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Abstract

This thesis proposes a general framework for equational logic programming, called category-
based equational logic by placing the general principles underlying the design of the pro-
gramming language Eqlog and formulated by Goguen and Meseguer into an abstract
form. This framework generalises equational deduction to an arbitrary category satisfy-
ing certain natural conditions; completeness is proved under a hypothesis of quantifier
projectivity, using a semantic treatment that regards quantifiers as models rather than
variables, and regards valuations as model morphisms rather than functions. This is used
as a basis for a model theoretic category-based approach to a paramodulation-based op-
erational semantics for equational logic programming languages.

Category-based equational logic in conjunction with the theory of institutions is used
to give mathematical foundations for modularisation in equational logic programming.
We study the soundness and completeness problem for module imports in the context of
a category-based semantics for solutions to equational logic programming queries.

Constraint logic programming is integrated into the equational logic programming
paradigm by showing that constraint logics are a particular case of category-based equa-
tional logic. This follows the methodology of free expansions of models for built-ins along
signature inclusions as sketched by Goguen and Meseguer in their papers on Eqlog. The
mathematical foundations of constraint logic programming are based on a Herbrand The-
orem for constraint logics; this is obtained as an instance of a more general category-based
version of Herbrand’s Theorem.

The results in this thesis apply to equational and constraint logic programming lan-
guages that are based on a variety of equational logical systems including many and
order sorted equational logics, Horn clause logic, equational logic modulo a theory, con-
straint logics, and more, as well as any possible combination between them. More impor-
tantly, this thesis gives the possibility for developing the equational logic (programming)
paradigm over non-conventional structures and thus significantly extending it beyond its
tradition.
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1 INTRODUCTION

This thesis is mainly about equational logic programming. It belongs to the tradition of
equational and constraint logic programming started by Goguen and Meseguer in their
pioneering work on the programming language Eqlog during the mid-eighties [38, 39].
Eqlog has been implemented in Oxford by the author of this thesis as an extension of
the SRI implementation of OBJ3.?

1.1 The Equational Logic Programming Paradigm
1.1.1 A historical perspective

Equational logic programming can be regarded as joining two major cultures in Com-
puting: algebraic specification and logic programming.

Logic programming began in the early 1970’s as a direct outgrowth of earlier work in
automatic theorem proving and artificial intelligence. The theory of clausal-form [first
order] logic, and an important theorem by the logician Jacques Herbrand constituted the
foundation for most activity in theorem proving in the early 1960’s. The discovery of
resolution — a major step in the mechanization of clausal-form theorem proving — was
due to J. Alan Robinson [81]. In 1972, Robert Kowalski and Alain Colmerauer were led
to the crucial idea that logic could be used as a programming language [95]. A year later
the first Prolog system was implemented. SLD-resolution, which is a refinement of the
resolution principle restricted to Horn clause logic, became the core of the operational
semantics for most of the further logic programming implementations, although logic
programming is by no means limited to Prolog.
One of the main slogans of logic programming, due to Kowalski, is

Program = Logic + Control

meaning that a problem has a declarative side asserting what the problem is and what
properties solutions should have, as well as a control side describing how the problem is to
be solved. The ideal of declarative programming in general, and of logic programming in
particular, is that the user should specify the logic component of the problem, and control
should be exercised as much as possible by the programming system. Unfortunately, the
users of Prolog-like systems still need to supply a lot of control information.

During the 1980’s, the constraint programming paradigm gradually grew out of logic
programming (see [58]). This brought a new perspective on logic programming, in which
the concept of unification is generalised to the concept of constraint solving [16, 15].
However, Lassez showed that constraint logic programming is still part of the logic pro-
gramming paradigm in a fundamental way* [66].

3Appendix A gives a brief description of how to use the Eqlog system; some examples of Eqlog runs
are given in Chapter 4.

4In Chapter 6 we show how generalised constraint logic programming can be foundationally regarded
as a particular case of equational logic programming.



Algebraic specification is now a particularly mature field of Computing Science, because
of its strong and stable mathematical foundations. The theory of algebraic specification
has been implemented in many computing systems, and is also an important technique
in Software Engineering methodologies.

While the insight that operations should be associated with data representations
seems to have been due to David Parnas [77], the legendary group ADJ® made a decisive
step forward by using initiality (a category-theoretic concept) as a characterisation for
the notion of standard model [44]. Many sorted equational logic became the main logical
system underlying the theory of algebraic specifications and abstract data types. It
was proved complete by Goguen and Meseguer before mid 1980’s [37], but because of its
inability to handle erorrs, it was replaced by order sorted equational logic (which is many
sorted equational logic with subtyping [41]) as the modern logical system underlying the
theory of algebraic specifications and abstract data types.

The theory of algebraic specifications entered a completely new era with the discovery
of the theory of institutions by Goguen and Burstall [33], transcending its origins in
equational logic to encompass a wide variety of logic systems, including first order logic,
Horn clause logic, higher order logic, infinitary logic, dynamic logic, intuitionistic logic,
order sorted logic, temporal logic, etc. Today, nearly 15 years after the first insights given
by the work on the specification language Clear [13], the spirit of abstract model theory
(in its institutional form) is a significant part of the culture of algebraic specification.

The language OBJ [46] played a major role in the development of algebraic spec-
ification and, more generally, of declarative programming. It began as an algebraic
specification language at UCLA about 1976, and has been further developed at SRI In-
ternational and several other sites as a declarative specification and rapid prototyping
language. Its mathematical semantics is given by order sorted equational logic, and it has
a powerful type system featuring subtypes and overloading. In addition, OBJ has user
definable abstract data types with user-definable mixfix syntax, and a powerful param-
eterised module facility that includes views and module expressions. A subset of OBJ
is executable by order sorted rewriting. OBJ has been extended towards object-oriented
programming (the language FOOPS [40]), theorem proving (the metalogical framework
theorem prover 20BJ [42]) and logic programming (the language Eqlog [38], which is
also further discussed in this thesis).

1.1.2 Equational logic programming

The equational logic programming paradigm unifies logic programming based on Horn
clause logic and equational (i.e., functional) programming based on equational logic, i.e.,
the logic of substituting equals for equals. One of the earliest contributions to this field
was [76]. As Goguen and Meseguer repeatedly pointed out [38, 39], the best way to
achieve this goal should be to unify the two logics involved. However, because equational
logic is more fundamental than Horn clause logic®, it is enough to base the new paradigm
only on equational logic. The main difference between equational logic programming
and equational programming lies in the fact that the former deals with the problem of
solving queries. This implies the (somehow subtle) involvement of existentially quantified
sentences, which is explained by Herbrand’s Theorem.

®Originally Goguen, Thatcher, Wagner and Wright.
5This will be explained in detail in Section 2.3.3.



Such a combination is desirable for both the algebraic specification and the logic pro-
gramming traditions. The query solving capability extends equational programming to a
very powerful paradigm in which a specification is already a program (or at least it is very
close to being a program). This not only enormously simplifies the correctness-verification
problem, but also brings in all the advantages of algebraic specification languages (clarity,
simplicity, reusability, maintainability, etc).

From the logic programming point of view, this is the best way to integrate [semantic]
equality into logic programming; a major problem with relational programming, because
many of the compromises of the logic programming ideal found in actual languages (e.g.,
Prolog) have to do with the inability of relational programming to cope with equality.
These compromises created a gap between the original vision of logic programming (i.e.,
programming in logic) and most of the actual implementations which are far from having a
logic-based semantics. In general, they tend in the direction of imperative programming,
which can be confusing and inefficient [2]. (The argument is that the denotational se-
mantics of imperative programs is complex and complicated, with the ultimate practical
consequence being that the debugging is very hard.)

As Goguen and Meseguer pointed out in the context of the programming language
Eqglog [38], the equational logic programming paradigm provides as much practical pro-
gramming power as possible without compromising the underlying logic. In fact, equa-
tional logic programming seems to match very well the slogan of logical programming
(i.e., programming rigorously based on a logical system) as formulated in [39]:

Computation is deduction in the underlying institution.

Any of the advantages of Eqlog over Prolog can be regarded as a direct consequence of its
semantical purity, which sharply contrasts with the many extralogical features of Prolog”.
Although “cut” may be the most notorious, “is” is probably the most outrageous, since it
is an assignment statement with declarative syntax. Thus, real Prolog programs can be
far from having a simple foundation in Horn clause logic. Constraint logic programming
is implemented by ProloglIl in a fixed rather than extensible way, while Eqlog is enough
flexible to be considered as a framework for constraint logic programming [39, 38]. This
means that Eqlog supports constraint solving over any user defined data type. For this
reason we call Eqlog an extensible® constraint programming language.

In general, the operational semantics of equational logic programming systems is
based on narrowing (which is similar to the resolution used in logic programming). Dif-
ferent rather sophisticated refinements of narrowing can be in practice as efficient as
Prolog’s SLD-resolution, which can even be regarded as a special case of narrowing by
viewing the relation symbols as operations (i.e., functions). Therefore narrowing already
contains the mixture of resolution and narrowing that occurs in the context of the oper-
ational semantics of equational logic programming languages based on Horn clause logic
with equality.

1.2 Contributions of this Thesis

This thesis develops a category-based semantics for equational and constraint logic pro-
gramming in the style of the language Eqlog, by placing the general principles underlying

"A major advantage of Prolog is its good compiler.
8In [39] Goguen and Meseguer use the terminology “generalised” instead of “extensible”.



the design of the programming language Eqlog and formulated by Goguen and Meseguer
in [38, 39] into an abstract form. The actual implementation of Eqlog is faithful to this
semantics, and experimentations with the system helped the development of the theory.?

The category-based framework of this thesis gives the possibility to develop equational
logic (programming) over non-conventional structures. In this way, equational logic pro-
gramming is liberated from the traditional set theoretic point of view. This is similar
to the way functional programming and algebraic specification got their true meaning
and power with cartesian closed categories and institutions, respectively. The develop-
ment of equational logic programming over different types of models and domains (some
of them could have a much richer structure than the usual set theoretic domains) and
might prove very beneficial in terms of unifying equational logic programming with other
programming paradigms. By following the results of this thesis one can easily develop
the equational logic (programming) over continuous lattices insead of sets and functions,
for example. Although the examples we provide in this thesis don’t depart fundamentally
from the tradition of equational logic programming as it is today, this framework proved
already to be very effective in integrating equational logic programming with constraint
programming (see Chapter 6).

1.2.1 Beyond conventional “abstract model theory”

The framework underlying this thesis can be characterized as abstract model theory in
the same spirit as the work by the “Hungarian School” in late seventies,'® for example,
is characterized as abstract model theory. By abstract model theory (abbreviated AMT)
we mean far more than the respective tradition in logic which abstracts the Tarskian
approach to cover other logical systems'! (e.g., [6, 5]). Our category-based framework is
very close in spirit to the theory of institutions [33] in the sense that

e it abstracts Tarski’s classic semantic definition of truth [93], based on a relation of
satisfaction between models and sentences, and

o it uses category theory in a very similar manner to achieve generality and simplicity;
in both approaches the models have the abstract structure of a category.

In fact, the theory of institutions was a great source of inspiration for our framework;
we view that theory as fulfilling the original vision of abstract model theory. Two main
differences between our approach and the theory of institutions are:

o the concept of satisfaction between models and sentences is significantly less ab-
stract in our approach because, although the models are fully abstracted and the
sentences generalise the traditional notions of equation, the actual satisfaction re-
lation is defined in a way that abstracts exactly the traditional equational logic
satisfaction between algebras and equations, rather than being an undefined prim-
itive as in the theory of institutions; and

e our framework does not contain a direct mathematical formulation of the intuition
that “truth is invariant under change of notation,” which is somehow central for
the theory of institutions.

In fact, all code presented as examples in the thesis has been run under the Eqlog system.

1071] is a representative piece of work of this school.

YThe goal of research in this area being to generalise as much of classical first order model theory as
possible.



The second point addresses the problem of the technical relationship between our category-
based framework and the theory of institutions. Chapter 5'% shows that our framework
can be naturally embedded into the theory of institutions. On the other hand, our
category-based framework can be internalised in any many sorted liberal institution.'®

1.2.2 Category-based equational logic

One of the main contributions of this thesis is to propose a general framework for the
equational logic programming paradigm called category-based equational logic which
distills the essential ingredients characterising equational logics. Equations, equational
deduction, models (algebras), congruences, satisfaction, etc. are treated in an arbitrary
category satisfying certain mild conditions which plays the réle of the category of models
for the equational logical system. This category of models comes equipped with a forgetful
functor to an [abstract] category of domains. This encodes the principle that any model
is an interpretation of a signature!* into a domain which is usually a set, or a collection
of sets in the case of typed logical systems. All concepts are introduced and results are
proved at the highest appropriate level of abstraction. Through a gradual refinement
process (which could be seen as “climbing down” the abstraction hierarchy) all concepts
(including the rules of inference for category-based equational deduction) can be made
explicit in the concrete cases, while still avoiding all irrelevant details when focusing on
a particular equational logical system. By taking a semantic perspective on terms as
elements of a carrier of a free model,'® the quantification of equations is abstracted from
variables to models, as a result, valuations are abstracted from simple assignments of the
variables to model morphisms.

The framework of category-based equational logic is used in this thesis to deal with
operational semantics, modularisation and constraint programming for the equational
logic programming paradigm. Such a framework must achieve a delicate balance be-
tween abstraction and concreteness; this balance makes possible the natural encoding of
all important principles and phenomena related exactly to the equational logic program-
ming paradigm, while still avoiding the details of any particular logical system. This
explains why the category-based framework of this thesis technically lives on a lower
level of abstraction than the theory of institutions which was designed to be used in the
wider context of declarative programming. The analogy with classical algebra might be
enlightening. Although the mathematical structure underlying modern algebra is that of
a ring, the structure of module'® is more important for the more specialised area of linear
algebra. However, there is a close relationship (both technically and in spirit) between
rings and modules, although rings may also be fundamental for number theory, which is
only indirectly related to linear algebra. In the same way, institutions may be relevant
to an area only remotely related to equational logic programming, such as semantics for
the object paradigm [29, 11, 35].

A uniform treatment of the model theory of classical equational logic is now possible
due to the comprehensive development of categorical universal algebra; without any claim
of completeness, I mention the so-called Lawvere algebraic theories, either in classical
form [69] or in monadic form [70] (although neither of these fits order sorted algebra

12Devoted to modularisation issues.

13The precise definition is given in Chapter 5.

HMSometimes called language or vocabulary in classical logic textbooks.

15As opposed to to the syntactic perspective that regards terms as tree-like syntactic constructs.
16Not to be confused to the Computing concept of module!



nicely), the theory of sketches [4], and the recently developed theory of “abstract algebraic
institutions” [89, 91]. However, no uniform proof theory has previously been developed
for all these equational logics. It could be argued that, at least for computation, the proof
theory is more important than the model theory. In Computing Science model theory is
far more important as a methodology or style of thinking than it is in itself. A major
contribution of this thesis is that it lays bare the architecture of equational deduction,
i.e., the conceptual structure that underlies it. The key to the completeness of category-
based equational deduction is to regard the congruence determined on an arbitrary model
A by an arbitrary collection I' of [conditional] equations in two different ways: as the
collection of all unconditional equations quantified by A that are syntactically inferred
from I', and as the collection of equations that are a semantic consequence of I'. Because
of the semantic treatment of equation and satisfaction, there is no distinction between
the congruence determined by I' on the free models and on other models. Under some
additional conditions related to the finiteness of the hypotheses of the conditions in I’
and to the finiteness of the model operations (both of them encoded in category-theoretic
terms), this congruence can be obtained in an effective way.

A relevant consequence of the completeness results for category-based equational de-
duction is a generic Herbrand’s Theorem (in two versions) formulated in the style of
[39], i.e., characterising Herbrand models as initial models of the program regarded as
an equational theory. This provides mathematical foundations for the equational logic
programming paradigm in the style of FEqlog [38, 39]. When applied to constraint logics
(in Chapter 6), this gives a version of Herbrand’s Theorem for extensible constraint logic
programming. Despite the sophistication of this last result, it is obtained with minimal
effort due to the category-based machinery.

1.2.3 Category-based operational semantics

Equational deduction bridges the gap between the operational semantics and the model
theory of equational logic programming; such a reconciliation is essential for understand-
ing the correctness of computer implementations. The completeness and soundness of a
computing system rigorously based on some equational logic depends on the complete-
ness and soundness of the operational semantics with respect to the deduction system
of the equational logic involved, as well as on the completeness and soundness of the
equational deduction system with respect to its model theory.

Our category-based framework supports the development of category-based equa-
tional logic into a purely model theoretic approach to the completeness of operational
semantics for various programming paradigms that are based on some form of equational
logic; this result is independent of the particular [equational] logic involved, as opposed
to the combinatorial treatments of the paramodulation-based operational semantics seen
in the literature. We generalise the concept of paramodulation to model theoretic
paramodulation by defining paramodulation as an inference rule with respect to an
arbitrary fixed model. We propose a generic scheme for proving the completeness of the
paramodulation-based operational semantics for equational logic programming. The core
of this scheme is the analysis of the relationship between the congruence determined by
a program [' on a model A and the relations induced on A by the operational inference
rules. This scheme also clarifies the role played by the Theorem of Constants, the Com-
pleteness of Equational Logic, and the Lifting Lemmas in proving the completeness of
operational semantics. In this approach rewriting is defined on algebraic entities that are



more abstract than terms. This is achieved by isolating the abstract properties of what
are known contexrts in the standard case of many sorted algebra.

An important class of applications concerns equational deduction modulo a theory.
This arises when some equations in a program are non-orientable, making them useless
as rules (i.e., for rewriting or narrowing). The most notorious cases are associativity (A),
commutativity (C) and their combination (AC). Also, graph rewriting is a particular
case of rewriting modulo a theory [7]. By taking a semantic perspective on computations
modulo a theory we introduce the more abstract concept of paramodulation modulo
a model morphism and use it for showing that computing in the quotient model of
a theory is the same as computing modulo that theory. One conclusion of this thesis
is that there is no fundamental difference between ordinary equational deduction and
equational deduction modulo a theory. Based on this level of denotational semantics,
Chapter 4 extends this conclusion to the realm of operational semantics.

1.2.4 Modularisation and extensible constraint logic programming

By integrating our framework and the theory of institutions, we define the mathematical
structure underlying modularisation for equational logic programming in the style of
OBJ: the institution of category-based equational logic supports a general treatment of
the modularisation issues that are specific to the equational logic programming paradigm,
as well as a category-based semantics for queries and solution forms in the context of
OBJ-like modularisation.

In the institution of category-based equational logic, the signatures are functors. This
abstraction of the notion of signature is based upon the fact that in any equational
logic system, a signature determines a category of models, a category of domains, and a
forgetful functor between them. A morphism of signatures consists of a pair of “reduct”
functors, one on models and the other on domains. Forgetting from models to domains
commutes with the reduct functors.

The concept of solution form is shown to correspond to the Satisfaction Relation in
a special “non-logical” institution. This correspondence is useful for understanding the
soundness and completeness problem for equational logic programming module importa-
tion in the wider context of institution theory, and thus relating it to the usual logical
concepts of soundness and completeness.!” The solution to this problem is given at the
level of the institution of category-based equational logic.

Finally, the category-based machinery is used for integrating extensible constraint
logic programming into the equational logic programming paradigm by defining its un-
derlying logic and regarding it as category-based equational logic in which the models
form a comma category over a “built-in” model. This idea is based on the insight of
[39] to use free expansions of models of built-ins along signature morphisms. This repre-
sents a significant generalisation of the initial algebra approach from abstract data types
to constraint solving. In this way extensible constraint logic programming becomes a
paradigm based essentially on equational logic.'® This is a big advantage because exten-
sible constraint logic programming could benefit from the high maturity of the semantics
of equational logic, and possibly from some implementation techniques specific to equa-
tional logic. At the semantic level, this is already very transparent. It will be interesting

17This is an example of the use of “abstract model theory” beyond the realm of logical systems, and
of extension of concepts from logic to different areas.
18More precisely, on category-based equational logics.



to explore the benefits of such an approach at the level of operational semantics.

1.3 The Structure of the Thesis

After the Introduction and Preliminaries, we devote one chapter to each of the four main
topics. The technical dependencies between chapters are shown in the following diagram:

|Preliminaries
Category-based P
equatgionyal logic Modularisation]
Operational Extensible constraint
semantics logic programming

1.3.1 Preliminaries

The basic categorical concepts of this work are introduced and the category-based frame-
work of this thesis is introduced. The first section is devoted to various aspects of
categorical relations, which are at the center of the categorical machinery of this thesis.
The second section discusses finiteness from a categorical angle and applies it to cate-
gorical relations. Equivalence, composition of binary relations, closures of relations and
confluent relations are analysed within this framework.

The last section defines the category-based framework underlying this thesis and
gives a list of examples relevant to equational logic programming: many sorted algebra,
order sorted algebra, Horn clause logic (with or without equality), and equational logic
modulo a theory. Each example is presented with a fair amount of detail; we also show
how they formally fit into the category-based framework previously introduced. The
presentation of Horn clause logics contains a body of results showing how they can be
technically regarded as ordinary (conditional) equational logics. Constraint logics are
also mentioned, but we devote the whole of Chapter 6 to this example.

1.3.2 Category-based Equational Deduction

The categorical proof theory for equational logics is developed in this chapter. This
begins with a category-based treatment of the concept of congruence. At this level,
the finiteness of operators (or predicates) arity is encoded as a category-based finitarity
condition related to congruences. The first section gives a category-based definition of
the notion of U-equation and of the satisfaction relation between models and U/-equations.
The completeness of category-based equational logics is obtained in the next section, and
Section 3.4 derives a first version of Herbrand’s Theorem as its consequence.

The last section explores the consequences of the existence of free models. We get
a more concrete formulation of the completeness of category-based equational deduction
similar to the classical approaches. At this level we discuss the réle played by the Axiom
of Choice and of “finiteness of model operations” for the completeness of category-based



equational deduction. This section ends with a “non-empty sorts” version of Herbrand’s
Theorem.

1.3.3 Operational Semantics

This chapter begins with a very brief historical perspective on narrowing, followed by a
discussion on the principles underlying our approach on the operational semantics. A
preliminary section defines the category-based context of our treatment of the operational
semantics, and approaches the notion of rewriting context from a category-based angle.
The next section presents the inference rules of the paramodulation-based operational
semantics for equational logic programming and establishes some related notations. Sec-
tion 4.3 is devoted to the completeness of model theoretic paramodulation, Section 4.4 to
paramodulation modulo a model morphism, and Section 4.5 to the role of confluence in
establishing the completeness of paramodulation for the case of oriented rules. The the-
ory developed in the first part of this chapter is applied in the next section to proving the
completeness of many sorted narrowing when programs are term rewriting systems, and
it also reviews the completeness of many sorted basic narrowing assuming the canonicity
of the rewriting system.

The chapter on operational semantics ends with a section illustrating order sorted
basic narrowing with runs of the Eqlog system. The constructor discipline is briefly
presented as a control strategy in the context of the Eqlog system.

1.3.4 Modularisation

The chapter begins with a general discussion on the OBJ-like modularisation principles
(including some history) and its advantages, a description of the soundness and com-
pleteness problems for module imports specific to equational logic programming, and a
discussion on the role of category-based in the treatment of modularisation in equational
logic programming. Section 5.1 presents some basic results in the context of semiexact
institutions including a theorem that is fundamental to the semantics of parameterisation
(i.e., generic modules) for OBJ-like languages.'® Section 5.2 provides the bridge between
the theory of institutions and the category-based framework of the thesis, and proves a
generic?® Satisfaction Condition in this context. Quantifier translations appear as free
models along signature morphisms, and sentence translations as universal morphisms
between Kleisli categories. This provides a basis for the category-based semantics of
queries and solution forms versus modularisation developed in the next section, where
the main result is the soundness of any module import and the completeness of persis-
tent module imports. The soundness and completeness for equational logic programming
module imports is shown to be an instantiation of the more abstract notion of soundness
and completeness for institutions with an entailment relation. This involves an eccentric
institution in which models are queries, sentences are substitutions, and signatures are
collections of logical variables.

The last section gives a generalisation of the Theorem of Constants within the frame-
work of category-based equational logics.

¥Tncluding Eqlog viewed as a specification language.
20For equational logics.
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1.3.5 Extensible Constraint Logic Programming

This chapter gives a category-based semantics to extensible constraint logic programming
by embedding constraint logics within the framework of category-based equational logics.

It then uses the machinery of the previous chapters for proving a constraint logic version
of Herbrand’s Theorem.

1.4 The Programming Language Eqlog

Eqglog [38] is a programming and specification language being developed by the author at
Oxford University, to combine constraint logic programming with equational program-
ming. Its default operational semantics is order sorted narrowing?!, but particular cases
can be computed by efficient built in algorithms over suitable data structures, with their
functions and relations, including equality, disequality, and the usual orderings for num-
bers and lists. Initiality in Horn clause logic with equality provides a rigorous semantics
for functional programming, logic programming, and their combination, as well as for
the full power of constraint programming, allowing queries with logical variables over
combinations of user-defined and built in data types [39].

Eqlog has a powerful type system that allows subtypes, based on order sorted algebra
[41]. The method of retracts, a mathematically rigorous form of runtime type checking
and error handling, gives Eqlog a syntactic flexibility comparable to that of untyped
languages, while preserving all the advantages of strong typing [34]. The order sortedness
of Eqlog not only greatly increases expressivity and the efficiency of unification (see
[74]), but it also provides a rigorous framework for multiple data representations and
automatic coercions among them. Uniform methods of conversion among multiple data
representations are essential for reusing already programmed constraint solvers, because
they will represent data in various ways. Order sorted algebra provides a precise and
systematic equational theory for this, based on initial semantics (see [73] for a detailed
discussion, [34] and [73] for some further examples).

Eqlog also supports loose specifications through its so-called theories, and provides
views for asserting the satisfaction of theories by programs as well as relationships of re-
finement among specifications and/or programs. This relates directly to Eqlog’s powerful
form of modularity, with generic (i.e., parameterised) modules and views, based on the
same principles as the OBJ language (see [38]). Theories specify both syntactic structure
and semantic properties of modules and module interfaces. Modules can be parame-
terised, where actual parameters are modules. Modules can also import other modules,
thus supporting multiple inheritance at the module level. For parameter instantiation, a
view binds the formal entities in an interface theory to actual entities in a module. Mod-
ule expressions allow complex combinations of already defined modules, including sums,
instantiations and transformations; moreover, evaluating a module expression actually
builds a software system from the given components.?? Thus parameterised programming
in Eqlog gives significant support for large programs through module composition, and
[28] shows that it also provides the power of higher order functions. The semantics of
module importation is given by conservative extensions of theories in Horn clause logic
with equality [39]. The stronger notion of persistent extension underlies generic modules.

21Gection 4.7 contains some examples of order sorted narrowing based Eqlog runs.
22Chapter 5 contains some simple examples of parameterised modules and instantiations.
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1.4.1 Eqlog as a framework for decision procedures

From the very beginning logic programming was based on first order logic, paying tribute
to its success in the foundations of mathematics. Prolog is now the only logic program-
ming language that is quite widely used worldwide. Eqlog not only combines traditional
logic programming with equational programming, it is also an extensible modular con-
straint programming language, which permits user-defined abstract data types and the
reuse of existing code for constraint solvers for various problems. The fact that Eqlog
is implemented in Kyoto Common Lisp supports this flexibility, because both Common
Lisp and C programs can easily be included, and many other languages have translators
into C. Gaussian elimination for systems of linear equations or packages for solving sys-
tems of linear inequalities are examples of what can be done. Of course, many decidable
problems may not already have such efficient algorithms, but they can still be solved by
the general method of narrowing, which in some cases can be as efficient as computation
in an ordinary functional language.
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2 PRELIMINARIES

This work assumes some familiarity with the basic notions of universal algebra and cate-
gory theory. We generally use the same notation and terminology as Mac Lane’s standard
category theory textbook [64], except that the composition of arrows is denoted by “;”
and written in the diagrammatic order. Application of functions (functors) to arguments
may be written either normally by using parentheses, or else in the diagrammatic order
without parentheses.

Categories are usually denoted by capital bbold letters; the standard ones usually
have a name whose first letter is written in capital bbold. For example, the category
of sets and functions is denoted by Set, and the category of categories and functors is
denoted by Cat. The opposite of a category C is denoted by C°?; it has the same class of
objects as C, but all arrows are reversed. Functors are usually (but not always!) denoted
by caligraphic capital letters, particularly for ‘functor variables’ as opposed to functors
whose action is known. Objects in categories are usually denoted by small or italic capital
letters; the class of objects of a category C is denoted by |C|. The set of arrows in C
having the object a as source and the object b as target is denoted by C(a, b).

