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AbstractThis thesis proposes a general framework for equational logic programming, called category-based equational logic by placing the general principles underlying the design of the pro-gramming language Eqlog and formulated by Goguen and Meseguer into an abstractform. This framework generalises equational deduction to an arbitrary category satisfy-ing certain natural conditions; completeness is proved under a hypothesis of quanti�erprojectivity, using a semantic treatment that regards quanti�ers as models rather thanvariables, and regards valuations as model morphisms rather than functions. This is usedas a basis for a model theoretic category-based approach to a paramodulation-based op-erational semantics for equational logic programming languages.Category-based equational logic in conjunction with the theory of institutions is usedto give mathematical foundations for modularisation in equational logic programming.We study the soundness and completeness problem for module imports in the context ofa category-based semantics for solutions to equational logic programming queries.Constraint logic programming is integrated into the equational logic programmingparadigm by showing that constraint logics are a particular case of category-based equa-tional logic. This follows the methodology of free expansions of models for built-ins alongsignature inclusions as sketched by Goguen and Meseguer in their papers on Eqlog. Themathematical foundations of constraint logic programming are based on a Herbrand The-orem for constraint logics; this is obtained as an instance of a more general category-basedversion of Herbrand's Theorem.The results in this thesis apply to equational and constraint logic programming lan-guages that are based on a variety of equational logical systems including many andorder sorted equational logics, Horn clause logic, equational logic modulo a theory, con-straint logics, and more, as well as any possible combination between them. More impor-tantly, this thesis gives the possibility for developing the equational logic (programming)paradigm over non-conventional structures and thus signi�cantly extending it beyond itstradition.
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1 IntroductionThis thesis is mainly about equational logic programming. It belongs to the tradition ofequational and constraint logic programming started by Goguen and Meseguer in theirpioneering work on the programming language Eqlog during the mid-eighties [38, 39].Eqlog has been implemented in Oxford by the author of this thesis as an extension ofthe SRI implementation of OBJ3.31.1 The Equational Logic Programming Paradigm1.1.1 A historical perspectiveEquational logic programming can be regarded as joining two major cultures in Com-puting: algebraic speci�cation and logic programming.Logic programming began in the early 1970's as a direct outgrowth of earlier work inautomatic theorem proving and arti�cial intelligence. The theory of clausal-form [�rstorder] logic, and an important theorem by the logician Jacques Herbrand constituted thefoundation for most activity in theorem proving in the early 1960's. The discovery ofresolution | a major step in the mechanization of clausal-form theorem proving | wasdue to J. Alan Robinson [81]. In 1972, Robert Kowalski and Alain Colmerauer were ledto the crucial idea that logic could be used as a programming language [95]. A year laterthe �rst Prolog system was implemented. SLD-resolution, which is a re�nement of theresolution principle restricted to Horn clause logic, became the core of the operationalsemantics for most of the further logic programming implementations, although logicprogramming is by no means limited to Prolog.One of the main slogans of logic programming, due to Kowalski, isProgram = Logic + Controlmeaning that a problem has a declarative side asserting what the problem is and whatproperties solutions should have, as well as a control side describing how the problem is tobe solved. The ideal of declarative programming in general, and of logic programming inparticular, is that the user should specify the logic component of the problem, and controlshould be exercised as much as possible by the programming system. Unfortunately, theusers of Prolog-like systems still need to supply a lot of control information.During the 1980's, the constraint programming paradigm gradually grew out of logicprogramming (see [58]). This brought a new perspective on logic programming, in whichthe concept of uni�cation is generalised to the concept of constraint solving [16, 15].However, Lassez showed that constraint logic programming is still part of the logic pro-gramming paradigm in a fundamental way4 [66].3Appendix A gives a brief description of how to use the Eqlog system; some examples of Eqlog runsare given in Chapter 4.4In Chapter 6 we show how generalised constraint logic programming can be foundationally regardedas a particular case of equational logic programming.2



