn = M(1)√
q(1)f(1)

bn. Then

E
(
q(1) (ϕn(1) − ϕG(1))2

)
= E

(
q(1) (ϕn(1) − ϕG(1))2 Bn(1)

)
+

+E
(
q(1) (ϕn(1) − ϕG(1))2 Bc

n(1)
)

.

We have

E
(
q(1) (ϕn(1) − ϕG(1))2 Bc

n(1)
)

= q (1) ϕ2
G(1)Pr (Bc

n(1)) .

Furthermore,

E
(
q(1) (ϕn(1) − ϕG(1))2 Bn(1)

)
≥ c2

n Pr (An ∩ Bn(1)) ≥

≥ c2
n Pr

({
Mn(1) − fn(1)

(
M(1)
f(1)

+ cn

√
q (1)

)
≥ 0

}
∩ Bn(1)

)
.

Thus,

E
(
q(1) (ϕn(1) − ϕG(1))2

)
≥

≥ c2
n Pr

({
Mn(1) − fn (1)

(
M(1)
f(1)

+ cn

√
q(1)

)
≥ 0

}
∩ Bn(1)

)
+

+q(1)ϕ2
G(1)Pr (Bc

n(1)) ≥

≥ c2
n Pr

({
Mn(1) − fn (1)

(
M(1)
f(1)

+ cn

√
q(1)

)
≥ 0

})
,
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since for n sufficiently large we have c2
n ≤ q(1)ϕ2

G(1) because cn = M(1)√
q(1)f(1)

bn

−→
n→∞ 0. Now, we get

E
(
q(1) (ϕn(1) − ϕG(1))2

)
≥

≥ c2
n Pr

{
Mn(1) − fn(1)

(
M(1)
f(1)

+ cn

√
q(1)

)
≥ 0

}
=

= c2
n Pr

{
Mn(1) − fn(1)

(
M(1)
f(1)

+ cn

√
q(1)

)
−

−E

(
Mn (1) − fn(1)

(
M(1)
f (1)

+ cn

√
q(1)

))
≥

≥ −E

(
Mn(1) − fn(1)

(
M (1)
f(1)

+ cn

√
q(1)

))}
.

We also note that

E

(
Mn(1) − fn(1)

(
M (1)
f(1)

+ cn

√
q(1)

))
=

= M(1)

[
1 − 1

bn

∫ 1+bn

1

1
yα+1

dy − cn

√
q(1)f(1)

bn · M(1)

∫ 1+bn

1

1
yα+1

]
≥

≥ M(1)
[
1 − 1

bn

∫ 1+bn

1

1
y2

dy −
∫ 1+bn

1

1
y2

]
= 0.

Hence, by the last relation and the Central Limit Theorem ([1]),

Pr
{

Mn(1) − fn(1)
(

M (1)
f(1)

+ cn

√
q(1)

)
≥ 0

}
≥

≥ Pr
{

Mn(1) − fn(1)
(

M(1)
f(1)

+ cn

√
q(1)

)
−

−E

(
Mn(1) − fn(1)

(
M(1)
f(1)

+ cn

√
q (1)

))
≥ 0

}
−→
n→∞

1
2
.

Now, we can conclude that

E
(
q(1) (ϕn(1) − ϕG(1))2

)
≥ O (c2

n

)
= O (b2

n

)
. �

The above results allow one to establish the main result of this paper.

Theorem 3.1. We have R(G,ϕn) − R(G,ϕG) ≥ O
(

1
nbn

)
+ O (b2

n

)
.
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Proof. By Theorem 4.1 in [4] and Lemmas 3.1–3.3, we have

R(G,ϕn) − R(G,ϕG) =
∫ 1

0
E
(
q(x) (ϕn (x) − ϕG(x))2

)
f(x)dx+

+E
(
q(1) (ϕn(1) − ϕG(1))2

)
· (1 − F (1)) ≥ O

(
1

nbn

)
+ O (b2

n

)
. �
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