2.0.2 Comma categories

Recall from [64] that given two functors C SLE & D, the comma category (C|D)

has arrows ¢C — dD as objects and pairs of arrows (f, g) as morphisms, such that

C —=dD
fcl lgD
c’CT>d’D

commutes. For functors collapsing everything to a constant object (i.e., to an identity
arrow) we use the object itself as notation. For any object e € |E|, the forgetful functor

(eJE) = (el1g) — E is denoted E..

2.0.3 Limits and colimits

A diagram in a category C is a functor J %5 C. A cone ~v: d — C consists of
an object d € |C| (called the apex of the cone) and a |J|-indexed family of arrows

{45 Cli)bigyy such that 55 C(u) = 3 for any u in J:

J i
o) — o)
V5 ¢ Vi
|
d



A limit of C is a minimal cone over (', i.e., a cone p: ¢ — C such that for any other
cone v: d — (' there exists a unique arrow f: d — ¢ in C such that f;u = ~.

Co-cone and colimit are dual to the notions of cone and limit, i.e., their defintion
can be obtained by reversing the arrows in the definition of limits. This can be visualised
by the following diagram:

o) —— (i)
N4
\J

d

Particular limits and colimits are obtained by fixing the shape of the diagrams, i.e., the
category J. When J is discrete (i.e., it consists only of identity arrows) we get products
and coproducts, respectively. When J consists only of two objects and a parallel pair of
arrows between these, we get equalisers and coequalisers, respectively.

A functor D’ -5 D creates colimits iff for any colimit D 5 ¢ (of a diagram
J 2 Din D), there exists a colimit g/ in D’ such that ¢/U = p.

A category J is filtered iff for any objects i,j € |J|, there is an object k € |J]| such
that i — &k « .

2.0.4 2-categories

Given two functors §,7 : A — B, a natural transformation 7: & — 7T consists of an
|Al-indexed family of arrows in B, {aS == a7 },¢ja such that for all f in A the following
diagram commutes:

a aS —">aT
fl fsl lfT
a’ a'S ——=adT

As “functor homomorphisms” natural transformations compose point-wise in the obvious
way. This is called the vertical composite of natural transformation:

—_—
lo
—_—

A

A B

i.e., a(o;7) = ao;ar. There is another horizontal composite of natural transformations

' §;8" =TT’

S S!
T T

and there is an Interchange Law: given three categories and four natural transformations

lo lo
A B——=C,
AT

the “vertical” composites and the “horizontal” composites are related by

(o57) (0" 7) = (00"); (77).
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Functors and natural transformations form a 2-category (i.e., Cat is a 2-category).
A 2-category is a class of arrows (called 2-cells) for two different compositions which
together satisfy the Interchange Law, and in which every identity arrow for the first
composite is also an identity for the second composite. The identities for the vertical
composites are called 1-cells, and the identities for the horizontal composites are called
0-cells.

2.1 Categorical Relations

The categorical version of binary relation plays a central réle in this work.

2.1.1 Representations of binary relations

Definition 2.1 Let a be an object of a category X. A binary relation representation

on « is a parallel pair of arrows s,t € X(k, a), denoted By or just (s,t). O

Here k plays the role of “object of indices” and s, stand for the projections which
give the left hand side and the right hand side of any pair of elements belonging to the

relation.??

Example 2.2 Let < be the usual “less than or equal” relation on the set w of natural
numbers. We can define the set of indices to be {(z,y) | ,y € w and # < y}, and let
s,t: k — w be the projections, i.e., s(z,y) = ¢ and t(z,y) =y. O

Definition 2.3 Let kX% q and & “2% ¢ be binary relation representations on the same
object a. Then (s,t) is included in (s',t') (denoted (s,t) C, (s',t'), or just (s,t) C
(s',t")) iff there is a map h: k — k' between the objects of indices such that s = h; s’
and t = h;t'. O

k%a
s't
h||h
t/
k!

Fact 2.4 For any category X let X be the category having the same objects as X and
pairs of parallel arrows as maps. Let Ax be the functor X — X_ doubling each arrow in
X. Then for any object a in X, the inclusion C, between binary relation representations
on a is the preorder obtained by collapsing?! the comma category (Axla). O

Definition 2.5 Two relation representations () and ()’ on the same object a are equiv-
alent (denoted @ =, @', or @ = @' for short) if and only if @ C @ and @ C Q.
O

Z3For technical simplicity, we don’t require s and ¢ to be monics. In this way, a binary relation can
have more than one representation, each having different objects of indices. Some of these objects of
indices are not necessarily isomorphic; this allows repetitions of “elements” in a representation of a
relation.

24The elements of the preorder are the objects of the category, and two elements are related under the
preorder iff there is an arrow between them.
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Binary relations are classes of equivalent representations:

Definition 2.6 Let a be an object of a category X. A binary relation on « is an
equivalence class of =,. O

For simplicity, we will often use representations instead of equivalence classes as binary
relations. Notice that the concept of inclusion between binary relation representations
can be extended to binary relations proper. We will often write sQt for (s,t) C @, where
() is a binary relation.

2.1.2 Unions of relations

Definition 2.7 Let {Q);}ic; be a family of relations on an object a of a category X.
The union U;c; @i is the least upper bound of this family with respect to the inclusion
relation. Dually, the intersection (;c; Q); is the greatest lower bound. O

Lemma 2.8 If X has colimits, then the union J;c; ¢; of any family of binary relations
on an object a of X exists, and may be constructed as a colimit in the comma category

(Axla).
Proof: This follows from Fact 2.4 and from the fact that the forgetful functor (Axla) —
X creates colimits. O

Corollary 2.9 If X has binary coproducts and colimits of filtered preorders, then it has
unions of binary relations.

Proof: By the construction of [small] colimits from binary coproducts and colimits of
filtered preorders (see [64]). O

Fact 2.10 Assume X has coproducts. Let (s;,1);er be a family of relations on a € |X]|
and let f: a — b be an arrow in X. Then

(Ui ta))s /= Uit f)-

i€l iel
Proof: Let k be Il;c; ki, where k; is the object of indices for (s;,¢;). Then U;er(si, t;)
can be regarded as the coproduct of (s;,#;);cr in (AxJa). By the universal property of
coproducts, (U;er(si, ti)); [ is the coproduct of (s;; f, t:; [ )ier, that is, User(si; [, ti; f). O

Definition 2.11 A binary relation () is atomic iff it does not have any proper subrela-
tions, i.e., the empty relation and () are its only subrelations. O

In the case of [many-sorted] sets, the atomic relations are exactly the one-element
relations.

Definition 2.12 A coproduct [[;c; k; in a category X is disjoint iff any map f: p —
[;cs ki can be represented as f = [1;c; fi with fi: p; = &k and p = [1;c; pi- A category
has disjoint coproducts iff it has coproducts and all its coproducts are disjoint. O

Example 2.13 In Set any function f: p — [I;c; ki can be written as f = [[;c; f; where
fie 7 (ki) = ki. This works because the coproducts of sets are disjoint unions.
The same situation holds for the case of many-sorted sets and functions. O
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Lemma 2.14 Let X be a category with disjoint coproducts. If R C U;c; @; (as binary
relations), then R can be represented as R = U;c; R; with R, C @;.

Proof: Let R be p M a and k; be the object of indices of ); for each ¢ € I. Then
the object of indices of |J;c; @i can be taken as [I;c; ki. Let f: p — Ilicr ki be the
map between the indices representing the inclusion B C U;c; @i. Then f = [l;cr fi
with fi: p; — ki and [I;c; pi = p. Define R; to be (ji;s,j;;t) for each i € I, where
{ji: pi = plier are the injections of the coproduct co-cone. Now it is easy to see that

R; C (); for each ¢ € I and that R = {J;¢; R;. O

2.1.3 Equivalences

In this subsection we introduce the notion of equivalence as a special binary relation.
The following is a well known categorical definition of equivalence relations:

Definition 2.15 The kernel of an arrow &, denoted ker(h), is the pullback of A with
itself. A relation (s,t) on @ is an equivalence iff there is a map h such that (s,t) =

ker(h). O
Fact 2.16 If X has pullbacks, then ker is a functor (a}X) — (Axla). O

In ordinary set theory, equivalences are characterised as reflexive, symmetric and
transitive binary relations. The following definition deals with reflexivity, symmetry and
transitivity at the level of categorical binary relations.

Definition 2.17 Let X be a category and consider an object a in X. The diagonal of
a is the relation

Dy =it | £ € X(k, a)}
Then a relation @ on «a is reflexive iff D, C Q.
(I, r) is symmetric iff ({,r) = (r,[), and
@ is transitive iff (s, u) C @) whenever (s,t) C @ and (t,u) C @ for some ¢t. O

Fact 2.18 Any equivalence is reflexive, symmetric and transitive. O

Fact 2.19 The symmetric closure of a binary relation ([, r) on a exists, and is given by
sym(l,r)y = (I, r) U (r,1).

a

Definition 2.20 A category X has filtered unions of equivalences iff for each object
a the functor ker: (alX) — (Axla) preserves filtered colimits. O

Fact 2.21 The forgetful functor (alX) — X creates filtered colimits. O

17



Example 2.22 The category Set® of S-sorted sets and functions has filtered unions of
equivalences. This reduces to the fact that unions of filtered families of equivalence
relations on a set A are still equivalence relations. Filteredness is essential, as suggested
by the two equivalences on {1,2,3} generated by {(1,2)} and, {(2,3)} respectively. Their
union is not an equivalence since it is not transitive because it does not contain (1, 3).

More formally, consider a set A and let x: {AiBi}ieI — (AAB) be a filtered colimit
in (AlSet®). Let K; be the kernel of f; for i € I. By Fact 2.21 pu: {B;}ie; — B is a
filtered colimit in Set®, therefore B is ([1;c; B;i)/~, where b ~ b’ iff b and b’ get mapped
into the same element by some function in the diagram { B, };c;. The existence of filtered
unions of equivalences means that ker(f) should be U;e; K;. Then U;er K; = {(a, d’) |
35 € [1] such that fi(a) = f(a')} and ker(f) = {(a, @) | ¥j € |1}, f(a)/n = fla)/ o}
By the definition of ~, ker(f) C U;e; K. But U;e; K; C ker(f) since each K; C ker(f).
O

2.2 Finiteness

This section deals with finiteness. The concept of finiteness is essential for proving the
completeness of equational deduction, and consequently of the operational semantics.

2.2.1 Finite objects

The link between finiteness and filteredness is now well established in several different
branches of mathematics. Although it is hard to trace back its origins, we mention the role
played by filteredness in explaining some Birkhoff-like axiomatisation results in abstract
model theory. Our categorical definition of finiteness corresponds to the definition of
“[-small object” in [1] when L is the class of all directed posets, and it also generalises
the well known notion of a “finite element” in a partially ordered set.

Definition 2.23 An object £ in a category X is finite iff for any map f: k& — d to
the apex of a colimiting co-cone p: D — d in X over a filtered diagram D, there exists
i € |D] and a map f;: k — D(i) such that fi;u, = f. O

Example 2.24 In Set®, the finite objects are exactly those S-sorted sets that are finite
on each component in the ordinary sense.

Consider a finite S-sorted set k and a map f: & — d to the apex of a colimiting
co-cone f1: D — d over a filtered diagram D in Set®.

Due to the nature of colimits in set theory, d = U;¢p|1t;(D(j)). Therefore, for each
element e € d, there exists j such that e € p;(D(j)). The same holds for any subset of
d, in particular for f(k). Since d is finite and D is filtered, there exists ¢ € |D| such that
f(k) € ui(D(4)). Now it is easy to construct a map fi: k — D(i) such that fi;u; = f.
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For the converse, assume the hypotheses and suppose k is not finite. Let D be an
w-diagram such that D(j) C k and D(j) is strictly included in D(j + 1) for each j € w.
Such a diagram exists because k is not finite. Let f be any right inverse to the inclusion
UjewD(j) C k. Suppose there exists ¢ € w and f;: k — D(7) such that fi;u; = f. Let
e be an element in D(i + 1) that doesn’t belong to D(¢). If f;; p; was equal to f, then
e = f(e) = wi(fi(e)) = e, which clashes with the fact that e doesn’t belong to D(¢). O

Example 2.25 In a similar manner to the previous example we can easily see that in
the category Vecty of vector spaces and linear transformations over some field K, the
finite objects are exactly the finite dimensional vector spaces. O

Lemma 2.26 Suppose X has binary coproducts. Then k []k; is finite if &y and ky are
finite.

Proof: Consider a colimiting co-cone p: D — d over a filtered diagram D in X. Let
f =1Ll Ik — d with f;: k; — d. By the finiteness of % and k; and because
D is filtered, there is an object j and two maps ¢;: k — D(j) (for i = 1,2) such that
gii ft; = fi. Define g to be [g1, 2] k11l k2 — D(j). Then g;p; = f. O

2.2.2 Finiteness for binary relations

Definition 2.27 A binary relation is finite iff at least one of its representations has a
finite object of indices. O

Fact 2.28 Any finite binary relation on a € |X] is finite as an object of (Axla). O

The converse doesn’t necessarily hold. However, a natural condition on the base
category ensures that finite binary relations on an object a correspond exactly to the
finite objects in (AxJla). The next definition is adapted from [1]:

Definition 2.29 The category X is algebroidal iff each of its objects can be presented
as a filtered colimit of finite objects. O

Both Set® and Vecty are algebroidal categories. In the former case, any S-sorted set
is the union of its finite subsets, while in the latter case, each vector space over a field
K is the colimit of its finite dimensional subspaces. Another well known example comes
from domain theory. A lattice is called algebraic iff each of its elements is a directed
union of finite elements.

Fact 2.30 If X has binary coproducts, then for any binary relation ¢ on a, {() finite |
(o C @} is filtered.
Proof: By Lemma 2.26. O

Corollary 2.31 If X is algebroidal and has binary coproducts, then for any binary
relation () on a,

Q = J{@ finite | Qo C Q}.
Proof: Let @ be (s,t) with d the object of indices. Since X is algebroidal, d is the

apex of a colimiting co-cone p: D — d of a diagram whose nodes are finite objects in X.
For each node 7 in D, the binary relation (p;; s, g5 t) is finite and (s, t) is the colimit of
(i3 8, i3 1) ieip) in (Axla) since the forgetful functor (Ax]a) — X creates colimits. By
Lemma 2.8, (s, 1) = U;ep| (13 5, i3 ). But
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U (s s, s t) € UL (50, fo) finite | (so, fo) € (s,1)}.

i€|D]|

Therefore, (s,t) C |U{(s0, %) finite | (so, %) C (s,t)}. This proves the corollary since the
opposite inclusion is trivial. O

The following corollary motivates Definition 2.27 and shows that the finite binary
relations on a correspond exactly to finite objects in (Axla).

Corollary 2.32 If X is algebroidal and has binary coproducts, then for any object a in
X, any finite object in (Axdla) is a finite binary relation on a.

Proof: Assume that k M a is finite as an object in (Axla). By Corollary 2.31

(s, t) = U{k()(so—’toQa finite | (s0, ) C (s, t)} and there exists k0<80—’to>>a C (s, t) finite such
that (s,t) C (so,1). O

Corollary 2.33 If X is algebroidal and has binary coproducts, then any atomic relation
is finite. O

2.2.3 Reflexive-transitive closures

Throughout this subsection we assume that the category X is algebroidal and has disjoint?®

binary coproducts.

Lemma 2.34 A binary relation @ on a is symmetric iff (s,¢) C @ implies (¢,s) C @
for all finite (s, t).
@ is transitive iff for any finite relations (s, t) and (¢, u), (s, u) C () whenever (s, ) C

@ and (t,u) C Q.
Proof: Let @) be kﬂa. By Corollary 2.31,

(s, 1) = U{<SO, to) finite | (so, %) C (s, 1)},

in such a way that (s, ) could be presented as the colimit of the set in the right-hand side
of the previous equality. From this, we deduce that (¢,s) = U{(, s0) finite | (so,%) C
(s,t)}. But each finite (fy, so) is included in (s, t) by hypothesis, therefore (¢, s) C (s, ).

For the second part of this lemma, consider (s', '), (t',u’) € Q and let {k; 25 k}icr
be a representation of k as a filtered colimit of finite objects. Let s; = u;;8',t; = py;t!
and u; = p;;u’. Then (s;,u;) € @ by hypothesis, and because (s, u) = U,¢r(si, ui), we
have (s,u) C . O

Definition 2.35 Let () and R be relations on the same object a. Then their composi-
tion is

Qo R =|J{(s,u) finite | (s,t) C Q,(t,u) C R for some t}.
O
Fact 2.36 Let () and R be relations on the same object a. Then

{(s,u) finite | (s,1) C Q,(t,u) C R for some ¢t}

25Tn the sense of Definition 2.12.
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is filtered. O

Lemma 2.37 Fix an object a in X. Then

1. the composition of binary relations is monotonic with respect to the inclusions
between relations,

2. the composition of binary relations on « is associative, and

3. (LU Gr)oR=(Q10R)U(Q20 R) for any binary relations ¢, @2, R on a.

Proof: 1. The proof of this falls out directly from the defintion of inclusions of cate-
gorical relations.
2. Consider @), R, P binary relations on a. Then

(QoR)o P =|J{(s,u) finite | (s,t) C Qo R,(t,u) C P for some (}.

Because of Fact 2.36, for each (s,t) C () o R finite, there exists v such that (s,v) C @
and (v,t) C R. Then

(QoR)o P =|J{(s,u) finite | (s,v) € Q,(v,t) C R, (t,u) C P for some v, t}.

The same holds for @ o (Ro P). Therefore (Qo R)o P = Qo (Ro P).

3. (hoR)U(GhoR) C (Q1UQy)o R holds by the monotonicity of o with respect to C.
For the opposite inclusion, consider (s, u) finite such that (s,¢) C QU@ and (t,u) C R
for some t. Let (s;,t;) C @i, (ti,u;) C R, i € {1,2}, such that (s,¢) = (s1,t) U (s2, ta).
Then (s;,u;) C Qi o R and (s, u) = (s1,u1) U (s2,u2) C (o R)U(Qr0R). O

Proposition 2.38 Any relation ) on an object a in X has a reflexive-transitive closure
(i.e., the least reflexive-transitive relation containing @), namely

Q=1 @

new

where ¢y = D, and Q)41 = @, U Qo Q,.

Proof: The reflexivity of @* holds because of ()y. For proving the transitivity of Q*,
we show first by induction on m € w that @,, 0 @, C @1, for any n € w. For the
induction step,

Qm-l—lan (QmUQOQm)OQn
Gmo@QUQoQ,o0@, (byLemma 2.37)
Qm-l-n U Q © Qm-l-n

Qm—l—n—l—l-

Now consider (s, t), (¢, u) C Q* finite. Since Q* = U,e., @ is a filtered colimit, there
exists m, n € w such that (s,t) C @, and (¢, u) C Q,,. Therefore (s,u) C Qnin C Q™.
By Lemma 2.34, ()* is transitive.

1l

Let R be any reflexive-transitive relation on « and containing ). By induction on

n €w, ¢, C R. Therefore Q* C R. O
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2.2.4 Confluent relations

In a set theoretic framework, the following definition represents an extension of the
ordinary notion of confluence from elements to finite families (or tuples) of elements.
Confluent relations appear in the context of abstract rewriting systems [55].

Definition 2.39 A binary relation () on an object a of X is confluent iff for any finite
(s,t),(s,t"y C @, there exists u such that (¢, u),(t',u) C Q. O

2.3 Models and Domains

This thesis takes a top-down approach to equational logics, in the spirit of abstract model
theory [5, 33], in the sense that all concepts and results are developed at the highest
possible level of abstraction. New levels of concreteness, necessary for some concepts
and results, are obtained by adding new hypotheses to the previous levels. The basic
framework distills the essential ingredients characterising equational logics.

The semantics of any [equational] logical system is given by its models. In general,
the soundness of the inference rules of a logical system is checked against the models by
using a satisfaction relation between models and sentences (in traditional mathematical
logic this idea was first formalised in [93]). Model morphisms are translations between
models. We assume that models and their morphisms form a category. Inspired by the
theory of institutions [33], equational logics can be “localised” to signatures. A model
is an interpretation of a particular signature into a domain. Therefore any model has
an underlying domain, and moreover, this correspondence should be functorial. Any
two parallel model morphisms identical as maps between the underlying domains are the
same. These hypotheses are formulated within the following general assumption:

[BasicFramework]: There is an abstract category of “models” A and a “for-
getful” functor &/: A — X to a category of “domains” X that is faithful and
preserves pullbacks.

In practice, the forgetful functor ¢ always has a left adjoint F, which means that for
every # € |X| (which can be thought as a domain of variables) there is a “free model” z.F,
in the sense that there is a “canonical interpretation” zn : + — 2 FU of “the variables”
into the free model satisfying the following universal property: for each f: « — AU
interpreting variables in a model A, there exists a unique model morphism f*: 2 F — A
extending f, in the sense that an; ffif = f.

al x FU

e F
X fiu %
A

AU

x

Notice that (A,U) can be regarded as a concrete category (in the sense of [60])
over the category of domains. The condition that U preserves pullbacks relates to the
fact that congruences are equivalences; this will become more transparent later. Notice
that U automatically preserves pullbacks whenever it has a left adjoint (see [64]).

The simplicity of this basic framework is an expression of the simplicity of equational
logic in general. This framework supports the internalisation of all concepts and results
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in equational logic; this internalisation will be called category-based equational logic.
The rest of this section is devoted to the presentation of some major equational logical
systems used in Computing Science within the framework of our general assumption.

2.3.1 Many sorted algebra

Many sorted algebra (abbreviated MSA) seems to have been first studied by Higgins [53]
around 1963, and Benabou [8] gave an elegant category theoretic development around
1968, overcoming some of the technical difficulties®® in [53]. The use of sorted sets (also
called indexed families) for MSA was introduced by Goguen in lectures at the University
of Chicago in 1968, and first appeared in print in [24]. Sorted sets allow a simpler
notation than alternative approaches, and also allow overloading; however, overloading
only reveals its full potential in order sorted algebra. It was later noted that using sorts
in automatic theorem proving can be an advantage, because it can greatly reduce the
search space (e.g., see [97]). The basic definitions for overloaded MSA are quite simple:

Definition 2.40 Given a set 5, we let S* denote the set of all finite sequences of elements
from S, and we let [| denote the empty sequence of elements from S. Given an S-sorted
set A and w = s5...5, € 5™, let AV = A, x---x A
one pointed set.

A signature (5,Y) is an S* x S-indexed set ¥ = {X,,, | w € S*, s € S}; we often
write just ¥ instead of (5,X). Notice that this definition permits overloading, in that
the sets ¥, ; need not be disjoint; this can be useful in many applications.

A Y-algebra A consists of an S-sorted set A and a function o4: AY — A, for each
o € Y, ; the set A, is called the carrier of A of sort s. A ¥-homomorphism from a
Y-algebra A to another B is an S-sorted function f: A — B such that*”

floa(a)) = op(f(a))

for each ¢ € A*. O

- in particular, let Al = {%}, some

Sn

Let Algs denote the category with Y-algebras as objects and X-homomorphisms as
morphisms. There is a forgetful functor ¢ : Algs — Set® from the category of Y-algebras
to the category of S-sorted sets which forgets the interpretations of the operations in X.
In this example, Algs is the category of models and Set® is the category of domains.

Given a many sorted signature Y, an S-sorted set X will be called a set of variable
symbols if the sets X are disjoint from each other and from all the sets ¥, ;. Given a set
X of variable symbols, we let Tx;,(X) denote the (S-sorted) term algebra with operation
symbols from ¥ and variable symbols from X it is the free Y-algebra generated by X,
in the sense that if v: X — A is an assignment, i.e., a (many sorted) function to a -
algebra A, then there is a unique extension of v to a ¥-homomorphism v#: Ts(X) — A.
In order to make this construction more precise, we define (Tx(X)); to be the least set
of strings of symbols such that

1. Z[],s U X, C (TE,s(X))7 and

2. 0 € Y51 sns and ti € Tx (X)) imply that the string o(¢1,...,tn) is in Ty (X).

26These difficulties are discussed in [37], which gives a more technical survey of work in MSA.
2"By f(a) we understand (f(ay),. .., f(a,)) where a = (ay, ..., a,).
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The Y-structure of Tx(X) is the canonical one. (Strictly speaking, the usual term algebra
is not free unless the constant symbols, in X, for s € 5, are mutually disjoint; however,
even if they are not disjoint, a closely related term algebra, with constants annotated by
their sort, is free.) This construction is a left adjoint to the forgetful functor U : Algs —
Set .

Also, we let Ty denote the initial term X-algebra Tx(0), recalling that this means
that there is a unique X-homomorphism !4 : Ty, — A for any Y-algebra A. Call t € Ty
a ground Y-term. Given a ground X-term ¢, let ¢4 denote the element !4(¢) in A. Call
A reachable iff |4 is surjective, i.e., iff each element of A is “named” by some ground
term.

2.3.2 Order sorted algebra

The first paper on order sorted algebra (abbreviated OSA) [25] says that its main mo-
tivation is to provide a better way of treating errors in abstract data types;*® another
motivation is that the use of subsorts can greatly speed up certain theorem proving prob-
lems [96]. OSA adds to MSA a partial ordering on the set of sorts, which is interpreted
as inclusion among the corresponding carriers; all approaches to OSA share this essential
idea. The ideas in [25] were further refined by Goguen and Meseguer, starting around
1983. In [34] the basic OSA definitions are presented in a much more general form than
in [41], and we follow that more general approach here.

Definition 2.41 [34] An order sorted signature is a triple (5, <, ¥) such that (5, )
is a many sorted signature and (.5, <) is a partially ordered set. An order sorted signature
is monotone iff

0 € Yy N Yy s and wy < wy imply 51 < 5.

A (S, < Y)-algebra is a many sorted (9, ¥)-algebra A such that s < s’ in S implies
A, C Ao An order sorted Y-algebra A is monotone iff

0 € Yy s NEy, s and wy < wy and s; < s, imply that oy, 5 0 Ay, — Ay
equals o, 5,1 Ay, = As, on Ay,

A (9, <, ¥)-homomorphism is a many sorted (5, X)-homomorphism h: A — B such
that s < s in S implies hy(a) = hg(a) for all a € A;.

A partially ordered set (5, <) is (upward) filtered iff for any two elements s, s’ € S
there is an element s” € S such that s,s' < s”. A partially ordered set S is locally
filtered iff each of its connected components? is filtered. An order sorted signature

(9, <,Y) is locally filtered iff (S, <) is locally filtered. O

Notice that there cannot be any overloaded constants if > is monotone. Also note that
overloaded OSA is a proper generalisation of MSA, because (overloaded) MSA is the
special case where the partially ordered set of sorts is discrete; some other approaches do
not have (even ordinary non-overloaded) MSA as a special case.

Given a signature Y in the sense of Definition 2.41, the interpretations of an overloaded
operation symbol o € ¥, ;,NX,, ,, in an algebra A need not necessarily agree on elements

28Gee [43] for a discussion of the difficulties with handling errors in MSA.
2Given a poset (9,<), let = denote the transitive and symmetric closure of <. Then = is an
equivalence relation whose equivalence classes are called the connected components of (5, <).
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that belong to the intersection of carriers for wy and wy; thus, a strong form of overloading
is supported. For this reason, in [34] this approach is called overloaded OSA. Note
that Definition 2.41 generalises [41], where both the signatures and algebras are assumed
to be monotone. Goguen and Diaconescu introduce in [34] the concept of signature of
non-monotonicities as a mechanism for saying which operation declarations should be
considered non-monotonic.

In [41], overloaded OSA is developed with coherent signatures in a way that closely
parallels traditional general algebra; in particular, there are order sorted versions of
subalgebra, congruence, term, deduction, initial and free algebras, completeness, etc.
Regularity guarantees that every order sorted term has a well defined least sort; this can
simplify the implementation of overloaded OSA. Here is the formal definition:

Definition 2.42 An order sorted signature (5, <,¥) is regular iff it is monotone, and
given o € ¥, 5, and wy < wy, there is a least rank (w, s) such that wy < w and o € ¥, ;.
Also (5, <,Y) is coherent iff it is locally filtered and regular. O

A weaker condition that is necessary and sufficient for all terms to have a least sort parse
is given in [41]. In essence, the regular OSA of [41] allows “multiple universes,” one for
each connected component of the sort hierarchy, without bothering whether they overlap.
However, the programme of general algebra can be carried out in much greater generality
than this. In fact, [34] emphasises that overloaded OSA can be developed for arbitrary lo-
cally filtered signatures; in particular, initial algebras exist for signatures that are neither
regular nor monotone. In fact, all the standard results of general algebra carry through
for any locally filtered signature, and this extends to signatures of non-monotonicities as
well. An important technical result about the loose semantics of overloaded OSA, which
also extends to non-monotonicities, is that any variety of algebras is equivalent (in the
categorical sense) to a quasi-variety of many sorted algebras. This result implies that
overloaded OSA has all the nice mathematical properties of MSA; for example, it can be
used to prove the initiality, Birkhoff variety and quasi-variety theorems.

One of the interesting recent developments in the theory of OSA is by Hubert Comon
[17] who showed that OSA specifications can be represented as bottom-up tree automata.
The redundancy of the regularity hypothesis follows easily from this representation too.
Moreover, the representation of OSA specifications as bottom-up tree automata proves
to be very effective as an implementation technique, the regularity condition being re-
dundant at the level of implementation too.

Given an order sorted signature (S, <,Y), the Y-algebras and their homomorphisms
form a category Algs. This is the category of models for OSA. The domains are the
many sorted sets. We emphasise that the domains for OSA should not have an order
sorted structure. This idea is supported by the way OSA is implemented; at the theory
level, the necessity to work with many sorted domains rather than order sorted domains
will become more transparent later. The forgetful functor ¢/ : Algs — Set® forgets both
the algebraic and the order sorted structure.

Other approaches to OSA could be treated in a similar manner. For a recent com-
parative survey on different approaches on OSA see [34].

2.3.3 Horn clause logics

The model theory of equational logics has an algebraic nature due to the absence of
predicates (relational symbols). This is a big advantage over model theories involving
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relations, since powerful and elaborate algebraic methods can be used (see [33, 41] for the
semantics of programming languages). However, it is well known that Horn clause logics
(abbreviated HCL), for example, do not lack nice semantical properties like completeness
and the existence of initial models. Moreover, the way these properties are obtained has
a strong algebraic flavour [39]. This shows that Horn clause logics somehow have an
algebraic character.

Theorem 2.43 below describes an embedding of the category of models of any first
order signature as a retract of the category of algebras of the algebraic signature obtained
from the original first order signature by turning the predicates into operations. The idea
of interpreting the predicates as ‘boolean valued” operations is hardly new. It has even
been used for promoting narrowing as an operational semantics for logic programming
[19]. However, our approach is slightly different, because from the very beginning we
avoid a full boolean structure on the new sort of truth values. Moreover, our approach
emphasises the model theory side (Theorem 2.43). The result is an effective method
for applying algebraic techniques to a large class of model theoretic problems in logic
programming. For example, the construction of initial models, and more generally of
free models of logic programs [39], follows immediately from the well known construction
of initial and free algebras (see [41, 45], etc). The same principle applies to free extensions
along theory morphisms, which were suggested in [39] as a semantic basis for constraint
logic programming.

Recall (e.g., from [33]) that a (many sorted) first order signature is a triple
(5,3, 1) such that (S,%) is a many sorted signature in the sense of Definition 2.40,
and II is an ST-indexed family of sets of predicate or relation symbols. A mor-
phism (f,¢.k): (5,3, 1) — (5, X, 1I') between two first order signatures consists of
an equational signature morphism (f,g) together with an S*-indexed family of maps
ky: I, — H}J,(w) on predicate symbols.?® A model M of a first order signature (.5, X, IT)
consists of a X-algebra structure in the sense of Definition 2.40, together with an inter-
pretation myy € M*™ for each predicate symbol 7 € II,, as a relation on the carriers. A
morphism h: M — M’ between (S, %, II)-models M and M’ is a ¥-homomorphism
such that for any predicate symbol m € I, _,, if m € mp then h(m) € mpp.

For a first order signature (S, X, 11), let Modg x 1 denote the category of (5, %, 11)-
models and their morphisms. We will often write (X, 1I) for (5, X, II), leaving the sort
set implicit.

Theorem 2.43 Given a many sorted first order signature (5, ¥, I1), consider an algebraic
signature (5%, %% UTI?) defined in the following way:

o 5% is S plus a new sort b,

o 11° is a collection of new operation symbols {ﬂ'b | 7 € 1} such that = | S
whenever 7 is an s;...s,-ary relational symbol, and

e Y’ is just ¥ plus a new constant t of sort b.
Then

1. there is a forgetful functor Hyn: Algse e — Mods i such that for all 7 € II,
a € Ty o4y iff mh(a) = t4,

3UHere f* is f* restricted to non-empty strings.
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2. Hxn has a left adjoint left inverse® Ex 1, and

3. there is a translation as g of (3, I1)-Horn clauses to (X°UII®)-conditional equations
that regards every Y-equation as a X’-equation and maps every atom 7(s) to the
(X% U TIY)-equation 7°(s) = t, such that for any Horn clause ¢ and any (X° U I1°)-
algebra A,

A Egoym azn(e) iff Hen(A) Esn ¢

Proof: We omit the proof of 1. For 2.,it is enough to define & on models (its
definition on model morphisms is obtained from the general categorical construction
of left adjoints from universal arrows; see [64]). Thus given any (¥, 1I)-model A =
((As)ses, (04)oes, (Ta)ren), we have to build a (X° U II%)-algebra &s n(A) which is free
with respect to the forgetful functor Hyx .

The carrier of Ex11(A) is the same as the carrier of A, except that a new carrier for the
sort b is defined by

Ay ={t U {(m,a) |m€ll and a & m4}.

The interpretations of the Y-operation symbols are those of A, and for each = € Il;, ,.

Define
mh(a) =ty if a €7y, otherwise 74(a) = (7, a).

Given any (X° UTI%)-algebra B and any (X, IT)-model morphism h: A — Hx (B), there
is exactly one (X° U I1°)-morphism A’ from Ex(A4) to B extending h (see the above
diagram). Of course, h! = h, for every s € S, hj(t4) = tp, and hj({7, a)) is 74(h(a)) for
each a € m4. This means that & (A) is the free (X° UTI®)-algebra over the (X, IT)-model
A. Notice that Hyn(Esn(A)) = A.

3. This reduces to showing that for any (3° U II°)-algebra A, any tuple s of terms
in Tx(X) and any valuation v: X — A, vi(s) C THs n(4) T v¥(7%(s)) = t4. This holds
because v¥(7’(s)) = 74 (v¥(s)). O

Fact 2.44 Hyp is natural in (3,11), i.e., H is a natural transformation. O

Notice that in general the embedding functor s 11 is not natural in (X, I1). However,
the naturality of £ can be obtained by slightly modifying the algebraic signature corre-
sponding to a first order signature (X, II) whereby instead of the new sort b we introduce
a new sort b, together with a new constant t, for each relation symbol 7. Theorem 2.43
can be easily translated into this new framework.

3'When composition is written in the diagrammatic order. In category theory textbooks where the
composition of arrows is written in anti-diagrammatic order, e.g., [64], this is referred to as a right
inverse.

27



The following result shows that free models in HCL (more generally, free extensions
along HCL theory morphisms) are in fact free algebras regarded as models through the
forgetful functor H. This remark includes the important case of Herbrand models, which
are in fact term models with the empty interpretation for the relational symbols.

Corollary 2.45 1. Let (S, %, 1) be a first-order signature and let I' be a set of Horn
clauses over this signature. Then for every S-sorted set X, the free model Mp(X) over
X in the quasi-variety Modr determined by I is the image of the free (X* UTI®, ay (T))-
algebra over X under the forgetful functor H.

2. Let &: (5,5, 11,1 — (S, ¥, II',T") be a morphism of theories in many-sorted
Horn clause logic with equality. Then every I'-model M has a free extension M’ along ®
which can be obtained as the free extension in MSA and translated back to HCL under
H.

Proof: 1. First notice that by Theorem 2.43, Hy n maps the quasi-variety Algys b o)
to Modp and that & n maps Modr to Algss b o (-

Algzbunbﬁ(r) %—> Modr

| |

Set$" ————=Set®

Next, the forgetful functor Algss b oy — Set® is right adjoint as the composite of
the right adjoint forgetful functors Algssyps oy — SetS” and Sets” — SetS. The left

adjoint to SetS” — Sets just adds to the S-sorted sets the empty set as the carrier of sort
b.

On the other side of the diagram, the free (X° U II°, o(T))-algebra is obtained as
Exn(Mr(X)). The conclusion follows from the fact that s ; Hyn = 1.

2. This uses the same argument as the proof of the previous part of this corollary,
by noticing that ® induces a morphism of algebraic theories ®*: (X° U II*, ax n(T)) —
(XU T, ayr (1)) in the obvious way.

Algz/b i 70[(1”)7{; M OdF/
Alg(q)b)l lMod(@)

Algzbunbﬂ(p) —>7-l Modr

The free extension of M along ® is the same as HE/H/((EXH(M))%, where (527H(M))$
is the free extension of & (M) along ®°. O

The final remark of this subsection is that given a first order signature (3, 1I), the
category of models for HCL can be taken as Algys o, and the category of domains
should be taken as Set®. Notice that in HCL, unlike MSA, the forgetful functor from the

category of models to the category of domains (i.e., Algss i — Set®) is not monadic.
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2.3.4 Equational logic modulo axioms

Equational deduction modulo a set of axioms (abbreviated EFLM) becomes vital when
dealing with non-orientable equations in the context of rewriting. A detailed exposition
of the subject is given in [30, 56, 20, 63]. Although in practice non-orientable axioms are
mostly unconditional®?, there is no theoretical reason to exclude the case of equational
deduction modulo a set of conditional equations.

Definition 2.46 [30] Given a MSA signature (5,X) and a collection E of ¥-equations,
a Y-term modulo F is just an element ¢ of Ty y(X) (i.e., the quotient of the term
algebra Tx,(X) determined by F). O

Equational deduction modulo F is based on a generalisation of the usual concepts of
MSA to “concepts modulo £”, including the inference rules. In order to have a model
theory for equational logic modulo F, we need an adequate notion of model for this
type of logic. It is therefore natural to consider Algs p as the category of models for
the equational logic modulo F. This idea is consistent with having “algebras modulo
axioms” as models for ELM. The category of domains is the category Set® of S-sorted
sets and functions. The forgetful functor & : Algs p — Set® forgets both the axioms and
the algebraic structure of the algebras.

Example 2.47 The logic of Mosses’s unified algebras from [75] can be regarded as equa-
tional logic modulo a conditional theory. All unified specifications of a given unified
signature contain a core essentially consisting of Horn clauses. Unified algebras appear
as models of this specification. O

2.3.5 Summary of Examples

The following table gives a summary of how the logical systems presented above fit
our abstract model theoretic framework. We also include the case of constraint logics
(abbreviated CL), which will be presented in detail in Chapter 6.

A (cat. of models) | X (cat. of domains) | ¢ forgets:
MSA Algs Set”® algebraic structure
OSA Algs Set” algebraic structure 4+ order sortedness
HCL Algse o Set” algebraic structure + sort b
ELM Algs & Set® axioms + algebraic structure
CL (AJAlg(0)) Set®’ comma category structure +
algebraic structure

It is possible to have any combination of any of these logical systems, such as order
sorted Horn clause logic with equality. An interesting case is given by the logic underlying
Eqlog, which combines all of the logical systems presented above; in particular, Fqlog’s
extensible constraint logic programming also involves CL.

32An interesting example of conditional non-orientable axiom is provided by idempotence, sometimes
given in its conditional form: x + y = x if x =y .
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3 CATEGORY-BASED EQUATIONAL DEDUCTION

In this chapter we develop a categorical proof theory for equational logics and we prove
its completeness with respect to the model theory. The following technical assumption
underlies the whole chapter:

[DeductionFramework]: BasicFramework + the category A of models
has pullbacks and coequalisers.

The proof theory is based on a categorical abstraction of some basic concepts which
constitute the very essence of equational logic and universal algebra. This includes no-
tions like congruence, term algebra, substitution, equation (represented here as parallel
pairs of arrows, hardly a new idea, see [51, 52]), and satisfaction. Following the main idea
of [18], the quantification of equations is abstracted from variables to models, and as a
result, valuations are abstracted from simple assignments of the variables to model mor-
phisms. This new level of abstraction is based on a semantic view of terms as elements
of the carrier of a free model, rather than as tree-like syntactical constructs. The fact
that equational deduction can be fully extended to this level without any fundamental
difficulty illustrates the precedence of semantics over syntax for equational logics. The
semantic architecture of a particular equational logic system seems to be the only thing
that really matters for its deductive system. A technical consequence is the possibility
of developing the main core of the equational proof theory without using freeness.

3.1 Congruences

The construction of quotient models and the formulation of a complete system of inference
rules for category-based equational logics both rely upon a notion of congruence.

Definition 3.1 Let A be an arbitrary model. The binary relation ¢ on the underlying
domain of A is a congruence iff it is a kernel of a model morphism, i.e., iff there is
a model morphism ¢ in A such that @) = U(ker$). The quotient of A by @ is the
coequaliser of kerd. Its target model is denoted A/ and is also sometimes called the
quotient of A. O

Fact 3.2 Any model congruence is a domain equivalence. O

Lemma 3.3 Let () = CU be a congruence on a model A. Then C' = ker(coeq(C)).

Proof: C C ker(coeq(C)) by the universal property of kernels. Let C' be ker¢ for
some model morphism ¢. There exists a [unique] & such that coeq(ker¢); h = ¢. But
ker(coeq(kerg)) C ker(coeq(kerg); h) and therefore ker(coeq(C)) C C = kere. O

The idea of relating congruences to kernels of model morphisms has a long tradition
in general algebra, including MSA and OSA. In the context of Horn clause logics (see
Section 2.3.3), the previous definition gives an appropriate notion of congruence for model
theories with relational symbols [39].
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Definition 3.4 Let @) be a binary relation on the underlying domain of a model A.
Then the congruence closure of () is the least congruence on A containing (); it may

be denoted C(Q). O

Definition 3.5 Suppose the congruence closures of binary relations exist in A and X
has unions of binary relations. Then the forgetful functor &/ : A — X is finitary iff

C(Q) = H{C(Q) | Q € Q finite}

for any model A and any binary relation ¢) on the underlying domain of A. O

All forgetful functors from models to domains presented as examples in Section 2.3
are finitary. This is due to the fact that all operation and relational symbols involved
take only a finite number of arguments, as will be seen in Section 3.5.

3.2 Equations, Queries and Satisfaction

Traditionally, equations are pairs of terms constructed from the symbols of a signature
plus some variables. In the context of many sorted equational logic the importance of
explicit quantification was emphasized for the first time by Goguen and Meseguer [37].
The survey [62] shows that explicit qunatification adds a key syntactic information in
the case of constraints and unification. In this way, the quantifier becomes part of the
concept of equation.

Although terms are syntactic constructs, from a model theoretic perspective they are
just elements of the free term model over the set of quantified variables. Any valuation
of the variables into a model extends uniquely to a model morphism evaluating both
sides of the equation. Thus a more semantic treatment of quantification regards quan-
tifiers as models rather than as collections of variables, and regards valuations as model
morphisms rather than as evaluations of variables into models. This has already been
done in [18] in the context of many sorted algebra. This non-trivial generalisation of
the notions of sentence and satisfaction in equational logic also supports the extension of
the equational proof theory along the same lines without any difficulty. Moreover, this
semantic approach to equational logic brings a sense of simplicity and unity to the proof
theory, which has somehow been lost in the more traditional syntactical frameworks.

Definition 3.6 Let A be any model. Then a U-identity on A is a binary relation

kﬂAL{ on the underlying domain of A. An identity (s, ) in A is satisfied in a model
B with respect to a model morphism h: A — B iff s;hld = t;hUd. This is denoted
B (s, 0)[h].

A U-equation is a universally quantified expression (VA)(s,t) where A is a model
representing the quantifier and (s, t) is an identity in A. A model B satisfies (VA)(s,t)
iff B satisfies the identity (s, t) for all model morphisms h: A — B.

A U-query is an existentially quantified expression (FA)(s,t) where A is a model
representing the quantifier and (s, ) is an identity in A. A solution of (F4)(s,?) in a
model B is any model morphism h: A — B for which (s, t) is satisfied in B with respect
to h. When B is a free model, h is called an solution form. O

The notion of U-equation (query) deals with families of equations (queries), rather
than single equations (queries), as sentences. This agrees with Rodenburg’s work [82]
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showing that equational logic with conjunction satisfies the Craig Interpolation Property®?
whereas normal equational logic does not. Our terminology is influenced by Lassez who
replaced the traditional logic programming terminology of computed answer substitution
by that of solved form [67]. The modern terminology has the advantage to allow more
flexibility for the representations of solutions (i.e., staying away of from the traditional
representations of solution forms as substitutions is very beneficial at the level of oper-
ational semantics) and is also more intuitive (i.e., solutions in different models can be
obtained by interpreting the solutions forms).

Example 3.7 OSA equations Let (5, <,Y) be a coherent (i.e., regular and locally fil-
tered) order sorted signature and let X be an S-sorted set of variables. The collection

of all well-formed X-terms over X, denoted 7y (X ), has a canonical structure as an order
sorted Y-algebra.

An order sorted equation (VX)t =, t' is an universally quantified pair of terms
having the same sort (i.e., t,t' € (Tu(X))s). Any parallel pair of many sorted functions
k — Ts(X) defines a many sorted family of such equations.

Given an order sorted Y-algebra A, any valuation v: X — A of variables X into A
extends uniquely to an order sorted Y-morphism v#: Tz (X) — A giving the denotations
in A for the terms in Tz (X ). A satisfies the identity ¢ =, ¢’ with respect to the valuation
v iff t and ¢’ have the same denotation, i.e., v¥(#) = v*(#'). When dealing with a many

sorted family of equations k S Tx(X), the satisfaction of (t,t') by A with respect to
the valuation v means t; v = t'; v¥U.

It appears that this definition of order sorted equations is more restrictive than the
one given by Goguen and Meseguer [41]. However, the two can be shown to agree. In [41],
an order sorted equation (VX)t = ' is a universally quantified pair of terms having the
least sorts LS(t) and LS(t') in the same connected component. An order sorted algebra
satisfies ¢ = ¢’ with respect to the valuation v iff UgS(t)(t) = Ugs(t/)(t/)- Let’s consider w
a common supersort of both LS(t) and LS(t'). Then for any order sorted algebra A and
any valuation h: X — A, we have A =t = t'[h] iff A 1t =, U'[h].

This definition of order sorted equations also holds without assuming coherence of
the signature by using annotated terms (or parse trees). O

Example 3.8 Let Y be an algebraic signature and and let E be a collection of -
equations. An equation modulo F [30], denoted (V.X)¢ =% #' is a universally quantified
pair of elements in Ty g(X) (i.e., t and t' are terms modulo F). Any parallel pair of
functions k& — Ty g(X) defines a family of such equations. A (X, F)-algebra satisfies
t =P ¢’ for the valuation v: X — A iff v¥(¢) = v¥(¢'), where v* is the unique extension
of v to a ¥-homomorphism Ty g(X) — A. O

Definition 3.9 (VA)(s',t’) if (s, ) is al{-conditional equation quantified by the model
A, where (s,t) are the hypotheses of the conditional equation. A model B satisfies
(VA)(s', ') if (s, t) iff for any morphism h: A — B, s; hld = t; hitd implies s'; hUd = t'; hUA.
O

The following definition is a standard extension of the concept of satisfaction between
models and sentences to satisfaction between sets of sentences:

Definition 3.10 A set I' of equations satisfies the equation e, written I' |= e, iff any
model satisfying I' also satisfies e. O

33The Craig Interpolation Property is an important semantic property for logical systems [21].
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3.3 Completeness

Our approach to the completeness of category-based equational deduction follows the tra-
ditional approach (probably originating with Birkhoff’s work on universal algebra [10]),
in that the central concept is the congruence determined by an arbitrary collection T’
of [conditional] equations on an arbitrary model A. The key to the completeness result
is to regard this congruence in two different ways: the first way is as the collection of
unconditional equations quantified by A that can be syntactically inferred from I', while
the second is as the collection of unconditional equations quantified by A that are seman-
tic consequences of I'. Because of the semantic treatment of equation and satisfaction
underlying this work, there is no distinction between the congruence determined by T’
on the free models (this case corresponds to the traditional treatments of the complete-
ness of equational logics) and on other models. This is very important in the context
of the semantics of constraint logic programming given in Chapter 6, because it involves
“built-in models” that are not term models in general.

The réle of (categorical) projectivity was first pointed out in [18], and in the presence
of a left adjoint to the forgetful functor from models to domains, it is directly related
to a categorical formulation of the Axiom of Choice for domains. Despite the high
level of generality and abstraction, the rules of inference for category-based equational
deduction are made gradually more explicit. They can be easily recognised even in the
most abstract formulation of completeness. In the case of conditional category-based
equational deduction, the most syntactic formulation of the completeness result depends
directly on two finiteness conditions. The first one requires that the hypotheses of the
equations should be finite, while the second corresponds in practice to finite arities for
the operator symbols.

Definition 3.11 Let I' be a set of conditional equations. A congruence ' on A is
closed under I'-substitutivity iff for all (VB)(s',¢') if (s,¢) in [ and any morphism
h: B — A, (s;hlUd,t; hUd) C C implies (s"; kU, t'; hUA) C C. O

Proposition 3.12 Let h: A — M be a model morphism. Then M = T' implies ker(h)
is closed under I'-substitutivity.

Proof: Let (VB)(s',t') if (s,t) be a conditional equation in I' and let ¢: B — A be

any model morphism.

B~ A"ty
Suppose (s;oU, t;pU) C ker(h). Then s;pU; htd = t;U; hUd. But ¢;h: B — M and
M is closed under I'-substitutivity, therefore s (¢; h)U = t';(¢; h)U. This means that
(5%, 1 ) C ker(h). O

Corollary 3.13 Let C be a congruence on a model A. Then A/ | I' implies that C
is closed under I'-substitutivity. O

The following definition is a weakening of the traditional concept of projective object
in category theory (see [64]):

Definition 3.14 An object A in a category C is coequaliser projective iff for any
coequaliser e: B — M in C and for any map g: A — M there exists amap f: A — B
such that f;e = g¢.
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Term models are always coequaliser projective. This will be proved later in connection
with a categorical formulation of the Axiom of Choice for the category of domains (see

Section 3.5.3).

Proposition 3.15 If all quantifiers in ' are coequaliser projective, then a congruence
C on a model A is closed under I'-substitutivity iff A/ T

Proof: Because of Corollary 3.13, we only have to prove that A/ = ' if C' is closed un-
der I'-substitutivity. Assume C is closed under ['-substitutivity. Let (VB)(s',t') if (s, 1)
be any conditional equation in I' and let h: B — A/s be any model morphism. Sup-
pose s; hid = t; hid. Because B is coequaliser projective, there exists h': B — A such
that A'; (coeqC') = h. By Lemma 3.3, C' = ker(coeqC), therefore (s; h'U, t; A'U) C CU.
Since C' is closed under I'-substitutivity, (s'; AU, t'; KUY C CU. s'; hUd = t'; hid follows
immediately from h = h'; (coeqC'). O

Definition 3.16 For any model A, let =4 denote the least congruence on A closed under
[-substitutivity. O

Corollary 3.17 Completeness Theorem
If =4 exists and the quantifiers in ' are coequaliser projective, then

1. A/Eff‘ is the free I'-model over A, and

2. T = (VA)(s, t) iff s = ¢

Proof: 1. Let ALM be a model morphism such that M |= I'. By Proposition 3.12,

ker(f) is closed under I'-substitutivity. Because ={ is the least congruence on A closed

under [-substitutivity, =AC ker(f), which means that f equalises =2. We conclude

there exists a unique map A/E,Fa;f—>M such that e; f' = f, where e denotes the coequliser

coeq(=f).

—A
coeq=
A —>FA/51&4

N

2. From Proposition 3.15 we know that A/Eff‘ = I'. Suppose s =f t and consider

a ['model M and any model morphism FENTS By 1., there is A/EAf—/>M such that
e;f'=f. s;fU =t;fU since s; eld = t; eld. We thus conclude that T’ |:F(‘V’A)<s, t).

Conversely, consider e¢: A — A/Ef“' Since I' = (VA)(s,t), s;e = t;e, therefore
(s,t) C ker(e) ==4#. O
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The following two results provide an inference-based version of the completeness theo-
rem for equational logics. This relies upon a syntactic deduction oriented construction of
=4, In the case of unconditional equations, =# has a rather simple representation that
shows that any category-based equational deduction is equivalent to a category-based
equational deduction in which all applications of the substitutivity rule take place before
any application of the congruence rule.*

These results are obtained under the following technical assumption:

[ConcreteDeductionFramework]: DeductionFramework + the cate-
gory X of domains has unions of binary relations and w colimits + congruence
closures exist in A.

However, the following result doesn’t use the existence of w-colimits in the category of
domains:

Proposition 3.18 If I contains only unconditional equations, then =4 exists and

=p= C(U{(s:JU. t: fU) | (¥B)(s,t) € I, f € A(B, A)}).

Proof: C(U{(s;fU.t;fU) | (VB)(s,t) € I',f € A(B, A)})is closed under I'-substitutivity
and is a congruence by definition. Consider another congruence (' closed under I'-
substitutivity on the model A. Then

(s s, fud) | (WB)(s, t) € T, f € A(B,A)} € C

since (s; fU, t; fU) C C for any (VB)(s,t) € I' and any f € A(B, A). Therefore
C(U{(si s, tsfu) | (VB)(s, t) € T, f € A(B,A)}) € C

by taking the congruence closure. O

When I contains proper conditional equations, = can be constructed in the limit by

alternating the applications of the rule of congruence and of the rule of substitutivity:

Proposition 3.19 Assume ConcreteDeductionFramework. If the forgetful functor
U: A — Xis finitary and the hypotheses of all conditional equations in I' are finite, then
the least congruence on A closed under I'-substitutivity exists.

Proof: Define (so, ) to be U{(s; fU, t; fU) | (YB)(s,t) € I',f € A(B, A)}, and for each

n € w, define

L4 <52n-|—17 t2n-|—1> to be C<52n7 t2n>7
and define
[ ] <82n+2, t2n+2> to be

(Sng1s by OUL(s"s RUL ' BUY | (VB)(s', 1) if (s, 1) € I, B 25 A, (s hd, t; hid) C
(S2ng1, tans1) }-

34The rules of congruence and substitutivity are discussed at the end of this subsection.
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Observe that for each n € w, (s,,t,) C (Sp41,taq1). The union == U, co(sa, t,) could
be realised as an w-colimit of the inclusion chain (so, %) C (s1,%4) C ... in the comma
category (AxJAU) (the w-completeness of X lifts to the comma category (Ax] AU )). We
shall prove that =# is the least congruence on A closed under I'-substitutivity. Because
U is finitary,

C(=f) = {C(s, T) | (S, T) C=t finite}

For each finite (S, T) C={ there exists n € w such that (S, T) C (s,,t,). Then
C(S, T) C C(sp,tn) C (Spy2,tas2) C={, therefore C(={) C={, which means that
=# is a congruence.

For any (VB)(s',t') if (s,t) in [ and any model morphism h: B — A, if (s; hld, t; hid)
C=#, then because (s, t) is finite, there exists n € w such that (s; U, t; hU) C (s,,1,).
By the construction of the chain {(s,, t,)}new, we have (s's RU, t'; hid) C (5,42, tays) C=2.
This shows that ={ is closed under I-substitutivity.

Now consider an arbitrary congruence C' on A closed under I'-substitutivity. By
induction on n, (s,,t,) C C for all n € w. Therefore =AC C.

From all this we conclude that =f is the least congruence on A closed under T'-
substitutivity. O

Corollary 3.20 Assuming the ConcreteDeductionFramework, category-based equa-
tional logic is complete under the following two inference rules:

(VA)(s,t)
(VA)C(s, t)

[congruence]

(VA)(s; hid, t; hU)
(VA)(s"; hU, t'; U )

[substitutivity]
where (VB)(s',t') if (s,t) isin [’ and h: B — A is any model morphism. O

3.4 Herbrand’s Theorem

Herbrand’s Theorem provides mathematical foundations for logic programming. In this
section we present a version of Herbrand’s Theorem in our category-based framework,
based on the categorical characterisation of Herbrand Universes as initial models for
equational logic programs. This idea was first exploited in the context of order sorted
Horn clause logic with equality by Goguen and Meseguer [39]. The results in this sub-
section can be seen as a category-based generalisation of the extension of their results to
equational logics with projective models as quantifiers.

For this section only, we assume that the category A has an initial model; we denote
it by On. In the case of many sorted equational logic this is the initial algebra of ground
terms.

Corollary 3.21 Herbrand’s Theorem Assume the ConcreteDeductionFramework and
that U is finitary and consider I' a collection of conditional equations with finite hypothe-
ses and coequaliser projective quantifiers. Then

1. the initial model of I' exists, we denote it by Or, and

2. I' = (3B)q iff Or | (3B)q for any U-query (IB)g and any model B.
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Proof: 1. From Proposition 3.19 and the first part of the Completeness Theorem.

2. Since Op is a [-model, I' |= (3B)q implies Op |= (3B)q. For the converse, suppose
that Op = (3B)q and take any I-model M. Let h: B — Op be a solution for (3IB)q in
Op. Let !p; denote the unique model morphism Or — M. Then h;!y is a solution for
(3B)gin M. O

At the end of the following section we present another version for Herbrand’s Theorem
that relies on the present one but provides foundations for solving queries using resolution
and paramodulation-like techniques by directly relating the satisfyability of a query by a
program to the existence of solution forms to the query. This is formulated in a context
corresponding to ‘non-empty sorts’ in the case of many sorted logics [39]. The next
definition gives a category-based formulation of this condition:

Definition 3.22 The forgetful functor ¢ from the category A of models to the category
X of domains has non-empty sorts iff for each domain # € |X| there exists at least one
map from z to the domain underlying the initial model 0g. O

Example 3.23 Consider an algebraic signature (5, %). The initial algebra for this sig-
nature is Ty, i.e., the algebra of ground terms. There exists at least one S-sorted function
from any S-sorted X to Ty iff Ty, # 0 for all s € S. A sufficient [but not necessary]
condition is that for each sort s € S, there is at least one constant of that sort, i.e.,

Z[LS = @ O

3.5 Consequences of Freeness

So far, our development has avoided the use of freeness, corresponding to the existence
of term models in the particular cases discussed in the preliminary chapter. By using this
concept, we can further explicitate the inference rules for equational deduction by split-
ting the rule of congruence into equivalence (i.e., reflexivity + symmetry + transitivity)
and closure under operations.

Moreover, by assuming freeness, we relate the projectivity condition on quantifiers
to a condition on the category of domains corresponding to the Axiom of Choice. We
can also see how the finitarity condition on the forgetful functor from models to domains
boils down in practice to the finiteness of the arities of the model operations. Finally, in
the presence of freeness, we can formulate and prove a more computational version for
Herbrand’s Theorem.

This section assumes the forgetful functor & has a left adjoint F.

3.5.1 The existence of congruence closures

The congruence closure of any binary relation can be constructed in two steps strongly
reminiscent of the rules of equivalence (i.e., reflexivity, symmetry and transitivity) and
congruence (i.e., closure under “model operations”) from equational logic [37, 41, 39].

Proposition 3.24 Let kﬂAL{ be a relation on the underlying domain of the model A.
Then the congruence closure of (s, ) exists and it is constructed by the following steps:

e operations: define s* and ¢! to be the unique extensions of s and ¢, respectively, to
model morphisms kF — A, and
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e equivalence: let (S, T') be the kernel of coeq(s?, t*).

The congruence closure C(s, t) is (SU, TU).

Proof: (SU, TU) is a congruence by construction as a kernel pair of a model morphism.
Now let ¢: A — B be any model morphism. We have to prove that (s,t) C ker(¢plf)
implies (SU, TU) C ker(pU).

EFU
kn thu & e
sty
k - AU Be---7---3

Then (s,t) C ker(¢U) implies s;0U = t;0U. s%5¢ = t¥;¢ because of the univer-
sal property of the free model kF. Then there is a model morphism ¢’ such that
coeq(s*, t*); ¢/ = ¢. This implies that S;¢ = T; ¢, which implies (S, T) C kere. O

The operations step stands for the closure of the original relation (s,?) under the
“model operations”. This can be achieved categorically by using the universal property
of the free model over the indices of the relation. The equivalence step corresponds to
the equivalence generated by the closure under operations. Because this is done at the
level of model morphisms, the closure under operations is preserved.

Definition 3.25 Consider a binary relation (s,t) on the underlying domain of a model
A. Then (s, 1) is closed under operations iff (s, t*if) C (s, 1).

The closure of (s, ) under operations is the least relation closed under operations
and containing (s, t), and is denoted Op(s,t). O

Fact 3.26 Let (s,t) be any binary relation on the underlying domain of a model A.
Then its closure under operations exists and is given by (s*U, tU).

Proof: All we have to show is that ((s*0/)%, (t'U)") C (s*,¢"). This follows from the
co-universal property of the co-unit € of the adjunction between the category of domains
and the category of models, or more precisely from kFe; v = (vld)* for any kF = A. O

Example 3.27 Let (5,Y) be a many sorted signature and let (s,¢) be an S-sorted
binary relation on the carrier of the S-sorted ¥-algebra A. Then

o (s'U,t*U) is obtained by taking the union of the increasing chain of S-sorted rela-
tions (s™, 1"} ,e., where (%, ¢%) = (s, ¢) and (s"T! ¢"T1) = (s" t"YU{(aa(s"),c4(t")) |
o€ X} (0a(s™),04(1")) is obtained by relating the results of all the applications of
the operation o4 to all pairs of elements related by (5", t"). The union U,¢,(s",t")
is the same as relating all the results of the applications of all the derived operators
to the pairs of elements related by (s, ).

e closing (s*U, t*U4) under equivalence produces the congruence coequalising the S-
sorted Y-morphisms s* and t*. The congruence is recovered categorically as the
kernel of the coequaliser of s* and ¢F.
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The construction of the congruence closure of a binary relation can also be done in
most cases by swapping the two steps corresponding to the closure under equivalence
and closure under model operations, i.e., closing under equivalence first and under model
operations afterwards. This requires coequalisers in the category of domains. Although
our category-based framework is too abstract for proving the validity of this alternative
construction of the congruence closure half of it still holds at this level:

Lemma 3.28 Further to the DeductionFramework assume the category X of domains
has coequalisers. Let (s,t) be a relation on the underlying domain of the model A. Then

Op(s,t) CC(s,t)
where (5, 1) is the equivalence closure of (s, t), i.e., (3,1) = ker(coeq(s, t)).

Proof: By the universal property of kernels and Proposition 3.24, it is enough to show
that s'; e = {%; ¢ where ¢ is the coequaliser of s and ¢F.

This follows from the fact that s; eld = ¢; eld, which implies that s;eld = t; eld, and
further implies that 3%;e¢ = #'; ¢ using the uniqueness part of the universal property
corresponding to the adjunction determined by ¢/. O

Definition 3.29 We say that congruences are concrete iff any equivalence closed
under operations is a congruence. O

Corollary 3.30 If congruences are concrete, then category-based equational logic is
complete under the following inference rules:

[reflexivity]

(VA) (s, s)
(VA) (s, t)
[symmetry] SO
. (VA)(s,t) (YA)(t, u)
[transitivity] (T A (s )
[operations] (vA)(s, ¢)

(VA)(stU, thid)
substitutivity

a

3.5.2 Finitary model operations

In this subsection we show how the finitarity of & (Definition 3.5) reduces in practice to
the finiteness of the model operations. The category-based formulation of ‘finitary model
operations’ is that the forgetful functor & from models to domains preserves filtered
colimits. We need the following technical condition on the category of domains:

[DomainRegularity]: the category of domains X is algebroidal and has col-
imits and filtered unions of equivalences.
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Proposition 3.31 Under the DeductionFramework and DomainRegularity assump-
tions, U is finitary if the forgetful functor & from models to domains preserves filtered
colimits.

Proof: Let kﬂAL{ be an arbitrary binary relation on the underlying domain of the
model A. Because X is algebroidal, k is the colimit of a filtered diagram of finite domains
{ki}icr. Let p be the colimiting co-cone {k;}ie; — k and let s; = y;;s and t; = p;;t for
each ¢ € |I|.

F preserves colimits because it is a left adjoint, hence pF is still a colimiting co-cone.
piFvf = vf for v € {s,t} by the universal property of k;;n, therefore

<Sﬁ7 tﬁ> = colim¢61<897 tzﬁ>

in the comma category (AplA). Then

C(s,t) = U(ker(coeq(s, t*))) (by Proposition 3.24)
= ker(U(coeq(s*, %)) (U preserves kernels)
= ker(U(coeq(colim;er(s;, tlﬁ>)))

ker(U(colimieI(coeq@?, t))) (coeq: (AplA) — (ALA) is left adjoint to
ker: (AJA) — (AplA))
= ker(colimieI(U(coeq@?, tlﬁ>))) (U preserves filtered colimits)
= colimiejker(U(coeq@?, tlﬁ>)) (X has filtered unions of equivalences)
= colimieIU(ker(coeq@?, tlﬁ>)) (U preserves kernels)
= colimic;C(s;, t;) (Proposition 3.24)

This means that C(s,t) = U;e; C(si, t;). O

Whenever the domain category X is Set-based, it has filtered unions of equivalences
(as shown in Example 2.22). This includes all of the examples discussed in Section 2.3.

Corollary 3.32 All of the forgetful functors from categories of models to categories of
domains presented in Section 2.3 are finitary.

Proof: All hypotheses of Proposition 3.31 related to the category of domains are triv-
ially fulfilled by Set®. The forgetful functors from categories of models to categories of
domains preserve filtered colimits because of the finitarity of the model operations.®
When the model operations are finitary, the forgetful functor from model to domains
creates filtered colimits, and creation is a stronger property than preservation. O

3.5.3 The Axiom of Choice versus projectivity

We use a form of the Axiom of Choice formulated in our category-based framework for
proving that free models are always coequaliser projective:

3%For the case of universal algebra, see Proposition 2, p 208 in Mac Lane’s category theory textbook
[64]. For all other cases the proof is very similar.
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Proposition 3.33 If each coequaliser e in the category of models is a split epi at the
domain level, i.e., if eld has a left inverse, then each free model is coequaliser projective.

Proof: Let 2 € |X| be an arbitrary domain. We have to prove that «F is coequaliser

projective. Let A= B be a model coequaliser and let 2 F5B be any model morphism.

A——B

N

xF

Let m be the left inverse to eld and let 2 F25 A be the unique model morphism such that
xn; U = xn; hU; m.
We now show that h'; e = h:

ey (B e)d = an; B'U; eld
= an;hid;m;eld  (by the definition of h’)
= anhid (by the definition of m)

h'; e = h follows because the arrow 7 is universal from = to Y. O

In practice, this form of the Axiom of Choice is always satisfied. In all of the examples
previously discussed, model coequalisers are pointwise surjective because they are simply
many sorted functions. The usual formulation of the Axiom of Choice asserts that for
each element belonging to the image of a function, one can pick an element in the source
that gets mapped into the previous one. In terms of functional composition, this is
exactly the same as asserting the existence of a left inverse for any surjection, sometimes
called a choice function. A special remark is needed for the order sorted case, where the
fact that the forgetful functor forgets the inclusions between the subsort interpretations
is essential.

3.5.4 Herbrand’s Theorem revisited

For this paragraph we further assume that the category A of models has an initial object
Oa.

As pointed out by Goguen and Meseguer [39], there are definite advantages in the
case when models do not have empty sorts. In this context, it is possible to have a more
computational version of Herbrand’s Theorem. The following result instantiated to the
institution of order sorted Horn clause logic with equality gives Herbrand’s Theorem for
non-emply sorts as formulated by Goguen and Meseguer in [39].

Theorem 3.34 Herbrand’s Theorem Under the ConcreteDeductionFramework and
DomainRegularity assumptions, consider any collection I' of conditional equations with
finite hypotheses and with coequaliser projective quantifiers, and any U-query (IB)q

where B is any coequaliser projective model. Suppose that I/ preserves filtered colimits
and has non-empty sorts.

Then I' = (3B)q iff I' E (Yy)q; AU for some domain y € |X| and some model
morphism h: B — yF.

Proof: By Herbrand’s Theorem 3.21, it is enough to prove that Op = (IB)q iff I' |
(Yy)q; hd for some domain y € |X]| and some model morphism h: B — yF.
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Assume that Op = (3B)q. Let h: B — Op be a solution for (3B)¢ in Op. Consider
Ox the initial domain. Since left adjoint functors preserve colimits, we may assume that
OxF = 0p, hence the unique model morphism ly.: OxF — Or is a coequaliser by virtue
of the construction of Op (see Corollary 3.17). Since B is coequaliser projective, there

exists a model morphism hg: B — O0xF such that ho;lo. = h. Then I' | (V0x)q; hold.

B h Or

I~

y}" —>n0xf = OA
For the converse, assume that I' = (Yy)q; fU for some domain y € |X| and some
model morphism f: B — yF. Since U has non-empty sorts, there exists a domain map

v:y — 0pld. Then f;v¥; o, is a solution for (3B)q in Op. O

The model morphism % in this theorem is a solution form for ¢ under I'; logic pro-
gramming deals with the computation of such morphisms.
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4 OPERATIONAL SEMANTICS

By the operational semantics of a computing system one usually means a mathematical
definition of how programs are executed by the system. For relational programming,
most implementations use SLD-resolution as introduced by Prolog, and for equational
logic programming most implementations use some refinement of narrowing.

Narrowing is a particular case of paramodulation. Paramodulation was first intro-
duced as an operational inference rule in the context of attempts to integrate equality
into resolution-based theorem provers [80]. Narrowing was introduced by Slagle [86].
Later, narrowing was used as a basis for semantic unification (i.e., unification modulo
a set of rules) algorithms. Basic narrowing appeared for the first time in Hullot’s work
[57]. The completeness result for innermost narrowing in the context of canonical term
rewriting systems is originally due to Fribourg [22]. Holldobler’s thesis [54] gives a sys-
tematic presentation of the current state of art of this field including also interesting
historical references. Our presentation of the completeness of different refinements of
paramodulation is influenced by [54].

Equational logic programming systems based on Horn clause logic with equality use
a mixture of resolution (applied to relational symbols) and narrowing. However, it is
important to notice that in the context of the embedding of Horn clause logics into equa-
tional logics described in Section 2.3.3, resolution appears as a refinement of narrowing in
the presence of relational symbols.?® This has mainly theoretical implications rather than
practical ones because the use of resolution greatly improves the efficiency of the system,
but it is important for an uniform algebraic treatment of the operational semantics of
equational logic programming languages based on Horn clause logic with equality.

4.0.5 Completeness of Paramodulation: its Architecture

Our approach to the completeness of paramodulation departs fundamentally from pre-
vious treatments in that it is based on model theory rather than on combinatorial tech-
niques involving term manipulations. We generalise the concept of paramodulation to
model theoretic paramodulation by defining paramodulation as an inference rule
with respect to an arbitrary fixed model. The ordinary concept of paramodulation is
recovered as model theoretic paramodulation with respect to the initial algebra for an
algebraic signature. The category-based dimension of our new approach brings out not
only the simplicity of the categorical arguments (vis a vis set theoretical arguments),
but more importantly, it shows that the core of the paramodulation-based operational
semantics for equational logic programming can be developed independently of the de-
tails of the particular equational logic involved. In this way, the results of this work
can be applied to a variety of equational logic programming systems that are rigorously
based on some version of equational logic and whose operational semantics is based on
some refinement of paramodulation (some form of narrowing, in general). This includes
system based on many sorted or order sorted equational logic, Horn clause logic (with
equality), equational logic modulo axioms, etc. These results might be relevant even for
constraint programming since constraint logic (i.e., the logic underlying constraint logic

35This is explained in Section 4.2.1 below.
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programming in the style of Eqlog, see Chapter 6) can be regarded as category-based
equational logic. Another important consequence of the model theoretic approach to
paramodulation is a direct treatment of computations modulo axioms. This is achieved
by considering the paramodulation relation induced by the program on the initial model
of the respective theory. For example, the programming language Eqlog is based on order
sorted Horn clause logic with equality [38, 39] and supports refutations modulo axioms
(associativity, commutativity, and their combination).

This chapter proposes a general scheme for the treatment of the completeness of
paramodulation-based operational semantics. The core of this scheme is an analysis of
the relationship between =¢ (given a program I' and a model A, the least congruence on
A closed under I'-substitutivity) and the relations induced on A by the operational in-
ference rules, mainly paramodulation (this relation is denoted as ~{. This is technically
connected to the concept of solution for equational queries through Theorem of Con-
stants and Completeness of Equational Logic and to the concept of solved form through
Lifting Lemmas. The terminology “solved form” was first introduced by Lassez [67] as
a replacement to the traditional logic programming terminology of “computed answer
substitution.” The new terminology is more adequate to the modern methods of solving
queries by system transformations rather than resolution-like techniques (see the survey
[62]). Solution and solved forms are respectively the semantic and computational sides
of the same concept. The soundness of the operational semantics means that any solved
form is a solution and the completeness means that any solution form is an instantiation
of a solved form.3" In other words, the set of solutions of a query is the same as the set of
solutions of the solved form. The connection to the model theory of equational logic pro-
gramming is done via Herbrand’s Theorem; this connects directly to the mathematical
foundations of logic programming.

Herbrand’s
Theorem

The concept of
SOLUTION FORM Theorem of Constan.ts : EALNA
. . Completeness of Equational Logic I I
for equational queries
Completeness of Lifting

operational semantics /mmas

The concept of
SOLVED FORM

This figure visualises the architecture of the completeness of our approach to

paramodulation-based operational semantics as discussed abovely. Because of efficiency
concerns, equational logic programming systems actually implement various refinements
of paramodulation rather than paramodulation itself. Most of these are refinements
of narrowing, and one of the most powerful refinements is basic innermost normalised
narrowing [54]. The completeness of different narrowing techniques is obtained in the

3"However, the concept of completeness is usually taken to subsume soundness.
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same way as the completeness of plain paramodulation, the only differences occurring at
the level of the Lifting Lemmas. As shown in [54], the completeness of different narrowing
techniques requires some restrictions on the programs.®

One of the most important properties of programs is confluence. We show that the
completeness of paramodulation and the transitivity of the paramodulation relation are
technically equivalent. By approaching confluence from a model theoretic angle, we show
that the transitivity of the paramodulation relation is in fact equivalent to the confluence
of the program with respect to a given reachable model. In this way, model theoretic
paramodulation is complete for oriented application of rules if and only if the program
is confluent.

4.1 Preliminaries

The framework for the categroy-based treatment of operational semantics is the general
framework of category-based equational logic, i.e., a “forgetful” functor & : A — X from
a category of models to a category of doamins, and satisfying the following technical
conditions:

[OperationalFramework]: DeductionFramework + DomainRegular-
ity + the forgetful functor I/ has a left adjoint F and preserves filtered colimits
+ congruences are concrete.

Definition 4.1 A conditional -rule is an oriented conditional finite U-equation with
finite hypotheses, usually written as (VB)l—r if (s, ) where (s, t) is called the hypothe-
ses of the rule and [—r the conclusion (or the head) of the rule. The rule is atomic
if its conclusion (head) is atomic as a binary relation. O

The quantifier B can in general be any model (see Definition 3.6). However, we restrict
ourselves here to the case of [coequaliser] projective quantifiers, a condition strongly
related to the completeness of the equational deduction (see Theorem 3.17). Recall from
Proposition 3.33 that in the presence of a form of the Axiom of Choice, all free models are
[coequaliser] projective. As a matter of notation, whenever a model is freely generated
by a domain « (which in practice will be a collection of variable symbols), we will write
Vz rather than V& F; also for valuations we will use maps « — AU rather than model
morphisms zF — A.

4.1.1 Rewriting contexts

The concept of context plays a primary role in the mathematical formulation of rewriting
as an inference rule. This paragraph is concerned with the category-based definition
of context. Such a definition is crucial for the category-based treatment of rewriting
because the notion of rewriting context ultimately has an algebraic nature; this makes
the definition of rewriting independent of the tree-like representations of terms. In this
way, rewriting can be defined on algebraic entities that are more abstract than the terms.

This is achieved by abstracting the properties of contexts known from the standard
case of many-sorted algebra. One of the most important properties is the unary nature
of contexts, i.e., rewriting contexts behave as unary functions. The following recalls the
definition of context in many-sorted algebra:

38However, these restrictions are generally met in practice.
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Definition 4.2 Let ¥ be a many-sorted algebraic signature. Then a rewriting -
context is a Y-term with one variable symbol having a single occurrence of that variable
symbol.

Given any Y-algebra A, a rewriting Y-context ¢ determines a map c4: A — A that
evaluates the context for any given value in A of the variable symbol of ¢. This is
represented by the following diagram,

= Te({z))
x%llﬁ

where for each « € A, a: {z} — A satisfies a(z) = a. Then ¢4: A — A is defined by
ca(a) = d*(c) where @ is the unique extension of a to a ¥-homomorphism. O

Note that in general ¢4 is not an algebraic homomorphism. However, it is easy to
notice that the rewriting contexts form a monoid under the composition (i.e., by plugging
one context into another), and as shown in the following, the evaluation of contexts
commutes with algebraic homomorphisms:

Proposition 4.3 Let ¢ be any rewriting context in an algebraic signature ¥ and h: A —
B be a ¥-homomorphism. Then c4;h = h; cp.

Proof: Using the notation of Definition 4.2, for each a € A we have:

(cash)a) = hid

1
S

=k

& =

ESSNEN

S

o]

S—’

) (by the universal property of Ts({z}))

Il
o
>~
—~
=
=]
~—
QD e

a

This last property suggests the natural transformation nature of the rewriting contexts
and motivates the following definition:

Definition 4.4 Let & : A — Set® be a forgetful functor from a category A of models.
A U-context is a natural transformation ¢: & — U. The composition of U-contexts is
the usual composition of natural transformations. O

From now on, we will in general use the more intuitive notation c4[t] instead of ¢; ¢4
for the evaluation of a context ¢ in a model A. This notation is closer to the usual
notations for contexts in rewriting.

Definition 4.5 A binary relation (s, t) on the underlying domain of a model A is closed
under context evaluation iff (¢4[s], ca[t]) C (s, t) for any context ¢. The least relation
closed under context evaluations and containing (s, ¢) is called the context closure of
(s,t). O
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Proposition 4.6 Let (s,t) = {(s;,t;) | i € I} be a binary relation on the underlying
domain of a model A. If (s,t) is closed under operations, then it is also closed under
context evaluations.

Proof: Let (s"i,t%U) be the closure under operations of (s,t) by Fact 3.26. By hy-
pothesis, (s,t) = (s"U, t%U). Then for any context ¢

(cals], ealt]) = (eals®U], caltth])
< ﬁu CA, ﬁu CA>
<C]}‘, s*U, crr; t°U)  (by the naturality of ¢)
(s
(s,

u, tW)
0.

1

a

An essential property of rewriting contexts in MSA is that the converse of the previous
result holds for transitive relations on reachable algebras:

Proposition 4.7 Let ¥ be a many-sorted algebraic signature and A a reachable Y-
algebra. Then a transitive relation on A is closed under operations iff it is closed under
rewriting context evaluations.

Proof: Let ~ be a transitive relation on A. In the virtue of Proposition 4.6, it suffices to
show that ~ is closed under operations if it is closed under rewriting context evaluations.

Let o be an arbitrary operation symbol in ¥ and let a = (ay...a,) ~ (by...b,) = b.
We have to show that o4(a) = 04(b). For simplicity (and without restricting generality)
we can assume that n = 2. Because A is reachable, there exist ¢t and ¢’ ground terms
such that t4 = a; and t), = by. Let ¢[z] = o(t,2) and ¢'[z] = o(z, 1) be contexts, with
variable symbol z. Then

oala) = calar)
~  calbs] (since ag ~ bg)
= o4(a1, by)
= ]
~ b (since ay ~ by)

A(
Now, o4(a) ~ 04(b) because of the transitivity of ~. O

This crucial property is central to the category-based definition of the notion of rewrit-
ing context:

Definition 4.8 Let ¢/: A — X be a forgetful functor from a category of models to a
category of domains. A monoid C of rewriting contexts for ¢/ is a submonoid of all
U-contexts such that any transitive relation on a reachable model that is closed under
rewriting context evaluations is also closed under operations. O

In principle it is possible to have various monoids of rewriting contexts for a fixed
category of models and category of domains. Some of these could be very different
from from the standard ones, thus generating non-conventional notions of rewriting and
paramodulation.

Corollary 4.9 Let C be a fixed monoid of rewriting contexts. An equivalence on A is a
congruence iff it is closed under rewriting context evaluations. O
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4.2 Inference Rules

This section presents the inference rules for the operational semantics of equational logic
programming as a refinement of paramodulation. Recall from [54] the notion of occur-
rence in a term. For any term ¢ and any occurrence 7 in ¢, let ¢|, denote the subterm of
t whose root is positioned at 7, and let t|,., denote the term obtained from ¢ replacing
t|r with s as a subterm in ¢. An equational goal is a pair (1, ;) of terms. The notion
of occurrence can be extended from terms to goals by regarding any goal (#,%) as a
term having two subterms ¢ and . The instantiation of a term by a substitution  is
denoted t6, and the composition of substitutions is written simply by concatenation and
in diagrammatic order. The empty substitution is denoted e.

The presentation of the rules of inference for the operational semantics of equational
logic programming follows the more classical approach of computed anwer substitutions
rather than the more modern approach of transformation of system of equations (see
[20]).* The main reason for this choice is the example nature of this section and also
that this presentation of the the inference rules for the operational semantics is faithful
to the current implementation of the Eqlog system.

Definition 4.10 Let ¥ be an algebraic signature and I' be a program in Y, i.e., a
collection of Y-rules. Then the paramodulation rule is

GU {<t17 t2>}
GOU (s0,t0) U{({t1, ta)|rer )0}

where (VX )l{—r if (s, 1) is a new variant® of a rule in I, G is a list of goals, and 4 is
the most general unifier of [ and (1, &3)|-. A single inference step of this rule is denoted
%%p‘

A rewriting step (denoted —— ) is a paramodulation step such that the domain
of the substitution # doesn’t contain any variable from (, t2).

A narrowing step (denoted —— ) is a paramodulation step such that (t, )|, is
not a variable. O

The elimination of trivial goals is done directly through syntactic unification:

Definition 4.11 The reflection rule is:

GU {<t17 t2>}
Go

where G is a list of goals and 0 is the most general unifier of ¢, and t,. One step of this
rule is denoted ——+ . O

By preventing the application of narrowing steps at occurrences introduced by the
computed substitutions, the search space of the narrowing chains is reduced drastically.
This restriction is called basic narrowing and still preserves the completeness of the
operational semantics when the program is a canonical rewriting system [54]. In order
to be able to write down the rule of basic narrowing as an inference rule without side
conditions, [54] introduces a new representation for goals consisting of a skeleton part

390riginating from Martelli and Montanari’s work on syntactic unification [71].
490btained by renaming all variables in the rule with new names.
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(just goals in the ordinary sense, i.e., pairs of terms) and an environment part (the
accumulation of the computed substitutions). By also using the rule of innermost
reflection, it is enough to restrict the application of the narrowing steps to only those
occurrences that are leftmost innermost.

Definition 4.12 A redex in a goal is an occurrence at which a narrowing step could be
applied. An innermost redex is a redex such that there doesn’t exist any other redex
below it.

The rule of basic innermost narrowing is:

(G U {(h,1)},0)
(G U (s, 1) U{{tr, )]s}, 00)

where 7 is a innermost redex in (t, 1) for (t10,t0), 6 is the most general unifier of
((t1, ta)|r)o and [ and (VX )l—r if (s,t) is a new variant of a clause in I'. One step of
this rule is denoted ——, .

The rule of innermost reflection is:

(GU{{t, )}, 0)
(GU{(t, &) |res}, 00)

where 7 is a innermost redex in (1, &) for (ti0, t,0) and 6 is the substitution replacing a
new variable & by ((#, &2)|r)o. One step being denoted as —»,.. O

Let O denote the empty list of goals. Recall that a chain of inference steps is called
a refutation iff it ends in O.

Definition 4.13 A substitution @ is an instantiation of another substitution ¢ (written
6 < o) iff there exists a substitution v such that § = ¢v. O

Fact 4.14 The relation < on substitutions is a preorder. O

Definition 4.15 Consider a system of inference rules for equational logic programming
operational semantics. A computed answer substitution®! is the accumulation of the
substitutions computed by a refutation chain. O

The inference system is sound iff for any list of goals G, any solved form is a solution
form for G, and it is complete iff any solution form for G is an instantiation of some
solved form.

4.2.1 Resolution as a refinement of paramodulation

In this paragraph we show how resolution can be regarded as paramodulation in the
context of the embedding of Horn clause logics into equational logics developed in Section

2.3.3.

Definition 4.16 Let (S, X, 1) be a first order signature and I' a collection of (.S, X, IT)-
clauses. The resolution rule is

HCalled “solved form” in the scheme proposed in the introduction to this chapter.
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G U {p(t)}
GOU ('

where (VX )p(s)if C is a new variant of a clause in I, p is a relational symbol in II, and
6 is the most general unifier of p(s) and p(¢). O

Fact 4.17 By using the transformations described in Section 2.3.3, a resolution step can
be performed by a narrowing step followed by a reflection step.

Proof: Using the notations of the previous definition, the clause (VX )p(s) if C becomes
a ¥° U '-rule (VX)p*(s) — tif C® where C° is the transformation of the (3, 1I)-
condition ' into the corresponding set of ¥° U IT’-equations. This rule can be used for
performing a narrowing step at the topmost symbol of the selected goal from

G"U{(p(1).t)}

and getting G?0 U C®0 as a result after eliminating (t,t) by a reflection step. O

4.3 Model Theoretic Paramodulation

In this section we extend the concept of paramodulation to model theoretic paramodula-
tion within the framework of category-based equational logic, and study the relationship
between the paramodulation relation induced by a program I' on a model A and the
least congruence on A closed under I'-substitutivity. Accordingly to the general scheme
proposed in the introduction, this goes at the heart of the category-based treatment
of the operational semantics for equational logic programming. The completeness of
paramodulation is explained by the identity between these two relations. We show that
this identity problem reduces exactly to the transitivity of the paramodulation relation.

For simplicity of notation, we will often omit*? writing the forgetful functor ¢ in case
of domain maps underlying model morphisms, i.e., we write s; h rather than s; hlf.

4.3.1 The paramodulation relation

This paragraph introduces the concept of model theoretic paramodulation in the form of
a binary relation induced by a given program on an arbitrary model. We assume a fixed
monoid C of rewriting U-contexts.

Definition 4.18 Let I' be a collection of conditional U/-rules and consider an arbitrary
model A. Then a binary relation ~ on A is closed under I'-paramodulation iff for any
rule (VB)l—rif (s,t) in [, for any model morphism h: B — A, and for any rewriting
U-context ¢,

call;h] ~ b if s;h ~t;h and cqlr;h] ~ b

for any 6 in the underlying domain of A.
The least binary relation on A closed under reflexivity, symmetry and I'-paramodulation
is denoted as ~#. O

The concept of the least binary reflexive-symmetric relation closed under paramodu-
lation is an algebraic abstraction of the relation on terms induced by paramodulation as
a refutation rule:

420nly in this section and the following one.
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Fact 4.19 Let Ty be the initial X-algebra for an algebraic signature ¥, i.e., the algebra
of ground terms. For any collection I' of conditional »-rules,

r
~= () | (t, b)) —5 O

i.e., the least relation on Ty closed under reflexivity, symmetry and I'-paramodulation
consists exactly of those pairs of terms for which there exists a paramodulation and
reflexivity refutation using I'. O

Given a program [' we can define the concept of (model theoretic) paramodula-
tion with respect to a model A as an inference rule on A-goals, i.e., symmetrical pairs
of elements from A:

(s;h,t;h)  (calr;h],b)
<CA[Z; h]v b>

for any rule (VB)l—r if (s,t) in I', for any model morphism h: B — A, and for any
rewriting U-context ¢. The symmetry axiom is explained by the fact that the goals in
equational logic programming are not oriented, i.e., the position of the sides in a goal
doesn’t matter.

[mtp]

Proposition 4.20 For any model A, the least relation on A closed under reflexivity,
symmetry and I'-paramodulation exists and is given by

= U~

new

where ~ ;= Dy (the diagonal) and

~ar =~ U sym(UL(ealls B, 0) | (ealrs 1, 0), (s bt h) S~ L)

for each n € w.

Proof: The reflexivity of U,c, ~ F " 1s given by ~ FO In order to prove its symmetry,
we show by mductlon on n € w that ~ F . 1s symmetric. We use Lemma 2.34. Consider
(5", 1) € Upew ~f , finite. Since {~{ | n € w} is filtered, there exists n € w such that
(s',t") gwﬁn. The rest follows by the induction hypothesis and by the remark that the
union of two symmetric relations is symmetric too.

In order to prove the closure under I'-paramodulation of |J Nﬁn, consider

new

(VB)l—rif (s,t) € ['h: B— A a model morphism and ¢ a rewriting context

such that (s;h, t;h), (ca[r; h], 0) € Upew ~ Because of the finiteness of both (s; h, t; h)
and (ea[r; h], b> there exists m € w such that sih ~f . t;hand cylr;h] ~f b There-
fore, cq[l; h] ~f 4y b

Now, consider any other reflexive-symmetric binary relation () on A that is closed

under I'-paramodulation. By induction on n € w, Nﬁng . Then U,c, ~ ?n_ Q. O

The intuitive meaning of N?,n is the reflexive-symmetric relation generated by apply-
ing at most n I'-paramodulation steps.

The soundness of model theoretic paramodulation is given by the following result.
Any pair of elements that can be refuted through paramodulation, can be proved using
standard equational deduction too.
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Proposition 4.21 Let I' be a collection of conditional U-rules. Then for any model A,
NAC:A
r==r-

Proof: Since =2 is closed under reflexivity and symmetry because it is a congruence, all
we have to show is that it is also closed under I'-paramodulation. Let (VB)l—r if (s, )
be any rule in I' and A: B — A be a model morphism such that s;h = ¢;h and such
that c4[r; h] = b for some rewriting context ¢ and some b.

Because = is closed under I'-substitutivity, we have that /;h = r; h. Because =4 is
closed under operations and by Proposition 4.6, c4[l; h] = ca[r; h]. Then ca[l; h] = b by
the transitivity of =f. O

The completeness of model theoretic paramodulation is given by the opposite inclusion
and works only for the case of reachable models:

Proposition 4.22 Let I' be a collection of conditional U-rules and let A be a reachable
model. Then ~# is an equivalence iff ~#==4#.

Proof: Since =# is an equivalence and because of Proposition 4.21, we have to show

only that if ~# is an equivalence then =#C~4.

The closure of ~# under I-substitutivity is obtained directly from the closure under
I'-paramodulation for the particular case when the context ¢ is the identity, and from
the reflexivity of ~4.

Because A is reachable and ~{ is an equivalence, the closure of ~# under operations is
the same as its closure under rewriting context evaluations. The closure under rewriting
context evaluations is shown by proving by induction on n € w that N?,m uy Cit for
any rewriting context u. So consider

(VB)l—rif (s,t) € ['h: B— A a model morphism and ¢ a rewriting context

such that s: h N?,n t;h and calr; h] N?,n b. By applying the induction hypothesis for n,
we get that wuylea[r; h]] ~f u4[b] which means that (¢; u)a[r; h] ~f u4[b]. Now since ~
is closed under I'-paramodulation, we obtain that (¢;u)4[l;h] ~& wu4[b], meaning that

ugleal; B]] ~& uy[b]. Because
= U sym((U{(ealls B, 0) | (ealrs bl b), (st hotih) ©~F )

we can conclude that N?,m uy C~# by using Fact 2.10.

Because congruences are concrete, ~f is a congruence (which is closed under T'-
substitutivity as shown above). Since ={ is the least congruence closed under
[-substitutivity, we have =AC~4. O

So, the completeness of model theoretic paramodulation reduces to the transitivity
of the paramodulation relation:

Completeness of model theoretic paramodulation = transitivity of the paramod-
ulation relation.
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4.3.2 Completeness of model theoretic paramodulation

Proposition 4.22 links the completeness of paramodulation to the equivalence property
of the paramodulation relation ~#. In fact, ~# is always reflexive and symmetric. In
this way, the transitivity of the paramodulation relation is technically equivalent to the
completeness of paramodulation.

In this paragraph, ~# is shown to be transitive when backward applications of the
rules in ' are allowed. This solution is more on the side of theorem proving rather than
logic programming, but the next section deals with this problem in a different way by

relating it to confluence.

Definition 4.23 Let I' be a collection of conditional Z-rules. Let I' denote the collection
of conditional U-rules obtained by reversing the orientation of the rules in I'; i.e.,

T = {(VB)r—lif (s,t) | (VB)l=r if (s,t) € T}
O

Fact 4.24 For any model 4 and any collection I' of conditional U-rules, E?:E?UF.

For the rest of the section we suppose that all coproducts in the category X of domains
are disjoint.

Proposition 4.25 Let I be a collection of conditional atomic U-rules. Then for any

model A4, ~4 _ is transitive.
rul

Proof: Because of Lemma 2.34 it is enough to prove that if (a, b) gN?uF and (b, d) gN?uF
then (a,d) gN?uF for a,b,d finite. Since (b,d) is finite, there exists n € w such
that (b,d) gN?an‘ Therefore, we show by induction on n € w that a N?uf b and

(b, d) gN?uﬁn implies a N?uf d, where a, b, d are finite. For the induction step, assume

that « N?uf b and (b, d) gN?uﬁn-H‘ In the virtue of Lemma 2.14 and because the rules

in [ are atomic, we may further assume that
b= cull;h] for some (VB)l—rif (s,t)eTUT,B L4 A and ¢ rewriting context

such that s; h N?UF,n t;hand cqlr; h] N?UF,n d. Now, by applying a l'Ul-paramodulation

closure step for (VB)r—lif (s,t) (still in [ UT) and h, we obtain that cy[r;A] N?uf
?uf ?uf calr; h] and

calr; h] N? . d, we can apply the induction hypothesis and conclude by a gN?uF d. O

a since ~ is closed under I' U T-paramodulation. Because a ~

uT,
The completeness of model theoretic paramodulation when backward applications of
rules are alowed is given by the following corollary:

Corollary 4.26 Let ' be a collection of conditional atomic {/-rules. Further assume that
any reflexive-symmetric-transitive relation in the category of domains is an equivalence.

Then for any reachable model A, we have N?UF:E?. a
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Completeness of many sorted paramodulation. We conclude this section with
an example. We illustrate how the general scheme discussed in the introduction to the
chapter can be used in conjuction with the previous results on model theoretic paramod-
ulation to prove the completeness of paramodulation as a refutation procedure in the
case of many sorted algebra.

We fix an algebraic signature .

Corollary 4.27 Let I be a collection of conditional X-rules. If I |z (VX)(t, f3), then

_ T
there exists a rewriting refutation of (f;, ) using I UL, i.e., (1, t)—% O.

Proof: By the Theorem of Constants (5.52),
F |:2 (\V/X)<t1,t2> llcf F |:EX (‘v’@)<t1,t2>

where Y x is the signature obtained by adjoining X to ¥ as new constants. By the
Completeness Theorem, (1, 1) belongs to EFT(EX), i.e., the least congruence on Ty,
closed under I'-substitutivity. By Theorem 4.26, (¢, ;) belongs to NFTL(JEFX)
reflexive relation on Tz, closed under I' U I'-paramodulation. The rest follows by Fact
4.19. O

, 1.e., the least

Definition 4.28 For any algebraic signature X, let F/(¥) be the collection of all func-
tional reflexive axioms, i.e., F(X) = {(Va...2,)f (2 ...2,) = f(&...2,) | f € X}
O

A similar version of the following Lifting Lemma appears in [54]:

r
Proposition 4.29 Lifting Lemma Let G be a finite set of goals. If Gf——=> O with
o TUF(T) i o
computed answer substitution o, then G ——=7 O with computed answer substitution

~ such that o < ~.

: . , r TUF(T) _
Proof: We prove by induction on n € w that if Gf——=7 0O, then G ——=7 0 with

~ computed answer substitution such that o < v. For the induction step, there are two
cases: when the first step is a reflection, and when it is a paramodulation.

Suppose GO—— G’@@L—ﬁ;;l O where G = G' U{(t1, &)}, ¢ = mgu(t,8, t,0)
and ¢’ is the answer substitution computed by the last n — 1 refutation steps. Then
po' = o.

There exists ¢’ = mgu(t, ;) and a unique substitution ¢ such that 8y = ¢’(. We can

do a reflection step G——_ G'¢’. Since (G'¢')( = G'0p, by the induction hypothesis,
_ TUF(T) . o
there is G'¢/ ———7 0O with 4" the computed answer substitution such that (o’ <

. . TUF(T) .
7y'. Therefore, there exists a refutation G ———7 0O with v = ¢’y computed answer

substitution and such that

Oc Opo’
SO/CO_/
el
v

A
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Now, suppose that G@L%p (G0|WFT)99L—>Z;1 O where (VX)l—rif (s, 1) is a
new variant of a clause in I' and ¢ = mgu(G8|,,[) for some occurrence 7 in G#.

First, assume that 7 is a basic occurence (i.e., not introduced by #). In this case,
Go|, = (G]:)f. Since the variables of the selected clause don’t clash with the logical
variables, ¢ is the most general unifier of (G|;)# and (0. Let ¢’ be the most general
unifier of G|, and [. Then there exists a unique ¢ such that 6y = ¢'¢(. We have that

G——, (Glr,) and that ((G|7rer)c,o’)§L—>z;1 O. By applying the same argument
as in the previous case when the first refutation step was a reflection, we deduce the
existence of a computed answer substitution 4 such that o < ~.

The last case occurs when 7 is not a basic occurence. Then m = w7y where G|,
is a variable. Let p be the substitution @ restricted only to the variable G|,,. Then

F(T)
0 = p+ 0 where dompu N dom8" = ). Then G——7 Gu——=r=r, (Gp|re, ). Because
of the renaming of the variables we may also assume that domy N dom#’ = (). Then

r
we have that ppl = (pn + 0')p = Op, which implies that (Gplre,)pt/ ——77" O
because (Gt|rer )b’ = (GO|rr ). By the induction hypothesis there exists a refutation
F(T)ur
(Gpt]rer ) =7 . O with 4" computed answer substitution such that '’ < " where
r
o' is the substitution computed by the refutation (G|, )p——>7" O. Then v = ppy’
and by a similar argument as in the previous cases we can prove that o < ~. O

Corollary 4.30 Let I' be a collection of conditional ¥-rules. Then the refutation pro-
cedure through reflexivity and paramodulation via I'UT U F(X) is complete. O

4.4 Paramodulation modulo a Model Morphism

This section proposes an abstract treatment for computations modulo axioms. Each the-
ory determines a quotienting morphism for each model A (see Theorem 3.17) constructing
the free model over A satisfying that theory. This quotienting can be considered as the
model theoretic expression of the (logical) theory. In this way, the study of computations
modulo a model morphism generalises the study of computations modulo axioms. We
study the relationship between provability by paramodulation in a model and provability
by paramodulation in the quotient model. A standard example is given by the quotient
of an initial model (i.e., model of ground terms) modulo axioms.*’

The following result shows that any model morphism preserves provability under

paramodulation:

Proposition 4.31 Let I' be a collection of conditional ¢-rules and f: A — A’ be an
arbitrary model morphism. Then

A A’
~rif S
Proof: It is enough to show by induction on n € w that
~aif S

For the induction step consider

43Gection 4.5.3 elaborates on this example.
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(VB)l—rif (s,t) € ['h: B— A a model morphism and ¢ a rewriting context

such that (s;h,t;h), (ca[r; h], b) gwﬁn. By induction hypothesis,
(s;hif tshif) Cealrs i 1, 0o f) St Hence (ealls b, 0)sf = (ealls b f1,b:f) S,
which proves that Nﬁn_l_l;f gwﬁ'nH. O

The equality
~if =~

doesn’t hold in general because in its present form it dismisses the role played in proofs
by the quotienting. A way to integrate the quotienting into the proof theory is given by
introducing a new inference rule:

Definition 4.32 Let N?’f be the least reflexive-symmetric relation closed under
I'-paramodulation and under

Q)
ker(f)o @ o ker(f)

where () is any binary relation on the underlying domain of A. O

[modf]

Fact 4.33 The relation N?’f exists and can be obtained in the manner of Proposition
4.20 by an alternation of I'-paramodulation steps with modf. O

Proposition 4.34 Let f: A — A’ be a model morphism and ' be a collection of
conditional U-rules. Then

A7 . !
~r f’f QN? .
Proof: By similarity to the proof of Proposition 4.31. O

The following theorem is the main result of this section:

Theorem 4.35 Let f: A — A’ be a coequaliser in the category of models and I" be a
collection of conditional ¢-rules. Then

Af. A
~r ,f—Nr .

Proof: By Proposition 4.34 it is enough to prove the inclusion Né’gwﬁ’f;f. We show
by induction on n € w that
A’ A,
~r nCNF f?f

)

For n = 0 it is enough to prove that Dy, = Dau;f, since Dy C ker(f). The
inclusion Day; f € Dany is obvious. Consider (s',s") € Dygy. Because fU is split-epi,
there exists s such that s;f = s'. Hence (s,s);f = (s',s") and Dans C Daus f.

For the induction step, consider cy4/[l; h'] Nﬁln_l_l b’ with

(VB)l—rif (s,t) e I,h': B— A" a model morphism and ¢ a rewriting context
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such that (s;h',t;h"), (car[r; A'], 07) gwﬁ’n.
Because B is coequaliser projective, there exists h: B — A such that h;f = A" and b
such that b; f = b'.

B-">4
N
A/
callih] = call;hif]
= Lhifsea
= Lih;cssf (naturality of ¢)
= callih]; f.
Similarly cu/[r; h'] = ea[r; h]; f. By the induction hypothesis (s; h, t;h); f, (calr; h], b); f
gwﬁ’f;f. Because N?’f is closed under the rule modf, (s;h,t;h), (ca[r;h],d) CN?’f.

? b —
Because ~i* is closed under I'-paramodulation , we have (c4[l; %], b) C~i/. Hence

ca[li ] = eall; h)sf T~ f. O

Model theoretic paramodulation together with modf define the concept of paramod-
ulation modulo a model morphism. The previous theorem shows that

Paramodulation modulo a model morphism = paramodulation in the quotient
model.

As already mentioned, paramodulation modulo axioms can be regarded as a particular
case of paramodulation modulo a model morphism. Actually, by taking the semantic
approach on equational theories expressed by Definition 3.6, these two notions appear
to be two sides of the same concept. This point of view is supported by regarding the
kernel of a model morphism as a theory, or better as the consequences of a theory in the
source of the model morphism.

4.5 Confluence

Using the rules of a program as non-oriented equations can lead to very inefficient search
within the space of paramodulation chains. A first crucial point in reducing the size of
the space of inference chains is to make use of the orientation of the rules. This also adds
direction to the refutation, bringing it closer to the true meaning of computation. The
completeness of paramodulation with oriented rules depends essentially on the confluence
of the program. This section explains the relationship between the transitivity of the
paramodulation relation determined by a program I' on a model A and the confluence of
[' as a collection of [oriented] rules.

Confluence (also called the Church-Rosser property®?) is central to the theory of
rewriting. Confluence and termination are essential properties of rewriting systems as
models of computation. Confluent and terminating rewriting systems can be used as
decision procedures for equality (see [30]). Our concept of confluence for a program
generalises the traditional one in the sense that it depends on a given model rather than
being fixed (to the model of ground terms).

**More precisely, Church-Rosser and confluence are different properties that can be easily proved
equivalent in most cases. However, there are some situations when there 1s a subtle difference between
these two properties (see [20]).
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4.5.1 Model theoretic rewriting

Any program determines a rewriting relation on the underlying domain of any model:

Definition 4.36 Let ' be a collection of conditional -rules. Then a binary relation >
on a model A is closed under I'-rewriting iff for any rule (VB)l—r if (s,t) in [' and for
any morphism h: B — A,

call; B] > ealr;h] if s;h ~ 45 h

for any rewriting U/-context ¢. The least relation on A closed under reflexivity, transitivity
and [-rewriting is denoted as >#. O

Fact 4.37 Let I be a collection of conditional ¢-rules. For any model A, ># exists and
is given by

>i=(pf)" where pit = J{(call; h], calr; h]) | s;h ~f t;h},

i.e., ># is the transitive-reflexive closure of the least relation closed under [-rewriting.
O

In Definition 4.36, h plays the role of the matcher for the left-hand side of a rule to
an element of the algebra. For example, in the case of the OBJ system, the algebra A
is the initial algebra of ground terms (or the initial algebra of a theory for the case of
rewriting modulo axioms). In this case, A matches the left-hand side of a rule in the
program with a subterm of the term to be rewritten. But the rewriting is done only after
the system proves the validity of the hypotheses instantiated by the matcher h. The
algebraic formulation of this last condition is given by s;h ~f t;h, since ~i contains
exactly all identities in A that can be proved from I' by paramodulation.

The following result shows that the rewriting relation is preserved under model mor-

phisms:

Proposition 4.38 Let I' be a collection of conditional ¢-rules. For any model morphism

iAo A
S f st

Proof: Consider
(VB)l—rif (s,t) € ['h: B— A a model morphism and ¢ a rewriting context

{s,1)
such that s;h ~f t;h. By Proposition 4.31, s:h;f ~i t:;h;f, hence e4[l;h];f =
collihi f1 > cnlrihs f] = ealrihlsf. O

Definition 4.39 Let I' be a collection of conditional A-rules and f: A — A’ be a model
morphism. The binary relation > on A is closed under I'-rewriting modulo f iff for
any rule (VB)l—r if (s, 1)

call;B] > cqlr; h] iff s;h ~27 b

The least relation on A closed under reflexivity, transitivity, I'-rewriting modulo f, and
modf is denoted >£7. O
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The following result is in the spirit of Section 4.4 and it shows that rewriting modulo
a model morphism? is the same as rewriting in the quotient model.

Theorem 4.40 Let I' be a collection of conditional U-rules and f be a coequaliser in
the category of models. Then

Sl =4t

Proof: By similarity to the proof of Theorem 4.35 and by using this theorem for
Af. A’ 0

NF 3 :NF .

4.5.2 Transitivity versus confluence

For this section we assume the category X of domains has disjoint coproducts (see Defi-
nition 2.12).

Lemma 4.41 Let I' be a collection of conditional atomic U-rules and A be any model.
For any a, b, b’ finite, if @ ># b and b ~£ ', then a ~3 b'.

Proof: If a >{ b, then because (a, b) is finite and by Fact 4.37 and Proposition 2.38,
there exists n € w such that (a,b) C (pf),. We prove by induction on n € w that
if (a,b) C (pff)n and b ~f o', then a ~# b’. For the induction step, suppose that
{a,b) C (p2),11. By Lemma 2.14 we may assume that (a,b) C pi o (pd),. In the
virtue of Fact 2.36, we may further assume that there exists d such that (a, d) C p# and
(d,b) C (p#),. By Lemma 2.14 and because of the atomicity of the rules in ', we may
assume that

a = ca[l;h] with (eq[r;h],b) C (p), and s;h ~i t;h
for some rule (VB)l—r if (s,t) in I, for some model morphism h: B — A and for some

rewriting -context ¢, and such that b ~# b'. By the induction hypothesis, c4[r; h] ~2 b’

Because ~# is closed under I'-paramodulation, a ~i . O

The following result describes the paramodulation relation ~# as the “set” of pairs

of elements that can be rewritten to the same “element”. This intuition constitutes the
basis for using term rewriting systems as a decision procedure for equality.

Proposition 4.42 Let I' be a collection of conditional atomic U-rules. Then for any

model A

~i=|J{{a,a’) finite | a >>{' d and o’ > d for some d}.

Proof: We first show by induction on n € w that
Nﬁng {(a, ') finite | a>>{' d and o' >{ d for some d}
For the induction step, let’s suppose that a ~,11 b with

a = cy[l; h] for some (VB)l—rif (s,t) €',h: B—- A and ¢ rewriting context

40r modulo axioms; see the discussion ending Section 4.4.
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such that s;h ~f  t;h and cq[r;h] ~f, b. By the induction hypothesis, c4[r;h] > d
and b > d for some d because (caq[r;h], b) is finite and {(a, a’) finite | a« > d,d’ > d}
is filtered (by using Lemma 2.26). Because s;h ~# t; h, we also have that c4[l; k] > d.
Then (a,b) C U{(a,a’) | a > d and o' > d for some d}.

For the opposite inclusion, we apply Lemma 4.41. Consider a,a’ finite such that
a># d and o' ># d for some d. Then a ~& d and, consequently, a ~# o’. O

Definition 4.43 Consider a model A and I' a collection of conditional U-rules. I is
A-confluent iff the rewriting relation ># is confluent. O

The notion of A-confluence represents a generalisation of the traditional notions of
confluence in the theory of term rewriting systems.*® The simplest and best known one
corresponds to the case when A is the [initial] algebra of ground terms Ty for an MSA
signature . In Section 4.5.3 we explain the relationship between A-confluence and the
notion of confluence modulo an equivalence as presented in [55, 61, 20, 30].

The following establishes the crucial link between the confluence of I' and the transi-
tivity of the paramodulation relation induced by I':

Proposition 4.44 Consider a model A and I' a collection of conditional atomic U-rules.
Then I is A-confluent iff ~# is transitive.

Proof: Assume I' is A-confluent and consider a ~ b ~ ¢ finite. In the virtue of
Proposition 4.42, there exists d, d’ such that a« > d, b > d, b > d' and ¢ > d'. By
the confluence of >, there exists d” such that d > d” and d’ > d”. Thus, a > d” and
¢ > d". By applying again Proposition 4.42, a ~ ¢.

For the converse, let’s assume that ~# is transitive and consider @ > b and a > ¢
with «a, b, ¢ finite. By Lemma 4.41, a ~ b and a ~ ¢. Therefore, b ~ ¢, and b > d,
¢ > d for some d by Proposition 4.42. O

The following corollary shows that in the case of confluence, the refutation procedure
using paramodulation and reflexivity is complete for oriented rules. In the presence of
confluence the application of the rules in T (i.e., the backward application of the rules in
') is no longer necessary.

Corollary 4.45 Let A be a reachable model and I' be a collection of A-confluent con-
ditional atomic U-rules. Further assume that any reflexive-symmetric-transitive relation

in the category of domains is an equivalence. Then ~#==4.

Proof: By applying Proposition 4.22. O

Through the Lifting Lemma 4.29 we can apply the previous result to the case of
paramodulation in MSA:

Corollary 4.46 Let ¥ be an algebraic signature. If I' is a confluent collection of con-
ditional Y-rules, then the refutation procedure through reflexivity and paramodulation
using ['U F(X) is complete. O

45Gee [30] for a detailed exposition of the concept of confluence for term rewriting systems. Other
important surveys are [20, 56].
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4.5.3 Confluence modulo a Model Morphism

In this section we argue that the notion of A-confluence (Definition 4.43) corresponds
to confluence of rewriting on equivalence classes in the case of a quotienting morphism
defined by a theory.

The notion of rewriting on the congruence classes (called class-rewriting in the
survey [20]) was introduced by Lankford and Ballantyne [65] for permutative congruences,
that is congruences for which each congruence class is finite. For example, associativity
and/or commutativity gives rise to permutative congruences.

Let ¥ be an algebriac signature and let £ be a collection of ¥-equations. In the
context of the definitions introduced by Section 4.4, let A be the algebra of ground terms
Tx., A’ be the initial ¥, F-algebra Tx g, and f: Ts — Tx g be the quotienting morphism.
Rewriting (paramodulation) modulo f is the same as rewriting (paramodulation) modulo
E. Given a collection I' of conditional Y-rules, class-rewriting relation defined by I'" and
E (denoted I'/E in [20, 61] is >(>/. By Theorem 4.40 we have the following:

Corollary 4.47 A term rewriting system I' is confluent modulo axioms £ iff it is Ty, -
confluent. O

The term rewriting literature contains several papers [55, 61] and surveys [56, 20]
studyign alternative notions of confluence modulo axioms and their relationship with
confluence of rewriting on congruence classes.

4.6 Narrowing in MSA

This section is entirely devoted to the application of the general theory developed in
Sections 4.3 and 4.5 to the particular case of many sorted narrowing including some of its
refinements. Although all results of this section had been established before, the way they
fall as a direct consequence of the general category-based results on the completeness of
paramodulation is new and can be taken as an example for applying the theory developed
in Sections 4.3 and 4.5 to other cases of interest.

The structure of this section is influenced by the gradual development of the com-
pleteness results for different refinements of narrowing given in [54]. We fix an MSA
signature . The role of the model A is now played by the [initial] algebra of the ground
terms.

Definition 4.48 A Y-rule (VX)l—r if (s,1) is a rewrite rule iff var*"(r)Uvar(s, t) C
var(l) = X. Tt is collapse free® iff [ is not a variable. O

The main difference between rewrite rules and oriented equations (or simply rules)
is that in the case of the former the system doesn’t have to “invent” values for the
variables that might occur in the right hand side or in the condition of a rule but not in
its left hand side. This makes rewriting systems appropriate for computations by giving
direction to rewriting. An important consequence is the fact that the presence of the
functional reflexive axioms is no longer necessary:

4"By var(t) we mean the set of all variables occurring in the term ¢t. More formally, var(t) is the least
set X such that ¢t € Tx(X) (see [30]).

48 An interesting discussion on the réle played by this concept for the completeness of paramodulation
can be found in [54].
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TUF(T)
Lemma 4.49 Let I' be a rewriting system and G be a list of goals. Then G ———=}, O

r
implies that G——% O.

Proof: Any application of a paramodulation step with a clause from F(I') would pro-
duce a non-empty answer substitution, therefore they are not used in the refutation.
O

The application of Corollary 4.45 requires a new version of Lifting Lemma adequate
to the new context. Recall (see [30], for example) that a term ¢ is said to be in normal
form when no rewriting can be applied to ¢ anymore. A substitution is said to be in
normal form iff all its terms are in normal form.

Proposition 4.50 Lifting Lemma Let I' be a collapse free rewriting system and 6 be

r r
a substitution in normal form. If G#——=% O then G——-] . O with the computed
answer substitution o such that 8 < .

Proof: We prove this lifting lemma by induction on n € w.
The first case occurs when the first step of the refutation chain is the removal of
an identity t0 = t'6 with (t,t) € G. Let ¢ be the most general unifier of # and

ty. Then there exists 6" such that @f" = #. 0" is in normal form since # is in normal
form. If G = G' U {(#, )}, then since (G’@)@’L—ﬂ{l O, the induction hypothesis
implies that G’@L%Z;} O with the computed answer substitution ¢’ such that §' < o’.
But G——, G’ with ¢ the computed answer substitution. The answer substitution
computed by the refutation GL%ZJ O is wo' > @' = 6.

The second case occurs when the first step of the refutation is a proper rewriting step.

Then GO——p GO|rrp U (s, 1) for (VX)l—r if (s,1) a new variant of a clause in I
and lp = GO|,.

e § in normal form implies that (G8)|, = (G|,)0, i.e., m is a basic occurence,
o [ collapse free implies that G|, is not a variable, and

e domp N domf = () implies the existence of § in normal form such that ¢'¢' = 6+ ¢
where ¢ = mgu(l, G|;). This works because [(0+p) = lp = (G|,;)0 = (G|;)(0+¢).

¢’ is in normal form because both # and ¢ are in normal form.

Then G—— Gl e, U(s,t)¢" and (Glrero U (s, 1)) = GO r o U (s, )p—r i
O. Now, we can apply the induction hypothesis in the same manner with the former
case (when the first refutation step was a reflection) and deduce the conclusion of this
lemma. O

Corollary 4.51 Let I' be a confluent collapse free rewriting system. The refutation
procedure through reflexivity and narrowing is complete. O
4.6.1 Canonical term rewriting systems

This paragraph reviews the completeness of basic innermost narrowing from [54]. This
works under the further assumption of the termination of the term rewriting system
involved. A rewriting system that is both confluent and terminating is called canonical.
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The completeness of basic innermost narrowing is obtained directly from Corollary
4.51 via the following®?:

Proposition 4.52 [54] Let I' be a canonical collapse free term rewriting system and G

r r
be a list of goals. Then G——; O implies that (G, €)——7 ;, ;. O with the same
computed answer substitution.

Sketch of Proof: When the substitution 0 is in normal form, in G@L—ﬁ% O rewriting
is applied only at basic occurrences. The canonicity of I' implies the we can select a
chain of innermost rewrites. Innermost reflection is needed to move to redeces above
an innermost redex with respect to ——p because innermost redeces with respect to
—,, might not correspond to innermost redeces with respect to ——+5. O

Basic innermost narrowing can be combined with rewriting on the goals. As discussed
in [54], this can be very beneficial in cutting off non-terminating narrowing chains. In
some cases it also adds to the efficiency of the computation. The completeness of basic
innermost narrowing combined with rewriting follows directly from Corollary 4.51 via
the following:

Proposition 4.53 [54] Let I' be a canonical collapse free term rewriting system and let

r r
G be a list of goals. If G——7 , O then (G, ¢)——% ;. ;. O with the same computed
answer substitution and narrowing applied only to normalised goals. O

4.7 Computing in Eqlog

The Oxford prototype implementation of Eqlog is an extension of the OBJ3 system
(developed at SRI International; its user manual is [46]). The Eqlog system adds an im-
plementation of order sorted basic leftmost innermost narrowing. The current goal to be
processed is selected to be the leftmost one from the goal list. The goals are represented
in the manner of Definition 4.12, i.e., having a skeleton part and an environment part
representing the accumulation of the computed answer substitutions. The main narrow-
ing loop implements a depth-first search on the space of all narrowing chains regarded
as a search tree.

4.7.1 OS unification in Eqlog

The implementation of unification follows the order sorted version of Martelli-Montanari
algorithm described in [74]. It is known (see [74]) that an order sorted unification prob-
lem may fail because of the sort structure. In some cases, this can dramatically speed
up the whole computation because most of the computation time is spent on failing uni-
fications. On the other hand, a successful unification problem might have a finite most
general solution set (see [74, 27]) rather than a single most general unifier. However, the
following property of OSA signatures assures the existence of a most general unifier for
any successful unification problem:

Definition 4.54 A monotonic OSA signature (5, <,Y) is coregular (called unitary in
[74]) iff

49Using the environment-skeleton representation of goals described in Section 4.2.
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1. for any two sorts s, s’ € S there is at most one maximal common subsort, and

2. for any operator symbol ¢ € ¥ and any sort s € S, the set {w € S* | ¢ €
Yus and s < s} has at most one maximal element.

Although the Eqlog system assumes that all signatures of modules are coregular,® it
also has a facility for showing the eventual non-coregularities of a signature of the current
module. One types

set show noncoreg on .
to turn it on and,
set show noncoreg off .

to turn it off.

4.7.2 Examples with narrowing

Consider the following module defining an ADT of lists over a set of elements (represented
here by the sort E1t). The non-empty lists form a subsort NList of the sort of all lists
(i.e., List). The empty list and the usual list selectors have the same name as their
Lisp counterparts, while the constructor function (cons in Lisp) is simply denoted by
concatenation. In order to get a purely logical inference procedure for this example we
have to use an ADT definition for the natural numbers rather than import them as
built-ins.?! The function giving the length of a list is denoted by #.
0, s, nil, and __ are declared as constructors.

obj LIST is
sorts E1lt Nat NList List
subsort NList < List

op 0 : -> Nat [cons]
op s : Nat -> Nat [cons]
op a : -> Elt

op nil : -> List [cons]
op __ : Elt List -> NList [cons]

op car : NList -> Elt

op cdr : NList -> List

op #_ : List -> Nat

var E : Elt

var L : List

eq car(E L) = E .

eq cdr(E L) =L

eq # nil = 0 .

eq #(E L) = s(# L)
endo

S0Experiments made in Oxford showed that the vast majority of OBJ modules are coregular.
>1The Eqlog system inherits the built-in natural numbers from the OBJ system.
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By typing
set show narrowing on .

the user can see the actual inference steps performed by the Eqlog system which alternates
reflection and basic leftmost innermost narrowing steps. Successful reflection steps are
omitted. The meaning of all fields is obvious except for next-position, which refers
to the occurrence at which the redex of the next narrowing step has to be found. This
occurrence is a list of natural numbers representing the path to the redex within the tree
underlying the term if the search process backtracks, otherwise is still unknown.

For example, the query

find Lst : List such that # Lst = s(s(0)) ; car(Lst) = a .
produces the following output:

#####FHA AR VGG RR BB S SR RRR SRR R BRGR AR BHER RS
solve in % :

car(Lst) = a

# Lst = s(s(0))

reflection failed

depth in the narrowing chain: 1
current goal list (skeleton):
E_978 = a

# Lst = s(s(0))

current answer substitution:
E_978: E1t -> UNBOUND

L_977: List -> UNBOUND

Lst: NList -> E_978 L_977
next-position: unknown

depth in the narrowing chain: 2
current goal list (skeleton):
s(# L_983) = s(s(0))

current answer substitution:
E_984: Elt -> a

E_978: Elt -> a

L_977: List -> L_983

Lst: NList -> a L_983
next-position: unknown

reflection failed

depth in the narrowing chain: 3
current goal list (skeleton):

s(0) = s(s(0))

current answer substitution:
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E_984: Elt -> a

L_983: List -> nil
E_978: Elt -> a

L_977: List -> nil
Lst: NList -> a nil
next-position: unknown

reflection failed

constructor clash

depth in the narrowing chain: 3
current goal list (skeleton):
s(s(# L_989)) = s(s(0))
current answer substitution:
E_984: Elt -> a

L_983: List -> E_990 L_989
E_978: Elt -> a

E_990: E1t -> UNBOUND

L_977: List -> E_990 L_989
Lst: NList -> a (E_990 L_989)
L_989: List -> UNBOUND
next-position: unknown

reflection failed

depth in the narrowing chain: 4
current goal list (skeleton):
s(s(0)) = s(s(0))

current answer substitution:
E_984: Elt -> a

L_983: List -> E_990 nil
E_978: Elt -> a

E_990: E1t -> UNBOUND

L_977: List -> E_990 nil

Lst: NList -> a (E_990 nil)
L_989: List -> nil
next-position: unknown

A solution is:
Lst: NList -> a (E_990 nil)

This example also shows how the sorts of the logical variables are dynamically changed
during the computation process. The Eqlog system accepts a certain class of badly typed
terms in queries which are treated by using the method of retracts,’* but this is hidden
to the user. In our example, accordingly to the original declaration of the type of the
logical variable Lst, the term car(Lst) is not well typed because car is defined only on

>Inherited from the OBJ3 system; for a detailed discussion on retracts and their semantics see [34].
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the subsort NList of the non-empty lists. However, during the computation process the
order sorted unification function changes the sort of Lst to NList. This could be easily
noticed in the first narrowing step performed by the system, and also shows up in the
final result.

4.7.3 Constructor discipline

Consider the following query:
find Lst : NList such that # Lst = 0

Because the rule # nil = 0 would never be selected due to the type constraint on Lst,
the system proceeds into endless applications of the rule #(E L) = s(# L).

However, such a situation could be easily avoided by noticing that there is no possible
refutation from goals of the form s(...) = 0. This suggests a constructor discipline
as a way to stop non-terminating computations and also as a way to reduce the search
within the space of narrowing chains. Although the constructor discipline is used in
equational logic programming as a control facility (the programmer has the full option
to declare some operations as constructors), the concept of constructor has a precise
mathematical meaning at the level of algebraic specifications. In [73], Meseguer and
Goguen showed that only order sorted algebra solves the constructor-selector problem.

Definition 4.55 [30] A subsignature 2 C ¥ is a subsignature of constructors for
a specification (X, F) iff Ty, glq is a reachable Q-algebra. A subsignature of unique
constructors is a subsignature of constructors 2 such that Ty, g is the initial (i.e., ground
terms) Q-algebra. O

The main principle underlying any constructor discipline for equational logic pro-
gramming can be concisely formulated as follows:

Constructors cannot be narrowed.

The Eqlog system implements this principle in two different ways.?®> The first one
occurs when the topmost operators of the sides of a goal are different constructors.®
In this case, since it is impossible to develop the narrowing chain into a refutation, the
computation backtracks®®. The second way to apply the constructor discipline is to
banish from narrowing the positions where the corresponding operator is a constructor.
The main consequence in this case is to speed up of the computation of innermost redeces.

>3Many other implementations of narrowing embed some sort of constructor discipline, notably the
ALF system [49].

>4 Actually, the Eqlog system implements a stronger version of this: before a narrowing step is per-
formed, the system tries to find the outermost occurrence at which the corresponding operators are
different constructors, and such that all outer positions are occupied by constructors within both sides
of the goal. If such a position is found, then the computation backtracks without trying to perform the
narrowing step.

3In the previous example of an Eqlog run, this corresponds to the message constructor clash.
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5 MODULARISATION

A promising approach to developing large and complex systems (which may be software,
hardware, or both) is to start from a description of the system as an interconnection of
some specification modules. This permits the verification of many properties to be carried
out at the level of design rather than code, and thus should improve reliability. With
suitable mechanical support, it might also improve the efficiency of the development
process. In addition, it promotes reuse, because some modules may be taken directly
from a library, or else may be modifications of library modules. For this reason, many
modern programming and specification languages support some form of modularisation,
and most mathematical results about modules have appeared in the context of formal
software engineering, particularly specification languages. There has been much recent
interest in module composition systems under the name of “megaprogramming” [98, 94].

Modularisation for equational logic programming has been studied less. Two basic
problems are the soundness and completeness of the translation of queries and their solu-
tions along module imports. It is important to notice that in ELP the notion of module
is very similar to that in equational (i.e., functional) programming®® and, although each
query is related to a certain module, the query is not part of the module. Given a module

import P %op (technically regarded as a morphism of theories), ¢ is sound iff for any
query ¢ in P, any of its solutions is translated to an solution of ¢(¢). The completeness
of 1 means that any solution of 1(q) corresponds to a solution of ¢.°” Our notion of
module import is not restricted only to inclusion of theories, a module import could be
any morphism of theories. In this context, we prove the soundness property for arbitrary
module imports.

A particularly important relation between theories is that of conservative extension,
which says that any model of a subtheory can be expanded to a model of the supertheory.
This semantic property can be important for the reuse of modules. Other semantic
properties of extensions arise in connection with parameterised (i.e., generic) modules.
The completeness property is proven to hold for the case of essentially persistent module
imports.®®

The theory of institutions [33] provides an abstract mathematical formulation of the
concept of ‘logical system’ very adequate for the study of modularisation in declarative
programming languages rigorously based on logical systems. In order to use the ma-
chinery provided by the theory of institutions to modularisation problems specific to
equational logic programming, we have to integrate the framework of category-based
equational logics with institutions. The institution of category-based equational logics
provides the most abstract framework which is still concrete enough to deal with con-
cepts like queries and solutions. The primary mathematical structure in this approach
is the notion of Kleisli category. Translations of queries along module imports appear
as functors between Kleisli categories. The more general case of quantifiers as models
(rather than collections of variables) reveals that the translations of the quantifiers along

>6For example, there are only very small diferences between Eqlog and OBJ modules.

57Section 5.3.2 shows how soundness and completeness of module imports relates to the traditional
concept of soundness and completeness for logical systems.

58 A property stronger than conservative extension.
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module imports are simply free constructions.

The institution of category-based equational logics is abstract enough to encode equa-
tional logic programming modules as signatures and module imports as morphisms of sig-
natures. This different level of use of the institution of category-based equational logics
is the basis for a category-based semantics for equational logic programming queries and
solutions. The institution of category-based equational logics also supports a category-
based version of the Theorem of Constants. We place this result here exactly because of
its connection to the basic mathematical structures of this chapter, although in principle
it is not related to modularisation issues. The model-theoretic dimension of our more
general version of the Theorem of Constants is also related to the so-called “method of
diagrams” from classical first-order model theory.

The soundness and completeness problem for translations of queries and their solu-
tions along module imports is shown to be an instantiation of the soundness and com-
pleteness at the level of institutions with an entailment system. This fact resorts to a
special and rather eccentric institution having collections of logical variables as signa-
tures, queries as models, and substitutions as sentences. A substitution is an answer
for a query iff the query satisfies the substitution. The only inference rule defining the
entailment relation encodes the translation of substitutions along module imports.

5.0.4 Some History

The earliest work on software modules with which we are familiar is by Parnas [77,
78, 79]. Program modules differ from earlier program structuring mechanisms such as
subroutines, procedures and blocks, in that they may include a number of procedure and
data definitions, may be parameterised, may import other modules, and may hide certain
elements. A major motivation for modules in this sense is to facilitate the modification
of software, by localizing the representation of data and the operations that depend upon
it; this is called information hiding. Such modules support software reuse because they
can be specified, verified, and compiled separately. Note that this notion of module is
essentially syntactic: it concerns texts that describe systems.

The earliest work that we know on specification modules is by Goguen and Bur-
stall, for their specification language Clear [12, 13], the semantics of which is based on
institutions.?® This approach to modules has been applied to various logic-based lan-
guages, particularly OBJ [46], Eqlog [38], FOOPS [40, 47] (which combines the functional
and object paradigms), and FOOPlog [40] (which combines functional, logic and object
paradigms); it could also be applied to any pure logic-based programming language, such
as (pure) Lisp and (pure) Prolog. In [26], this is even extended to imperative program-
ming. The module system of (Standard) ML [50] has also been strongly influenced by
this work on Clear.

Clear introduced the ideas that a specification module determines a theory, and that
such theories can be put together using colimits; these ideas have their origin in some
earlier work by Goguen on General Systems Theory [23, 36]. Clear provided operations for
summing, renaming, extending, hiding, importing and (in the case of generics) applying
theories. Theories in turn denote classes of models. The earliest work that we know
giving a calculus of modules is also due to Goguen and Burstall [31]. Building on Clear,
they studied laws for horizontal structuring relationships, and vertical implementing (also
called “refinement”) relationships, concluding that the axioms of a 2-category should be

390ther early work on modules for specification languages was by Liskov on the language CLU [3].
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satisfied.%® Some general laws for the module operations of Clear appear in [23], and
others occur in the proofs in [13]. Some recent results on the formal properties of module
composition over institutions appear in [29].

The module algebra of Bergstra, Heering and Klint [9] attempts to capture the hori-
zontal structure of modules with equations among certain basic operations on modules,
including sum, renaming, and information hiding. These equations, together with con-
structors for signatures and sentences, give a many sorted equational presentation, about
which some interesting results can be proved, including a normal form theorem. Un-
fortunately, this work has first order logic built into its choice of the constructors for
signatures and sentences. However, Bergstra et al. abstract some interesting general
principles from this special case. [21] develops a module algebra in the context of the
theory of institutions. In [21] it is shown that all reasonable institutions support certain
simple operations on theories; what properties ensure that these operations have various
desirable properties is also explored. A new categorical axiomatisation of the notion of
inclusion permits simple definitions for these operations on theories.

Much interesting work using institutions has been done by Tarlecki [89, 90, 91, 92]
and by Sannella and Tarlecki [83, 84, 85].

5.1 Institutions and Modularisation

Institutions are much more abstract than Tarski’s model theory, and they also add an-
other basic ingredient, namely signatures and the possibility of translating sentences and
models from one signature to another. A special case of this translation may be familiar
from first order model theory: if ¥ — ¥’ is an inclusion of first order signatures, and if
M is a Y'-model, then we can form M |y, called the reduct of M to ¥. Similarly, if e
is a Y-sentence, then we can always view it as a ¥'-sentence (but there is no standard
notation for this). The key axiom, called the Satisfaction Condition, says that truth is
invariant under change of notation, which is surely a very basic intuition for traditional
logic.

Definition 5.1 An institution S = (Sign, Sen, MOD, |=) consists of

1. a category Sign, whose objects are called signatures,

2. a functor Sen : Sign — Set, giving for each signature a set whose elements are
called sentences over that signature,

3. afunctor MoD : Sign®? — Cat giving for each signature ¥ a category whose objects
are called ¥-models, and whose arrows are called ¥-(model) morphisms, and

4. a relation £y C IMOD(X)| x Sen(X) for each ¥ € |Sign|, called Y-satisfaction,
such that for each morphism ¢ : ¥ — ¥’ in Sign, the Satisfaction Condition
M' s Sen(¢)(e) iff MoD(¢)(M') Ex e

holds for each M’ € [IMoD(Y')| and e € Sen(X). O

60This is consistent with the fact that in our category-based semantics for queries and solutions, the
category of modules and module imports comes equipped with a 2-categorical structure induced by the
2-categorical structure of the category-based equational signatures.
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We will often denote the reduct functor MOD(¢) by _14, and the sentence translations
Sen(¢) simply by ¢(_) or even _¢.

All logics presented in Section 2.3 are institutions. Once a logic is proved to be
an institution, OBJ-like modularisation principles can be applied to any programming
language rigorously based on that logic. [21] contains a series of results obtained at
the level of institution theory and supporting OBJ-like protecting module imports and
parameterised (generic) programming.

Definition 5.2 A theory (X, F) in an institution & = (Sign, Sen, MOD, |=) consists of

e a signature X, and

e a set F of Y-sentences closed under semantical deduction, i.e., e € F if £ g e.%!

A theory morphism ¢: (X, E) — (X', E’) is just a morphism of signatures ¢: ¥ — ¥
such that Sen(¢)(F) C E’. Let Th(S) denote the subcategory of theories in §. O

The principle of “initial algebra semantics” is formalised at the level of institutions
(see [33]) by the concept of liberality:

Definition 5.3 Let & = (Sign, Sen, MOD, |=) be an institution. A theory morphism ¢
is liberal iff the reduct functor MOD(¢) has a left-adjoint.
The institution 3 is liberal iff all theory morphisms in Th(S) are liberal. O

In general, equational logics tend to be liberal, while first order logics are not liberal.
In [89], Tarlecki relates the liberality of an institution to the quasi-variety property which
must be fulfilled by the class of models of any theory in that institution, meaning that
the models of any theory must be closed under products and submodels.%?

5.1.1 Exactness

An important model theoretic property of many logical systems is that finite colimits
are preserved by the model functor. Thus, if we combine some theories T; in a diagram
T: I — Th(S) having colimit (i.e., result of combination) C, then the denotations of
the T; and C behave in the way one would hope: MoD(C') is the limit of the diagram
T;Mop”: I — Cat. In particular (and assuming that the categories of ¥-models are
concrete), our intuition would lead us to hope that a model of Ty @ T5 (the co-product)
would consist of a pair of models, one of T} and the other of T5; i.e., we intuitively expect
MoD( Ty @ Tz) to be MoD(Ty) x MoD(Tz). The situation is similar for a pushout of
theory morphisms Ty — T and Ty — T3, which for simplicity we assume are theory
inclusions, so that T is shared between T and T5: we expect that a model of T} @, T
(the pushout) can be constructed from a pair of models, one of T} and the other of
T3, by identifying their reducts to Tp; that is, we expect MOD(Ty @7, 12) to be the
pullback of MoD(T;) — MobD(Ty) and MoD(Ty) — Mon( Ty). This property, which we
call exactness, seems to have first arisen in [85], and is also used in the pioneering work
of Tarlecki [91] on abstract algebraic institutions, and of Meseguer [72] on categorical

logics®.

61Meaning that M f=yx e for any Y-model M that satisfies all sentences in .

52In the case of the usual logical systems, this corresponds exactly to the power of Horn clause
axiomatisations.

%3 Meseguer [72] introduced the term exactness, but used it for the concept that we call semiexactness
here.
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Definition 5.4 An institution is exact iff the model functor MoD: Sign — Cat®?
preserves finite colimits, and is semiexact iff MOD preserves pushouts. O

Although many sorted logics tend to be exact, their unsorted variants tend to be
only semiexact. In particular, the model functor does not preserve coproducts for either
unsorted first order logic or unsorted equational logic. This is undesirable from the point
of view of modularisation. Combining this with the well known fact that the coproduct
of unsorted terminating term rewriting systems need not be terminating, although it is
terminating in the many sorted case, we might conclude that unsorted logics are unnatural
for many applications in Computing Science.

It is not hard to see that any chartered institution is exact.®® Charters were introduced
by Goguen and Burstall [32] as a general way to produce institutions. The basic intuition
is that the syntax of a logical system is an initial algebra. Because it appears that
most institutions of interest in Computing Science can be chartered, it follows that most
institutions of interest in Computing are exact. In particular, both many sorted first
order logic and many sorted equational logic are exact. On the other hand, unsorted
equational logic is not exact.

Notice that, for any institution 3, the model functor MOD extends to Th(S), by
mapping a theory (X, F) to the full subcategory MoD(X, F) of MOD(X) formed by the
Y-models that satisfy K. The following result shows that one can lift exactness from
signatures to theories, so that exactness depends only on the behavior of signatures,
and is independent of what happens with sentences. Semiexactness for theories plays
an important role in the “categorical logics” described by Meseguer in [72]. In [21] it is
shown that this follows from the corresponding property for signatures:

Proposition 5.5 If an institution is semiexact, then MoD: Th — Cat®" preserves
pushouts.

Proof: Let ¢,: (X, F') — (X, F)) and ¢o: (¥, E') — (X2, F3) be morphisms of
theories and let ¢ : (X2, Fy) — (X, F) and ¢h: (X1, Ey) — (X, F) be their pushout.
Recall from [33] that (¢}, @}) is the pushout of (¢1,¢2) in Sign and E is the deductive
closure of ¢4(Fy) U ¢ (Ez).

(X1, E1)

PN

$1 &
(X, E) (2, E)
(227 EZ)
Let M; be a ¥i-model of £} and M; a ¥y-model of F; such that M, = M;y[4,:
now let M’ denote this ¥'-model. Then by the Satisfaction Condition, M’ satisfies E’.
By semiexactness and the construction of pullbacks in Cat, there is a ¥-model M such

that M1y = M, and M [y = M. By the Satisfaction Condition again, M satisfies the
translations of both F; and F,, and thus satisfies K. We have now shown that any pair of

64Using the facts that MoD is 2-representable for chartered institutions, and that 2-representable
functors preserve colimits.
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models (My, My) with M; € [MoD(Xq, Fy)| and My € |[MOD(X,, Ez)| and My, = Maly,
determines a (X, F)-model M.

Conversely, any (3, F)-model M is determined in this way by its translations M; =
Mty and My = My which, by the Satisfaction Condition, satisfy Ky and FEj, respec-
tively.

Because the models of a theory form a full subcategory of the models of its signature,
we can extend this argument to model morphisms. Therefore, _f, : MoD(¥, E) —
Mob(Xy, Ey) and _[4 @ MOD(X, ) — MOD(X,, L) are the pullback of _[y,
MobD(Xy, Ey) — MoD(X', E’) and _14, : MoD(X,, E;) — MobD(X/, E'). O

A proof of the following result was sketched in [85] and given in [21]:

Corollary 5.6 If an institution is exact, then MoD: Th — Cat® preserves finite col-
imits.

Proof: By exactness, MOD maps the initial object of Sign to the terminal (singleton)
category. Because the only model of this category satisfies the empty theory (i.e., the
tautologies over the initial signature) we conclude that the model functor maps the
initial theory to the terminal category. Now we are done, because all finite colimits can
be constructed from pushouts and an initial object. O

5.1.2 Parametric modules and views

Definition 5.7 A theory morphism ¢: P — T is conservative iff for any model M €
IMOD(P)| there exists a model N € [MoD(1')| such that N, =M. O

Persistence is a stronger notion than conservative extension, and is important for the
semantics of parameterised data types (e.g., see [33]).

Definition 5.8 A theory morphism ¢: P — T is persistent iff its associated reduct
functor _4: MoD(T) — MoD(P) has a left adjoint such that each component of the
unit of the adjunction is an equality. O

Fact 5.9 A persistent theory morphism is conservative. O

Example 5.10 Consider the following classical example of generic lists over elements of
monoids. The monoid operations are abstract and they can be used as generic operations
for computations involving all elements of a list.

th MON is
sort Mon .
op e : -> Mon .
op _*_ : Mon Mon -> Mon [assoc]

var x : Mon .

eq e * x =

eq X * e =
endth

X
X

73



th LIST*[X :: MON] is
sort List
subsort Mon < List .
op __ : List List -> List [assocl]
op nil : -> List .
op # : List -> Mon .

vars L L” : List .
L .

eq nil L =L .

eq #(nil) = e .

eq #(L L") = #(L) * #(L")
endth

eq L nil

The module LIST* imports the module MON without introducing any new elements
or identifying any old elements. This means that the module import MON — LISTx* is
persistent. This is so because for any monoid M the free LIST*-model over M consists
of lists with elements from M and its reduct to MON gives exactly the original monoid M.
O

The following result (from [21]) is related to the semantics of applying a generic mod-

Y

ule to an actual parameter module using a “view,” as proposed in Clear and implemented

in OBJ3 and Eqlog:

Proposition 5.11 Given a semiexact institution with pushouts of signatures, let (¢, ¢")
be the pushout of theory morphisms ¢: P — T and ¢»: P — P’. Then:

1. If the functor _[4,: MoD(T) — MOD(P) has a left inverse ¢*: Mop(P) —
MoDn(T), then there is a left inverse ¢'* of _[4 such that the following diagram
commutes:

MOD(P)i>MOD(T)

T

MoDbD(FP") e Mobp(T")
2. ¢' is persistent if ¢ is persistent.

Proof: To show the first assertion, pick an arbitrary model N’ of P’. Then N = N’ is
a model of P by the Satisfaction Condition. Let M be ¢*(N). Then M}, = N'f, = N.
By Proposition 5.5, there is a model M’ of T” such that M’y = M and M'[, = N'.
The mapping N’ — M’ defines the functor ¢/* on objects, and its definition on arrows
is similar. Next, ¢/* preserves identities because 1yp [y = ¢*(1y) [y and Iyly =
(1) [ for any P-model N’. By Proposition 5.5, 13 = ¢'¥(1y/). The same argument
gives the preservation of composition by ¢'*.

For the second assertion, we will show that ¢'¥ is left-adjoint to _I 4 if ¢* is left-adjoint
to _[4, that is (using the above notations), M’ is a free T"-model over N’ if M is a free
T-model over N. Pick an arbitrary 7’-model M, and an arbitrary model morphism
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h: N’ — M/t,. We have to prove that there is a unique model morphism h*: M’ — M|
such that A*l, = h. Notice that by Proposition 5.5, any h¥: M’ — M| is uniquely
determined by its reducts h = h¥lg: N’ — M/l4 and f = h¥ly: M — M/l and by
the condition Aly = f1,.

N’ — M r(b' N M r(b
X lhﬁfqy » lm
M1y (M{Ty)Te

Now let f be the unique model morphism M — M|, such that hly = f 1,4 (since M
is free over N). Then the morphism h*: M’ — M/ determined by (f, k) is the desired
extension of A to a model morphism M’ — M/. O

Example 5.12 Based on Example 5.10, consider the following specification of lists:

th List 1is
sorts El1t List .
subsort El1t < List .
op empty : -> List
op append : List List -> List [assoc]

var L : List .

eq append(L , empty)

eq append(empty , L)
endth

non
=

The operation append is associative and has the empty list as an identity. In this way,
List is a refinement of the theory of monoids. There is a view from MON to List:

view list from MON to List is
sort Mon to List .
op (_*_) to append .
op e to empty .

endv

The instantiation LIST*[1ist] of the generic module LIST* via 1ist is the pushout of
MON — LIST* with 1ist. In this example, the operation # appends all lists from a list
of lists. By the previous theorem, LIST*[1ist] protects List. This fact can be checked
directly as well. O

In this example, LIST*[1ist] is a simple module expression involving essentially
only one instantiation of a generic module. The evaluation of this module expression
was obtained as a pushout in the category of theories. In the case of more complicated
module expressions®® the evaluation is done by taking the colimit of the corresponding
diagram in the category of theories.

55Possibly involving combinations between various kinds of module imports and instantiations of
generic modules via views.
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5.2 Satisfaction Condition for Category-based Equational Logic

In order to apply the theory of institutions to our framework, we have to answer the
following questions:

1. What is a morphism of signatures in the case of category-based equational logicsI’

2. What are the translations of models and sentences along signature morphisms, and,
in particular, what is the translation of the quantifiers along signature morphismsI’

3. Does the satisfaction relation between models and sentences in category-based equa-
tional logics given by Definition 3.6 verify the Satisfaction ConditionI’

The answers to these questions would be helped by taking a closer look at the typical
case of many sorted equational logic:

Definition 5.13 A signature morphism ¢: (5,%) — (57, %) in MSA is a pair (f,g)
consisting of a map f : S — 5’ on sorts and an S* x S-indexed family of maps ¢, :
Yus — Z}*(u),f(s) on operator symbols. O

Example 5.14 ¢ of the previous definition determines a forgetful functor Alg(¢)
Algs: — Algs on models and another forgetful functor Set’ : Set® — Set® on domains.
Notice the commutativity of the following diagram:

Algs) > 6ot 5"
Alg(<b)l lSetf
Algs —%> ¢S

where U and U’ are the corresponding forgetful functors from many sorted algebras to
many sorted sets. O

To resume, any signature morphism determines a pair of forgetful functors, one on
models (Alg(¢) in the previous example), and one on domains (Set/ in the previous ex-
ample). Each of them has a left adjoint, meaning that any model has a free extension
along a signature morphism (while free extensions along theory morphisms is problem-
atic in many logical systems, most of them still support free extensions along signature
morphisms; a typical example being first order logic). Finally, forgetting model structure
first along a signature morphism and afterwards to domains is the same as forgetting to
domains first and domain structure afterwards.

All these ideas are formalised by the following definition:

Definition 5.15 A category-based equational signature is a functor &/: A — X. A
morphism of category-based equational signatures is a couple (M, D): U — U’
of functors such that M;U = U';D and D has a left adjoint.
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Notice that consequently to Definition 5.3, a morphism of category-based equational
signatures is liberal iff M has a left adjoint.

The following array shows how some concepts from many sorted equational logic are
reflected at the level category-based equational logics:

MSA | category — based equational logics

signature | functor
(5,8)|U: A= X

S

)Y

D X

o= {(f9) | (M,D)
f1D
g | M
Set! | D
Aly(¢) | M

U

Y —equation | U —equation

5.2.1 Many-sorted institutions

This section introduces a class of institutions for which the signature morphisms can
be regarded as morphisms of category-based equational signatures. In this was, these
institutions admit an internalisation of category-based equational logic.

In any institution that has “sorted” signatures, the category of domains for a theory
is in fact the category of models for the simple signature containing only the “sorts”
of the signature of the theory. Assuming a certain degree of liberality of the respective
institution, the forgetful functor from the category of the models of the theory to the
category of the domains has a left-adjoint. The following definition makes the notion of
sorted signature precise and is generic for all examples of Section 2.3:

Definition 5.16 A many-sorted institution isa tuple S = (Sign, Sort, MOD, Sen, =)
such that

e (Sign,MoOD, Sen, |=) is an institution,
o Sort: Sign — Set is a functor that has a left-adjoint left-inverse Q, and
e s liberal on signature morphisms.

A domain in J is a model for a signature of the form Q(S5) for S an arbitrary set. O

Now, we are in the situation to internalise the category-based equational logics in
many-sorted institutions:

Proposition 5.17 Let 3 = (Sign, Sort, MOD, Sen, =) be a many sorted institution with
¢ the co-unit of the persistent adjunction Q 4 Sort: Set — Sign.

Any signature morphism ®: ¥ — Y’ determines a liberal morphism of category-based
equational signatures

(MoD(®), MoD(Q(Sort®))): Us — Usy

77



where Uy, = MOD(ey) is the forgetful functor form the category MoD(X) of ¥-models to
the category of domains MoD(Q(SortY)) for any signature ¥ of 3.

Proof: Any signature morphism ®: ¥ — Y induces a translation of sorts

Sort(®): SortY — SortY which determines a domain reduct functor MoD(Q(Sort®)):
MoD(Q(SortY')) — MoD(Q(SortY)) having a left adjoint Q(Sortq))$ in the virtue of
the liberality of the institution $ on signature morphisms. MoOD(®) has a left adjoint by
the liberality of ®.

Mobp(¥) Mob@) MobD(Y¥)

e MOD (e,
Moy E)l MOD(Q(S ort®)) l OD(exr)
MoD(Q(SortY)) Mon(Q(SortX'))

Q(Sort®)®

The diagram commutes on right adjoints because of the naturality of ¢, i.e., ex;® =
Q(Sortd); exs, and by the application of the model functor to this identity. O

The liberality condition of Definition 5.16 is avery mild condition in practice. Even
instituions notorious for not being liberal, like first order logic, are still liberal on signature
morphisms.

Corollary 5.18 The signature morphisms in MSA, OSA, HCL, ELM are morphisms of
category-based equational signatures.

Proof: In all cases this holds by the liberality of the repsective insdtituion on signature
morphisms. A special mention is necessary for ELM. In this institution the signature
morphisms are MSA theory morphisms, and we use the liberality of the institution of

MSA. O

5.2.2 Sentence translations along morphisms of category-based equational
signatures

Before defining the translations of equations along morphisms of category-based equa-
tional signatures, we have another look at the example of many sorted equational logic:

Example 5.19 Each function f: S — S’ translates any S-sorted set X into the S’-
sorted set X~ by taking the [pointwise] left Kan extension of f along X:

X7 = H X, for any sort s’ € 5.
f(s)=s'

§—Log %

N

Set Set

Any MSA signature morphism ¢ = (f, g): (5,%) — (5, Y') defines an S-sorted map
¢ Tx(X) = To (X))l

X —2U(Tx(X))
> lﬂuqu;(
U(Te(X)Ty)
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First, note that X C U(Tx/(X™)14) because if 2 € X, then z € Xf“(’s) and Xf“(“s) C
Te (X)) = (Te(X™)[g)ss let j: X — U(Te(X™)[4) denote this inclusion. Then we
simply define ¢% = j* where j* is the unique extension of j to a Y-homomorphism
Tv(X) — Tw(X™)ls. Any Y-equation (VX)(s,t¢) is translated to the Y'-equation
(XY (1,63 (1)), O

Notice that, in the previous example, the term algebra Tx/(X™) is exactly the free
extension of Ty (X) along ¢. From this, we may conclude that:

Translations of quantifiers are free extensions along signature morphisms.

This generalisation also covers the case when quantifiers are not free models. The trans-
lation of equations along signature morphisms in MSA is a particular case of the following
abstract definition:

Definition 5.20 Let (M, D) be a liberal morphism of category-based equational signa-

tures (A N X) — (A LN X"). Then the U-equation (VA)(s,t) is translated to the
U'-equation (VA™)(s* 1*),

k0

k KD

tl l””

AU —5, A8 MU = ASU'D

where _® denotes the left adjoint to D, _** denotes the left adjoint to M, a and 6 denote
the units of the adjunctions determined by M and D, and s* and ¢* denote the unique
“extensions” of [; Aald and r; Aald to maps in X'.

Similarly, a U-query (FA)(s, ) is translated to the U'-query (FA%)(s*, 1*). O

Since translations of quantifiers along liberal signature morphisms are free expan-
sions of models and coequaliser projectivity is a property of the quantifiers essential for
the completeness of the deduction system, we need to investigate the preservation of
coequaliser projectivity under free expansions of models. The following lemma%® gives a
sufficient condition for the preservation of coequaliser projectivity under free expansions:

Lemma 5.21 Let A': A — B be a left adjoint to a coequaliser preserving functor
M: B — A. Then A preserves coequaliser projective objects.

Proof: Consider A € |A| a coequaliser projective object. We have to prove that AN is
coequaliser projective in B.

B'M-Ms N B —>B

h/T W ]W Th
L't

A——= AN M AN

Let e: B’ — B be a coequaliser B, and take an arbitrary h: AN — B. Because eM is a
coequaliser in A (by hypothesis), there exists h': A — B’ M such that h'; e M = An; h M,

561t is used only in Chapter 6 in the context of the category-based semantics for constraint logic
programming,
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where An: A — AN M is the universal arrow from A to M. Let A': AN — B’ be the
unique map such that An; A* M = A’. Then

An; (W% e )M = An; BM; e M
= h;eM
= Anp;hM (by definition of A’')

By the universal property of An we have that h'*;e = h. O

Kleisli translations In this paragraph we study the particular case when the sen-
tences, either equations or queries, are quantified by “variables”. This technically cor-
responds to the existence of “term” models, i.e., the existence of left adjoints to the
forgetful functors from models to domains.

In this case, the translation described by Definition 5.20 could be characterised as
a morphism (i.e., functor) of Kleisli categories satisfying a certain universal property.
This result together with the Satisfaction Condition for category-based equational logics
constitute the technical basis for the development of the category-based semantics of
equational logic programming queries and their solutions in the context of modularisation
in the style of Eqlog.

By using the same notations as in Definition 5.20, further assume that & and U’ have
left adjoints F and, F' respectively, with n and e and, n" and &’ respectively, the units
and the co-units of the respective adjunctions. Fix a domain z € |X|. We may assume
that ()% = (2%)F" in the virtue of the general principle of composition of adjunctions.

Fact 5.22 The diagram of Definition 5.20 defining the translations of equations and
queries reads as:

L k0 k$D

t lt*D
e FU 77 (e F) S MU = S FUD
a

Lemma 5.23 There exists a unique natural transformation ~: D; F — F’; M such that
n'D = Dn; yU. Moreover, Me = U'y; &' M and Fa = 0F; 5.

Proof: The natural transformation + is uniquely defined by the formula n'D = Dn; U
by using the universal property of the unit .

Now, by the triangular laws for adjunctions, we have U'Dn; Meld = MUn; Meld =
Ly, and by the previous formula and the triangular laws for adjunctions we have
U'Dn;UAU; ' MU =U'nD; e'U'D = 1y = L. Then U'Dny Meld =
U'"Dn; U'~yU; &' MU. By the universal property of the unit n, we deduce Me = U'y; &' M.

- 255D
r— ySD > S FY'D
fﬁl laﬁpn
v F =g  DFU 7 o F' MU

For the last identity, fix # € |X|. Then
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an; e0FU; 285U = 20;25Dn; 284U (by the naturality of 7)
= 20;2%D (by the Definition of ¥)
= anaFold (as unit of the composite of adjunctions
in two different ways)

By the universal property of zn we deduce that z0F; %y = 2 Fa. O

Corollary 5.24 When the category-based equational signatures have left adjoint, we
can define the translation of sentences along morphisms of category-based equational
signatures that are not necessarily liberal.

Proof: By replacing Fa from Fact 5.22 with F; 5. O

In order to give the universal characterization of this translation as a morphism of
Kleisli categories we have to resort to the (rather sophisticated) theory of monads in
2-categories developed by Street in [88]:

Definition 5.25 Let C be a 2-category.

A monad (X, S) consists of an object X, a 1-cell X =4 X and a pair of 2-cells 1 —L»
S, 5,8 £ S (called the unit and the multiplication) satisfying the commutative
diagrams

g2 g9 g 595 1> g9
§\§§l@%¢7 ”ﬁ lu
s S p——

A monad functor (U,¢): (X,S) — (Y, T) consists of a 1-cell X 5 Y and a
2-cell U; T N S; U satisfying the commutative diagrams

UT UTT -2 suT 2> 507
N e
U—p=SU UT - SU

A monad functor transformation (U, ¢) —— (U’ &) is a 2-cell U = U’ satis-
fying the commutative diagram

Ry
¢l lw
SUTSU’

The 2-category Mnd(C) has monads as objects, monad functors as 1-cells, and monad
functor transformations as 2-cells. O

Definition 5.26 For any 2-category C, let C* denote the 2-category obtained from C
by reversing all 1-cells (so that C*(z,y) = C(y,)). Mnd(C*)* has the monads of C as
objects, monad opfunctors of C as 1-cells and monad opfunctor transformations
as 2-cells. O

81



Theorem 5.27 (from [88]) In a 2-category C suppose (X, T') and (X', T') are monads.
Any adjunction H 4 D: X — X’ sets up a natural bijection between the monad functors

(D,v): (X', T") = (X, T) and the monad opfunctors (H,é): (X, T) — (X', T’). O

Also, any category-based equational signature canonically determines a monad. How-
ever, category-based equational signatures are more general than monads because some
adjunctions fail to be monadic. As already mentioned, an important class of examples
in this sense is given by the order sorted theories.

Definition 5.28 Category-based equational signatures form a 2-category Eg¢Sig such
that

e objects are category-based equational signatures,
o l-cells are morphisms of category-based equational signatures, and

o 2-cells (o,7): (M,D) — (M’',D') are pairs of natural transformations o: M —
M', 7. D — D' such that ol = U'T.

a

Corollary 5.29 There exists a forgetful 2-functor Mnd: E¢Sig* — Mnd(Cat) which
determines (by Theorem 5.27) a canonical 2-functor Mndop: E¢Sig — Mnd(Cat*)*
mapping morphisms of category-based equational signatures to monad opfunctors.

Proof: Mnd maps a category-based equational signature #4: A — X to its at-
tached monad (X,7) of Cat, morphisms of equational logics (M, D) to monad functors
(D,yUY: (X', T') — (X, T) (v defined by Lemma 5.23) and maps 2-cells (o, 7) to monad
functor transformations 7. Straightforward calculations assure the correctness of these
definitions.

Mndop maps morphisms of category-based equational signatures (M, D) to the monad
opfunctors (_%,8): (X, T) — (X', T} corresponding to the monad functor (D, ), where
_% is the left-adjoint to D. O

Recall (from [64]) that any monad (X, 7T) in Cat determines a Kleisli category X
having the same objects as X but “substitutions” as arrows, i.e.,

Xr(a,y) = {h | h € X(z, yT)}

The composition of arrows in X7 is given by h”; b = (h; h'T; 211)":

v —teyT LT T
When the monad is determined by a category-based signature U, the Kleisli category X+

is in fact the substitution system determined by . In this case, a simple calculation shows
that the composition in X7 corresponds exactly to the composition of substitutions:

v —s yFU My

T

Y

82



When there is no danger of confusion we identify X(z, yFU) with X7 (z,y) via the
bijection _°.

Following [88], for any 2-category C, there is an “inclusion” 2-functor Zneg: C —
Mnd(C) mapping each object X to the trivial monad (X, 1). The well-known construc-
tion of the Eilenberg-Moore algebras categories appears a right 2-adjoint to Zneg,; [88].
The following definition is the basis in [88] for recovering the theory of monadicity in the

abstract framework of an arbitrary 2-category C:

Definition 5.30 The 2-category C admits construction of algebras iff Znce has a
right 2-adjoint. O

Theorem 5.31 (from [88]) Cat* admits construction of algebras. The left 2-adjoint to
Inecg 0 Cat — Mnd(Cat™)* is the Kleisli construction, which evaluated at (X,7) is
X7 and the unit (Jr,w): (X, T) = (X7,1) is given by

o Jr: X = Xy with 2.J7 = z for any = € |X|, and fJr = (f; 2'n)" for any f € X(z,z'),
and

o w: T;Jr— Jr with zw = (1,7)" for any z € |X]|.
Jrw
X, TV Xy
l(’QU l/C
(Y, 1) Y

(K ,5)

From Theorem 5.31 and Corollary 5.29 we deduce the main result of this paragraph:

Corollary 5.32 For any morphism of category-based equational signatures
(M,D): (A A, X) — (A N X') there exists a unique functor K: X7 — X’ such
that

o JrK=_%Jr, and

o (1,7)°K = (26)°, where 6: T;_% — _%, Jr is the natural transformation part of

Mndop(M, D).
Mudop() = (X, T) T2 (X7, 1)
Mndop{M, D)= (_$,5> (K,1)
Mndop(U') = (X', T") ——= (X7, 1)
JT/’W>
O

By spelling out the two properties of K we get exactly the translation described by the
version of Definition 5.20 presented at the beginning of this paragraph (see Fact 5.22).
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5.2.3 The Satisfaction Condition

The following result can be regarded as a generic proof of the Satisfaction Condition for
any equational logic. All examples in Section 2.3 generate [equational] institutions by
following the same pattern. The equational version of this theorem can be extended to
conditional equations without any problem.

Theorem 5.33 Let (M, D) be a liberal morphism of category-based equational signa-

tures (A N X) — (A LN X’). Then for any model B € |A’| and for any sentence
(AA) (s, t), with X € {V,3},

Bl WA (57, 17) iff BM =y (M) (s, 1)

Proof: The right adjoint M determines a natural bijection A(A, BM) ~ A/(A% B)

mapping each model morphism AL BM to the model morphism A B such that h =
Aa; hM.

A—AL 488 Ay

th

BM
For each v: k — AU, we have:

kO; (v hUND = kb, v*D;ﬁU’D
vy Aald; (W'D (by Definition 5.20)

= v; Aall; hMU
= v hld
Therefore,
B =y (VA (s* %) i % hU! =17 hit' B for all A% B
it kO; (s*; kU YD = kO; (t*; hd")D
iff s hU =t hU for all AL BM

HE BM =y (VA)(s, 1)

A similar argument works for the case of queries. O

In the case when the sentences are quantified by variables, rather than models, we
have the following corollary:

Corollary 5.34 Let (M, D) be a morphism of category-based equational signatures

(A N X) — (A LN X') such that F and F’ are left adjoints to & and U’, respectively.
Then for any model B € |A’| and for any sentence (Ax)(s,t), with A € {V,3} and = a
domain in X,

B = (Ae®) (55, 17) if BM =y (Ax) (s, t)

Proof: By using the last equation Lemma 5.23, the existence of a left adjoint ot M is
no longer necessary. O
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The fact that E¢Sig comes naturally equipped with a 2-categorical structure reinforces
the argument of Goguen and Burstall [32] that the signatures of any chartable institution
form a 2-category. The presentation of the sentence functor as a Kleisli translation
projects a new light on the duality between syntax and semantics in category based
equational logic: the sentence functor is a model functor when reversing the 1-cells in

Cat!

5.3 Queries and Solutions versus Modularisation

In this section we give a categorical semantics for equational logic programming queries
and their solutions in the context of modularisation in the style of the programming
language Eqlog, and we discuss the crucial problem of the soundness and completeness
for module imports. We take here the point of view of [21] that modules are presentations
(theories) and that module imports are morphisms of presentations (theories). In [39],
Goguen and Meseguer give a denotational semantics for equational logic programming
based on initial algebra semantics. Due to the presence of logical variables, the denotation
of an equational logic programming module is given by an adjunction rather than an
initial model. This is in fact the adjunction determined by the forgetful functor from
the category of models of the given module to the category of domains representing the
mathematical structure for the collections of logical variables. This idea exploits the fact
that the notion of category-based equational signature is abstract enough to contain the
concept of equational logic programming module in the manner described in Section 2.3.4.
The principle underlying our category-based semantics for equational logic programming
queries and their solutions is formulated as

The denotation of modules is abstracted to category-based equational signatures
that have left adjoints.

Definition 5.35 Let P be an equational logic programming module. Its denotation
[P] is the forgetful functor [P]: MoD(P) — DoM(P) from the category of its models,
MoD(P), to the category of its domains, DoM(P).

The denotation of a module import P Y Plisa morphism of category-based equa-
tional signatures [¢]: [P] — [P']. O

Definition 5.36 A query for the equational logic programming module P is a [P]-
query. A solution for a query ¢ = (3B)(t1, &) in a P-model A is a morphism h: B — A
such that &;; h[P] = to; A[P].

Let P —%5 P’ be a module import. The translation of queries along v (i.e., from P-
queries to P’-queries) is given by the translation along the morphism of category-based
equational signatures [¢/] accordingly to Definition 5.20.67 O

The interpretation of the Satisfaction Condition (Theorem 5.33) in this context is
that for any P-query ¢, any module import ¢b: P — P’ and any P’-model A, there is a
canonical one-one correspondence between the solutions of ¢ in A and the solutions of
q in AM, where M is the model reduct component of [¢].

6T"We denote this translation by _v.

85



5.3.1 The institution of queries and substitutions

Computations in equational logic programming systems produce answers to queries in
form of substitutions. As known, solutions for queries can be regarded as unifiers. The
next fact is consistent to Goguen’s approach on unifiers as co-cones in Kleisli categories
as expressed in [27]:

Fact 5.37 Let ¢ = (3X)(t1,t2) be a query for the program P whose quantification is
given by variables, i.e., X € |DoM(P)|. A solution form for ¢ is a co-cone for the
parallel pair (¢!, 1) in DoM(P)r,, where Tp is the monad determined by the [right-
adjoint] forgetful functor [P]: MoD(P) — DoM(P). O

The relationship between queries and substitutions can be formalised as a Satisfaction
Relation in a particular institution in which queries play the role of models and substi-
tutions play the role of sentences. The source of a certain substitution has to match
the quantifier of a certain query in the same way the sentences and models of logical
systems have to be based within the same language (i.e., signature). This suggests that
the signatures for the institution of queries as models and of substitutions as sentences
should be given by collections of [logical] variables.

Definition 5.38 Assume a fixed module P. We define an institution Sp consisting of
the following data:

e Sign = DOM(P)%?D,68 i.e., signatures are domains and signature morphisms are

substitutions,

e Mon(X)={(3X)(t,t2) | ti,ta in Tp(X)} for each domain X in DOM(P), where
Tp is the monad determined by the right adjoint forgetful functor [P]. Each map f°
in DoM(P)7 (X, X") = DoM(P)7;, (X', X) determines a reduct functor MoD(f):
MobD(X’) — MobD(X) such that

Mop(f)(¢') = ¢; f*
for any query ¢’ in MoD(X"),%

o Sen(X) = {(v,s) | P R P’ s is a P’-substitution of the logical variables X1)}.
Each map f” in DOM(P)%Z( , X') determines a sentence translation Sen(f): Sen(X) —
Sen(X') by

Sen(f)(eh, s) = (b, fb; s*)

for any P’-substitution s and any module import ¢, and
e ¢ Ex (¢,s)iff sis a solution form for the query qi.

a

58The opposite of the Kleisli category DoM(P)7,.
69This translation corresponds to a translation of the logical variables of a query. This might also
include identifications of variables.
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Proposition 5.39 Given any module P, the previous construction Sp defines an insti-
tution.

Proof: All we have to prove is the Satisfaction Condition for the institution Sp. Con-
sider a domain map X’ EN Tp(X), an arbitrary P-query ¢ = (3X')(t1,t), and an
arbitrary sentence (¢, s) € Sen(X ). Then

¢ Ex (0, fh;sh it b (F; s = taah; (F; sF)F (by Definition 5.38)
iE s [PhssF = s [Py
iff (s Ot = (to; fH); sF (by Corollary 5.32)

iff  ¢f Ex (¥,s) (by Definition 5.38)
O

5.3.2 Soundness and completeness for module imports

Definition 5.40 Let ¢»: P — P’ be a module import. v is sound iff for any P-query
q and any solution form s for ¢, st is a solution form for ¢).

Y is complete iff for any P-query ¢ and any solution form s’ for ¢¢ there exists a
solution form s for ¢ such that s’ = s¢». O

A sound and complete module import P — P’ protects the solution forms, i.e., any
P-query has the same solutions in P’ as in P.

Fact 5.41 The composition of sound/complete module imports is sound/complete. O

There is a strong flavour of conceptual similarity between the soundness and com-
pleteness for module imports and the soundness and completeness for logical systems. In
fact, both of them are instantiations of the category-based formulation of the concepts
of soundness and at the level of institutions, as shown by the following result:

Proposition 5.42 In the institution Jp introduced by Definition 5.38, consider the
entailment relation x (parameterised by signatures, i.e., P-domains)™ defined by the
following inference rule encoding the translation of solution forms along imports of P:

<1P7 S>
(1, s¢)

Consider an arbitrary P-query ¢ = (3X)(t1, t3). Let ¢* denote the set of all consequences
of ¢ of the form (1p, s), i.e., the set of all solution forms for ¢q. Then

P2 P

L. ¢* Fx (¢, s) implies ¢ =x (¢, s) for all s iff ¢ is sound, and

2. ¢ Ex (¥, s) implies ¢* Fx (¢, s) for all s iff ¢ is complete.

Proof: The correctness of the definition of the entailment relation can be easily verified
by checking all conditions from the definition of an entailment system (see [21] or [72]).

The proof of this proposition is essentially based on the observation that ¢* Fx (¢, s)
means that there exists sy a P-substitution that is a solution form for ¢ and such that
s = sgtp. The rest is given by Definition 5.40. O

"0See [21, 72] for the definition of entailment relations in institutions.
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Definition 5.43 A morphism of category-based equational signatures (M, D): (A N

X) — (A “, X') is essentially persistent iff it is liberal and the adjunctions corre-
sponding to both M and D are persistent.

A module import 1 is essentially persistent iff its denotation [¢/] is an essentially
persistent morphism of category-based equational signatures. O

When domains are many sorted sets, the persistency of the adjunction on domains
corresponds exactly to the injectivity on sorts of the module import; this relates to
Goguen-Meseguer use of persistency in the context of protecting extensions for built-ins

in Eqlog [39].

Lemma 5.44 Let (M,D): (A N X) — (A LN X') be an essentially persistent
morphism of category-based equational signatures. Consider ¢ a {-query. Then:

e _% embeds X as a full subcategory of X/, and

o § has exactly the same solution forms in X as ¢,

where ¢ denotes the U’-query obtained by translating ¢ along (M, D).

Proof: For any query ¢ and model A denote its solutions in the model A by Sol(q, A).
The image of _% in X’ is a full subcategory as a consequence of the persistency of the

$ is also injective on objects, it embeds X as a full

adjunction determined by D. Since _
subcategory of X'. For the rest of the proof we identify X with the image of _%.

Let F and F’ be left adjoints to U and U’, respectively. For any y € |X|, we have:

Sol(q,yF) = Sol(q,(yF)¥M) (persistency)
= Sol(4, (yF)*) (Theorem 5.33, Satisfaction Condition for queries)
= Sol(q,yF') (composition of adjoints)

The conclusion of the lemma follows now by applying Corollary 5.34. O

Theorem 5.45 Completeness Let P s P’ be a module import. Then
1. % is sound, and

2. 1 is complete whenever it is essentially persistent.

Proof: Let ¢ be a query in P.

1. Assume s is a solution form for ¢. Then s” coequalises ¢", where ¢’ is the parallel
pair of arrows in the Kleisli category DOM(P)7;, corresponding to the P-query ¢, and s
is the arrow in DOM(P)7, corresponding to the substitution s.

By Corollary 5.32, [¢] determines a functor K': DOM(P)7, — DOM(F')r,,. This
means that (s)” = s"K coequalises (q»)’ = ¢’K, which means that s¢ is an solution
form for ¢.

2. By applying the previous lemma to the case of the essentially persistent morphism
of category-based equational signatures [¢']: [P] — [P']- O

Example 5.46 Consider the generic module LIST* from Example 5.10. Notice that
MON < LISTx* is an essentially persistent module import. The query
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select LIST* .
find X Y : Mon such that X * Y =Y *x X .

has exactly the same solution forms in MON as in LIST*. O

The lack of persistency might destroy the completeness of module imports as in the
following:

Example 5.47 Consider the following theories:

th SOURCE 1is

sorts S1 52 .

op a: -> 81

op b : ->852.

op f : 51 -> 52 .
endth

th TARGET 1is
sort S
opa’ : ->5 .
op b” : -> 5 .
opf :5->5.

eq £(b") = b~
endth

and the following view:

view V from SOURCE to TARGET 1is
sort S1 to S . sort S2 to S .

.

op a to a
op b to b~
op f to £
endv
The TARGET-query
find X : S such that f(X) = b~
has a solution form (i.e., X:S->b") although the SOURCE-query

select SOURCE .
find X : S1 such that f(X) = b

does not have any solution form. O
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5.4 Theorem of Constants

Theorem of Constants supports the treatment of universally quantified variables as tem-
porary constants [30]. Although such treatments are used on a large scale in the context
of term rewriting, the importance of a mathematical result providing foundations to
equational theorem proving using ground rewriting was emphasised for the first time in
the context of the OBJ system [30]. A similar application appeared in Chapter 4 (see
Corollary 4.27) when dealing with the lifting of the completeness of paramodulation from
the case of ground terms to the case of terms with variables.

The classical formulation of the Theorem of Constants establishes an equivalence
between (VX )(s,t) being a consequence of a theory I' in a signature ¥, and (V0)(s, ¢)
being a consequence of I' in the larger signature ¥ x which is obtained by adjoining the
variables X to ¥ as new constants.

5.4.1 The level of institutions

The Theorem of Constants admits a category-based version at the level of the theory of
institutions which captures the essence of the model theoretic phenomenon underlying
it. This is based on the internalisation of the notion of universal sentence (i.e., univer-
sal quantified formula) in any institution by following a category-based formulation of

universal quantification.™

Definition 5.48 Let & = (Sign, MOD, Sen, |=) be any institution. (V¢)pis a S-universal
Y-sentence if

o Y—Y¥'is any signature morphism, and
e pis a Y'-sentence.

A Y-model M satisfies (V¢)p iff all its expansions to a X'-model satisfy p, i.e., M’ =5/ p
for all M" with M't, =M. O

The main idea here is that the symbols from Y’ that are not in 3 play the réle of
the variables. The previous definition includes also the case of second order universal
quantification corresponding to the situation when some symbols from %' —¥ are function
or relation symbols. The classical situation of first order universal quantification occurs
when all symbols from Y’ — 3 are constants.

The Theorem of Constants admits the following generic institutional version:

Theorem 5.49 For any set I' of ¥-sentences,
I (V)p iff () e p

Proof:

MoD(I') =x (Ve)p  iff  {N| N[, € |Mop(I')|} =5 p
iff  Mob(«l') s p (by the Sat. Cond. in ).

a

"IThis was first introduced by Barwise and later used by Tarlecki in the context of “abstract algebraic
institutions” [91].
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Apart of applications to second order logic and category-based equational logic (next
section), this abstract version of Theorem of Constants can be applied to hidden sorted
logics, thus giving support to proofs for the object paradigm [35] based on ground rewrit-
ing.

5.4.2 The level of category-based equational logic

The previous generic version of the Theorem of Constants can be instantiated to the
institution of category-based equational logics. When (VA)(s, ) is an equation having
a model as a quantifier, the expanded signature >4 is obtained by adjoining the whole
model A to ¥. This is reminiscent of the so-called method of diagrams in classical model
theory [14], and is naturally encoded at the categorical level by using comma categories
[89, 91].

If A is a category of models and A4 is any model, a morphism A — B interprets the
elements of A as new constants in B. The evaluation of the model operations on these
constants respects the model structure of A. The inclusion of signatures ¥ «— 34 is
defined at the level of category-based equational signatures as follows:

Lemma 5.50 Let &/: A — X be a category-based equational signature such that A
has binary coproducts. For any model A in A, (A4, 1x): U — Us = AU is a liberal
morphism of category-based equational signatures.

Proof: All we have to prove is that A4 has a left adjoint. This is in fact (A[]-): A —

(AJA) mapping any model B to A 4y AIIB (j are the co-cone arrows of the coproduct
of B and A). The unit of this adjunction at B is jp. O

The following corollary shows that the translation of sentences along the “inclusion”
U — Uy corresponds in fact simply to the addition of the quantifiers to the signature. For
this reason, and in the spirit of the tradition, we regard any /-equation as a i 4-equation
without any further new notations.

Corollary 5.51 Let #4: A — X be a category-based equational signature such that the
category of models A has binary coproducts and let 4 be any model in A. Then the trans-
lation of a U-equation (VB)(s, t) along (R4, 1x) is the Us-equation (Vja)(s; iU, t; jsU),
where j are the co-cone arrows of the coproduct of B and A.

k k
tl lt
BU BU

ljBU

(BIIAU = (AZ5BII AU
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Corollary 5.52 Theorem of Constants Let I' be a collection of conditional U-equations.
Then,

[ ey (YA)(s,t) iff T =y, (V14)(s, )

Proof: We have to show only that the satisfaction relation between models and universal
sentences defined internally (Definition 5.48 applied to the morphism of category-based
equational signatures, (A4, lx) is the same as the satisfaction relation between models

and abstract equations from Definition 3.6, i.e., for any & ﬂ AU and any model M € |A|,
M Eu (Y(Ra, 1x))p it M |y (YA)(s,t), where p= (V14)(s,t)

This reduces to show that A |=y, (V14)(s,t) for all ALMm € [(ALA)| it M =y (YA) (s, t).
This holds since for any Ai>M, h=u, (V14)(s, t) iff s;htd = t;ht4. O

Note that 14 is the initial object of (ALA). In the traditional MSA version of the
Theorem of Constants, the interpretation of the variables as new temporary constants
empties the quantifier. In a more model-theoretic setup this would correspond to a
quantification by a model of ground terms, categorically characterised by their initiality

property.
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6 LEXTENSIBLE CONSTRAINT LOGIC PROGRAMMING

Constraint programming has been recently emerging as a powerful programming paradigm
and it has attracted much research interest over the past decade. Mathematical Program-
ming, Symbolic Computation, Artificial Intelligence, Program Verification and Compu-
tational Geometry are examples of application areas for constraint programming. In
general, constraint logic programming replaces unification with constraint solving over
computational domains. Constraint solving techniques have been incorporated in many
programming systems; CLP [58], ProloglIl [15], and Mathematica are the best known
examples. The computational domains include linear arithmetic, boolean algebra, lists,
finite sets. Conventional logic programming (i.e., Prolog) can be regarded as constraint
programming over term models (i.e., Herbrand universes). In general, the actual con-
straint programming systems allow constraint solving for a fixed collection of data types
or computational domains.”™ As already mentioned in the Introduction, constraint pro-
gramming allowing constraints over any data type will be called extensible.

In [58], Jaffar and Lassez propose a scheme for constraint logic programming based
on embedding constraint systems into Horn clause logic by axiomatising computational
domains by Horn clauses. In [87], Smolka propose a completely different framework for
constraint logic programming by regarding programs as collections of definitions of new
constraints extending the underlying constraint system.

This chapter deals only with the model theoretic semantics of constraint logic pro-
gramming, we don’t address any issues directly related to the computation level of con-
straint solving. Our approach to constraint programming departs fundamentally from
the previous ones; our semantics for extensible constraint logic programming follows the
principles underlying the model theory for constraint logic programming proposed by
Goguen and Meseguer in the context of the language Eqlog [39] and is essentially based
on a version of Herbrand’s Theorem for constraint logic, i.e., the logic underlying exten-
sible constraint logic programming. Similarly to the approach proposed by Jaffar and
Lassez, both constraint relations and programs are [collections of] sentences within the
same logical system (in the sense of institutions rather than of deduction systems). How-
ever, constraint logics are much more general than Horn clause logic. In fact, the com-
putation domain is a primitive in our approach and plays a central role in the definition
of constraint logic, rather than being axiomatised in an already defined logic (i.e., Horn
clause logic) like in CLP. When regarded as a model in constraint logic, the computation
domain appears as the initial model. This is mathematically linked to the semantics of
OBJ-like module systems, the fundamental idea being to regard the models of extensible
constraint logic programming as expansions of an appropriate built-in model A along a
signature inclusion ¢: ¥ «— ¥, where ¥ is the signature of built-in sorts, operations and
relation symbols, and ¥’ adds new “logical” symbols. In practice, the constraint rela-
tions (i.e., logical relations that one wishes to impose on a set of potential solutions) are
limited to sets of atomic sentences involving both Y-symbols and elements of the built-in
model A. However, at the theory level there is no reason to restrict the shape of con-
straint relations only to atomic formulae. The models for constraint logic programming

"2 A computational domain can be regarded as a model (not necessarily the standard one) for a certain
data type specification.
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appear as expansions of the built-in model to the larger signature ¥’ and any morphism
of constraint models has to preserve the built-ins. Therefore, the constraint models form
a category which can be formally defined as the comma category (A{MoD(¢)).

Example 6.1 Consider the example of a specification of the Euclidean plane as a vector
space over the real numbers.

obj R2 is
pr FLOAT * (sort Float to Real)
sort Vect .

op 0 : -> Vect .

op <_,_> : Real Real -> Vect .
op _+_ : Vect Vect -> Vect

op -_ : Vect -> Vect .

op _*_ : Real Vect -> Vect

vars a b a” b” k : Real .
eq 0 =<0, 0>
eq<a,b>+<a ,b">=<a+a”,b+b" >
eqk *<a ,b>=<kx*xa,k*xb>.
eq-<a,b>=<-a, ->b>

endo

The signature ¥ of built-in sorts, operation and relation symbols contains one sort Real
for the real numbers together with the usual ring operation symbols and a relation symbol
<. The built-in model is just the usual ring of real numbers (denoted as R) with <
interpreted as the usual ‘strictly less than’ predicate. The signature %’ of the module R2
introduces a new operation symbol < , > for representing the points of the Fuclidean
plane as tuples of real numbers, and overloads the ring operations by organising the
Euclidean plane as a vector space over the real numbers. The axioms express the basic
fact that the evaluation of the ring operations on vectors is done component-wise.

A standard model for this specification, denoted by R? is given by the cartesian
representation of the points of the Euclidean plane, i.e., any point is represented as the
tuple of its coordinates. Another model for R2 interprets the sort Vect as the set of real
numbers, the ring operations on Vect as ordinary operations on numbers, and < , > as
addition of numbers. Let’s denote this model by R+. O

6.1 Generalised Polynomials and Constraint Satisfaction

It is important to have a formal definition for constraint sentences, constraint models,
and a satisfaction relation between them. This would define a logic underlying constraint
logic programming; we call this constraint logic. A fundamental principle in this logic
is the preservation of the built-ins.

Consistently to our previous notations, let A% denote the free expansion of the built-
in model A along the inclusion [of the signature of the built-ins] ¢: ¥ — ¥'. Also, let F’
be a left adjoint to the forgetful functor ¢’: MobD(X') — DoMm(X').” The role played

"3From the category of the models of the signature ¥’ to the category of the domains of ¥'.
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by the terms in ordinary logic is played by generalised polynomials™ in constraint logic.
Generalised polynomials are term-like structures involving both operator symbols and
elements of the built-in model. Generalised polynomials can be regarded as elements of
models in the same way as ordinary terms are regarded as elements of [free] models as a
basis for a semantical aproach to the concept of sentence and satisfaction in equational
logic.

Given a domain « (i.e., a collection of variables in practice), the X'-model of the
polynomials over z is usualy denoted as A[z]. This is in fact the coproduct A% [[zF’
between A% and the free ¥'-model 2F’. When ¥ = % are unsorted algebraic signatures,
this is a well known construction in universal algebra [48]. However, the best known
example still comes from linear algebra:

Example 6.2 Let X be a set of variables. R[X] is the ring of polynomials over X and
with real numbers as coefficients. In this example, the signature ¥ of built-ins is a ring
signature, and ¥’ doesn’t add any new symbols, thus ¥ = ¥’. The model of the built-ins
is R, the usual ring of real numbers. O

The universal property of the models of generalised polynomials allow a more general
definition that extends the concept of generalised polynomial to the semantic case when
models play the role of the collections of variables and model morphisms paly the réle of
the valuation maps.

Definition 6.3 Let B be any Y'-model. The model of generalised polynomials
over B is the coproduct A% [ B, and it is denoted as A[B]. O

6.1.1 Internal constraint logic

Constraint logic can be defined internally to category-based equational logic. This means
that the signature of buit-ins ¥ is abstracted to a category-based equational signature
U, Y to U, and the inclusion ¢: ¥ — ¥’ to a morphism of category-based equational
signatures U — U’. In this way, the extensible constraint programming paradigm is
accomodated by any logical system that is a category-based equational logic.

Definition 6.4 Let (M, D): (A&X) — (H’&X’) be any liberal morphism of category-
based equational signatures. Fix any model A € |A| (playing the rdle of the model of the
built-ins).

A constraint model is a model in A" whose reduct to the signature of built-ins
contains an image of A, i.e., a map ¢: A — CM with C € |A/|. A model morphism
h:c¢— ¢ isamap C'— C"in A’ such that

A—=CM
|
C'M

commutes.
A constraint identity in B € |A’| is a binary relation kﬂ(A[B])U’. An identity
(s,t) in B is satisfied in a model A—— (' M with respect to a model morphism f: B — C

"The ordinary polynomials from linear algebra are an instantiation of this notion. The word gener-
alised plays here the same role as the word general plays in the so-called “general algebra.”
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iff s;[f, FJU’ = t;[f, FJU’, where ¢ is the unique ‘extension’ of ¢ to a model morphism

A% 5 (.

A% M A$$ﬂ>$A$$HBj<B—B
M
T x l[fj)nf/
A — CM C

This definition extends to constraint equations, queries and their satisfaction
by constraint models in the same manner as Definition 3.6. O

Example 6.5 An example of a constraint equation in the context of Example 6.1 is

open .

vars X Y : Real .

e < 3.14 *xX , ¥Y>+-<Y,3.14*%xX>=0.
close

Notice that although this equation is not satisfied by the standard model R?, the con-
straint model R+ does satisfy it. O

Example 6.6 Another example of a constraint sentence in the same context is that of
a query:

find X Y Z : Real such that
3%<X ,Y¥Y>=<Y, Z>;
2.79 * X + Y < Z = true .

Finding a solution to this query in the standard model R? reduces by the application of
a rewrite step followed by a simplification step to finding a solution for the system of
linear inequalities:

find X Y Z : Real such that
3 *x X Y ;
3 *xY zZ ;
2.79 * X + Y < Z = true .

The crucial technical idea of our approach on the semantics of constraint logic pro-
gramming is to fit constraint logic into category-based equational logic. While this simply
cannot be achieved within the usual concrete algebraic or model theoretic approaches (no
notion of algebraic signature being abstract enough for this purpose), it works at our level
of abstraction. We consider this as a good example of the benefits the use of abstract
model theoretic methodology™ could bring to Computing Science. This idea is resumed
by the following slogan and formally formulated by the next definition:

Constraint logic = equational logic in a special category-based equational signa-
ture.

"In the sense of category-based equational logic.
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Definition 6.7 Let (M, D): (A&X) — (H’&X’) be a liberal morphism of category-
based equational signatures. Then any model A € |A| determines a forgetful functor
Uy (AIM) — X', such that Uy = MU', where M 4 is the forgetful functor (A} M) —
A

A&W&(Aw\/()
[,
X <= X’ X'

In this way the constraint logic introduced by Definition 6.4 is the category-based
equational logic determined by the forgetful functor ¢//;. The correctness of this definition
relies on the following fact:

Fact 6.8 If ¢/’ is faithful and preserves pullbacks, then U, is faithful preserves pullbacks.

Proof: M preserves pullbacks as a right adjoint. By using this fact, it is straighforward

to show that the forgetful functor M 4: (Al M) — A’ creates pullbacks, thus it preserves

them too. U’ preserves pullbacks as a composite of two pullback preserving functors.
U, is faithful as a composite of two faithful functors, since the forgetful functor

My (AIM) — A is faithful. O

Proposition 6.9 Let (M, D): (H&X) — (H’L]Q{’) be a liberal morphism of category-
based equational signatures. Then for any model A € |A]

1. there is an isomorphism of categories (AL M) = (A% A);
2. if A’ has binary coproducts, then M 4 has a left adjoint; and

3. the forgetful functor M4 creates filtered colimits.

Proof: 1. Because _*% is a left adjoint to M.

2. Because the forgetful functor (CJA’) — A’ has a left adjoint for any C' € |A|
(since A" has binary coproducts, see also the proof of Lemma 5.50) and by 1.

3. We first show that for any model C' € |A/|, the forgetful functor (C{A") — A’
creates filtered colimits. Then we consider C' = A% and apply 1.

Let {a; }ier be a filtered diagram in (C'JA’). The forgetful functor (C|A’) — A’ maps
this diagram into a filtered diagram {A;},c; in A’. Consider pr: A — D a colimit of this
diagram in A’. We define g: C' — D as a;; u; for i € |I|; the correctness of this definition
is ensured by the fact that a;;u; = a;;p; for all i,j € || because of the filteredness of I.

C A;
NN
k D Vi
d
E

Now, we show that x is a colimiting co-cone a — ¢ in (CJA’). Consider another
co-cone y: a — k in (CLA’), where k: C — FE. v is also a co-cone A — F in A’. By
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the universal property of p as a colimiting co-cone in A’, there exists a unique arrow
0: D — F such that ;0 = v in A’. All it remains to be shown is that € is a map ¢ — k.
But ¢;0 = a;; ;30 for some ¢ € |I|. Since u;;0 = v; we deduce that ¢;0 = k. O

6.2 Herbrand’s Theorem for Extensible Constraint Logic Pro-
gramming

Herbrand’s Theorem for constraint logic provides mathematical foundations for the con-
cept of constraint solving. Our approach is to instantiate the category-based version of
Herbrand’s Theorem 3.21 to the particular case of constraint logic viewed as category-
based equational logic determined by the forgetful functor ¢’y of Definition 6.4.

Theorem 6.10 Let (M, D): (A&X) — (H’&X’) be a liberal morphism of category-
based equational signatures. Fix any model A € |A|. Assume DomainRegularity and
DeductionFramework for U’ and that U’ has a left-adjoint F’' and preserves filtered
colimits.

Consider a collection I' of conditional constraint equations with finite hypotheses and
with coequaliser projective quantifiers, and a U’-constraint query (IB)q with B is a
coequaliser projective model. Then

1. there exists the initial ['-constraint model Or;
2. I' = (3B)q iff Or | (3B)¢; and

3. if A’ has non-empty sorts, then I' = (IB)q iff I' = (Yy)q; [k, jsss] for some domain
y € |X'| and some model morphism h: B — Aly].

Proof: The basis of this proof is to regard the constraint sentences (either equations
or queries) as ordinary U/;-sentences (in the sense of Definition 3.6). Any quantifier B
of a constraint sentence appears as An;j 85 M in the role of the quantifier for the corre-
sponding U/-sentence. The category of constraint models is (A}M) and the satisfaction
relation between constraint models and constraint sentences reduces to category-based
equational satisfaction.

Jass

A—2 488 p —25 (B AS)M
Notice that

o U, has a left-adjoint which is the composite of two left adjoints X’ A N
(A} M) (see 2. of Proposition 6.9),

o U/, preserves filtered colimits as a composite of two filtered preserving functors (see
3. of Proposition 6.9), and

e (AlM) has initial models, i.e., A An, (A% A') (see 1. of Proposition 6.9) and since
the forgetful functor (A% |A’) — A’ creates limits.

The last general remark is that if B is a coequaliser projective model in A’, then
An; jyss M is coequaliser projective in (AL M). This holds because An;j s M is free over
B with respect to the forgetful functor M4 and because left adjoints to coequaliser
preserving functors preserve the coequaliser projectivity (see Lemma 5.21).
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1.-2. The congruence closures exist in (A{.M) by Proposition 3.28 because U’y has a
left-adjoint. ¢’ is finitary by Proposition 3.31 and because it preserves filtered colimits.
By applying Corollary 3.21 to I' viewed as a collection of conditional U/;-equations, we
obtain the existence of the initial [-model in the category of constraint models and that
I' = (3B)q iff Or E (3B)g.

3. Since A’ has non-empty sorts, for any domain y € |X'|, there exists at least one
arrow y — OpU’, where Op/ is the initial model in A’. Therefore, there exists at least
one arrow y — AU’ = (An)U,. This means that (A}.M) has non-empty sorts. Now,
Herbrand’s Theorem for non-empty sorts 3.34 applies for I' viewed as a collection of
conditional U/ -equations. O

In practice, it rarely happens that the sentences in I' involve the built-in model
A. Usually, the sentences in I' don’t involve any elements of the built-in model (i.e., T’
contains only ¥'-sentences, if using the notations from the discussion opening this section)
and only the queries appear as full constraint sentences involving elements from the built-
in model. In this case, the initial constraint model Or has a simpler representation as a
quotient of the free expansion of the built-in model.

In our category-based framework, the U’-sentences play the role of the X'-sentences,
and they can be canonically viewed as constraint sentences (i.e., U’j-sentences) via the
translation along the morphism of category-based equational signatures (M4, Ix/): U’ —
Uy (see Definition 5.20).

Proposition 6.11 Assuming the hypotheses of the previous theorem, suppose that I’
contains only U’- equations Then the initial constraint model Or is isomorphic to the

canonical map !y = A A 4SS A M (A% /_ )M, where =r is the least congruence on
A®® closed under I'-substitutivity.

Proof: We will show that Ip satisfies the initiality property in the full subcategory of
(A} M) of all models satisfying [, where I' is the translation of I' along (M4, Ixs).

Let f: A — C M be any constraint model satisfying I By the Satisfaction Condition
(Theorem 5.33), this is equivalent to C' |= I'. All we have to prove is that there exists a
unique arrow ff: A% /_ — C such that !r; ffM = f.

A 488\ (A58 ) M

SN

CM

By the universal property of the free extension An along M, there exists a unique
map f': A% — C such that An;f’M = f. By the universal property of e (Theorem
3.17), there exists a unique map f*: A% /_ — O such that e;ff = f'. O

In the case of order sorted Horn clause logic with equality, Goguen and Meseguer
have proved in [39] the existence of initial constraint models for the particular case of I
containing only Y'-sentences. This result crucial for the semantics of extensible contraint
logic programming in Eqlog can obtained as an instantiation of our previous results.

As pointed out by Goguen and Meseguer in [39], the notion of protecting expansion
gives the right semantic condition for built-ins. This means that Or must protect the
built-in model A, i.e., that Op is an isomorphism A 2 (A%/_ )M, where =r is the
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least congruence on A% closed under I-substitutivity. In the context of order sorted
Horn clause logic with equality, Goguen and Meseguer [39] give a set of conditions that
guarantee protection but impose some restrictions on the sentences in I'. However, these
restrictions are almost always met in practice. We mention their result:

Proposition 6.12 Let (S, <, %, 1IT) = (S’, <, ¥, Il') be an inclusion of order sorted first
order signatures and I' be an order sorted Horn clause logic with equality specification
in (S, <, ¥, 1) such that:

1) s € 8" — S for any operator symbol o € Z’w%, — Y st
2) if s€ Sand s’ € S and s’ < s, then s’ € S and s/ < sin 9,

(1)
(2)
(3) for 7 predicate symbol, if 7 € II,, and 7 € I/ ,, then 7 € II,,+, and

(4) T doesn’t involve operation symbols from ¥’ — ¥ and contains only clauses whose
heads are all predicate symbols from II" — II.

Then for any (5, <, ¥, II)-model A, its free extension to a I-model is an isomorphism. O
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7 (CONCLUSIONS AND FUTURE WORK

This thesis developed a category-based semantics for equational and constraint logic
programming that is based on the concept of category-based equational logic. We showed
how this general framework can be successfully applied to topics like equational proof
theory, paramodulation-based operational semantics, modularisation in equational logic
programming, and extensible constraint logic programming.

An abstract version of Herbrand’s Theorem was derived as a consequence of the
completeness result for the category-based equational deduction. This not only pro-
vides mathematical foundations for the equational logic programming paradigm, but
also constitutes a basis for the full integration of constraint logic programming into this
programming paradigm.

We developed a model theoretic approach to the completeness of the operational
semantics of equational logic programming languages based on the analysis of the rela-
tionship between the congruence and the paramodulation relation induced by a program
on a given model. We showed that this approach covers the case of computations modulo
a set of axioms naturally, in the sense that no special treatment is necessary anymore
for this case. However, the full implications of this approach to the case of computations
modulo a set of axioms still remain to be discovered. One particular way would be to lift
the treatment of narrowing and its refinement at the same level of abstraction to that of
paramodulation.

The concept of category-based equational signature morphism has been successfully
used for setting up the mathematical structures underlying the fundamental modularisa-
tion problems specific to equational logic programming. Also, category-based equational
signature morphisms, proved to be central for the category-based semantics of extensible
constraint logic programming. Based on this semantics, further work can be done to
develop theories and technologies for extensible modular constraint programming. The
principles underlying Eqlog module system should provide a good basis for developing
a technology for combinig decision procedures. A concrete operational semantics will
define a control strategy for combining various efficient decision procedures for specific
problems, with narrowing and resolution as a general inference mechanism. This will in-
volve backtracking, the introduction of symbolic variables (i.e., deferred constants), the
computation of symbolic solutions, and symbolic simplification (e.g., see [68, 59] for the
case of linear arithmetic constraints). A promising approach is given by the category-
based approach to the paramodulation-based operational semantics for equational logic
programming developed in Chapter 4. Since constraint logic can be regarded as a par-
ticular case of category-based equational logic, we expect to obtain some relevant results
by applying that theory.

One of the most important further research directions is to apply the category-based
results of this work for developing equational logic programming over non-conventional
structures. This might provide the right framework for integrating equational and con-
straint logic programming with other programming paradigms, especially higher-order
programming, object-orientation, or concurrency.

On the implementation side, much work has to be done for building an efficient Eqlog
compiler that will support extensible modular constraint solving. The actual Eqlog pro-
totype implementation is an extension of the OBJ3 system that implements leftmost
innermost order sorted basic narrowing with constructor discipline, and it can be suc-
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cessfully used for experimentations with the operational semantics.

Finally, we can conclude that the framework of category-based equational logic can
be regarded as a mathematical structure that is fundamental to the equational logic
programming paradigm. We have seen how a wide spectrum of problems in this area can
be successfully solved within this framework, and I hope that the theory developed here
can be used for solving many other problems raised by such a dynamic field as equational
logic programming is today.
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A Running Eqlog

This appendix gives a brief presentation of all necessary information for running the
Oxford implementation of Eqlog. It is assumed the reader has some familiarity with the
user manual for the OBJ3 system [46].

The way to input Eqlog files is similar to that of the OBJ3 system. The name of
Eqlog files must end in .eql. OBJ files can be also loaded, but only by using their full
name (i.e., including .obj). Each time an Eqlog module is loaded or selected, the system
computes a couple of hash tables used by the order sorted unification function.™

Eqlog syntax (in BNF notation) for solving queries is as follows:

(Solve) ::= find (LogicVarsDeclar) such that (queries) .
(LogicVarsDeclar) ::= (Varld)... : (Sort) [, (Varld)... : (Sort)]...
(queries) ::= (Term) = (Term) [; (Term) = (Term) ...

Eqlog modules are the same as the OBJ modules except that the shape of the hy-
potheses part of an clause is restricted to

(Term) == (Term) [ and (Term) == (Term) ]...

(Varld) and (Sort) stand for the OBJ syntactical entities of variable identifiers and
sorts, while ( Term ) stands for the OBJ terms. The BNF definition for all OBJ syntac-
tical entities can be found in the OBJ manual [46].

Operator declarations in Eqlog admit cons as an attribute meaning that the corre-
sponding operator is regarded as a constructor.

“6In the case of big modules, the computation of these hash tables could be quite time consuming!
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