Algebraic speci�cation is now a particularly mature �eld of Computing Science, becauseof its strong and stable mathematical foundations. The theory of algebraic speci�cationhas been implemented in many computing systems, and is also an important techniquein Software Engineering methodologies.While the insight that operations should be associated with data representationsseems to have been due to David Parnas [77], the legendary group ADJ5 made a decisivestep forward by using initiality (a category-theoretic concept) as a characterisation forthe notion of standard model [44]. Many sorted equational logic became the main logicalsystem underlying the theory of algebraic speci�cations and abstract data types. Itwas proved complete by Goguen and Meseguer before mid 1980's [37], but because of itsinability to handle erorrs, it was replaced by order sorted equational logic (which is manysorted equational logic with subtyping [41]) as the modern logical system underlying thetheory of algebraic speci�cations and abstract data types.The theory of algebraic speci�cations entered a completely new era with the discoveryof the theory of institutions by Goguen and Burstall [33], transcending its origins inequational logic to encompass a wide variety of logic systems, including �rst order logic,Horn clause logic, higher order logic, in�nitary logic, dynamic logic, intuitionistic logic,order sorted logic, temporal logic, etc. Today, nearly 15 years after the �rst insights givenby the work on the speci�cation language Clear [13], the spirit of abstract model theory(in its institutional form) is a signi�cant part of the culture of algebraic speci�cation.The language OBJ [46] played a major rôle in the development of algebraic spec-i�cation and, more generally, of declarative programming. It began as an algebraicspeci�cation language at UCLA about 1976, and has been further developed at SRI In-ternational and several other sites as a declarative speci�cation and rapid prototypinglanguage. Its mathematical semantics is given by order sorted equational logic, and it hasa powerful type system featuring subtypes and overloading. In addition, OBJ has userde�nable abstract data types with user-de�nable mix�x syntax, and a powerful param-eterised module facility that includes views and module expressions. A subset of OBJis executable by order sorted rewriting. OBJ has been extended towards object-orientedprogramming (the language FOOPS [40]), theorem proving (the metalogical frameworktheorem prover 2OBJ [42]) and logic programming (the language Eqlog [38], which isalso further discussed in this thesis).1.1.2 Equational logic programmingThe equational logic programming paradigm uni�es logic programming based on Hornclause logic and equational (i.e., functional) programming based on equational logic, i.e.,the logic of substituting equals for equals. One of the earliest contributions to this �eldwas [76]. As Goguen and Meseguer repeatedly pointed out [38, 39], the best way toachieve this goal should be to unify the two logics involved. However, because equationallogic is more fundamental than Horn clause logic6, it is enough to base the new paradigmonly on equational logic. The main di�erence between equational logic programmingand equational programming lies in the fact that the former deals with the problem ofsolving queries. This implies the (somehow subtle) involvement of existentially quanti�edsentences, which is explained by Herbrand's Theorem.5Originally Goguen, Thatcher, Wagner and Wright.6This will be explained in detail in Section 2.3.3.3



Such a combination is desirable for both the algebraic speci�cation and the logic pro-gramming traditions. The query solving capability extends equational programming to avery powerful paradigm in which a speci�cation is already a program (or at least it is veryclose to being a program). This not only enormously simpli�es the correctness-veri�cationproblem, but also brings in all the advantages of algebraic speci�cation languages (clarity,simplicity, reusability, maintainability, etc).From the logic programming point of view, this is the best way to integrate [semantic]equality into logic programming; a major problem with relational programming, becausemany of the compromises of the logic programming ideal found in actual languages (e.g.,Prolog) have to do with the inability of relational programming to cope with equality.These compromises created a gap between the original vision of logic programming (i.e.,programming in logic) and most of the actual implementations which are far from having alogic-based semantics. In general, they tend in the direction of imperative programming,which can be confusing and ine�cient [2]. (The argument is that the denotational se-mantics of imperative programs is complex and complicated, with the ultimate practicalconsequence being that the debugging is very hard.)As Goguen and Meseguer pointed out in the context of the programming languageEqlog [38], the equational logic programming paradigm provides as much practical pro-gramming power as possible without compromising the underlying logic. In fact, equa-tional logic programming seems to match very well the slogan of logical programming(i.e., programming rigorously based on a logical system) as formulated in [39]:Computation is deduction in the underlying institution.Any of the advantages of Eqlog over Prolog can be regarded as a direct consequence of itssemantical purity, which sharply contrasts with the many extralogical features of Prolog7.Although \cut" may be the most notorious, \is" is probably the most outrageous, since itis an assignment statement with declarative syntax. Thus, real Prolog programs can befar from having a simple foundation in Horn clause logic. Constraint logic programmingis implemented by PrologIII in a �xed rather than extensible way, while Eqlog is enough
exible to be considered as a framework for constraint logic programming [39, 38]. Thismeans that Eqlog supports constraint solving over any user de�ned data type. For thisreason we call Eqlog an extensible8 constraint programming language.In general, the operational semantics of equational logic programming systems isbased on narrowing (which is similar to the resolution used in logic programming). Dif-ferent rather sophisticated re�nements of narrowing can be in practice as e�cient asProlog's SLD-resolution, which can even be regarded as a special case of narrowing byviewing the relation symbols as operations (i.e., functions). Therefore narrowing alreadycontains the mixture of resolution and narrowing that occurs in the context of the oper-ational semantics of equational logic programming languages based on Horn clause logicwith equality.1.2 Contributions of this ThesisThis thesis develops a category-based semantics for equational and constraint logic pro-gramming in the style of the language Eqlog, by placing the general principles underlying7A major advantage of Prolog is its good compiler.8In [39] Goguen and Meseguer use the terminology \generalised" instead of \extensible".4



the design of the programming language Eqlog and formulated by Goguen and Meseguerin [38, 39] into an abstract form. The actual implementation of Eqlog is faithful to thissemantics, and experimentations with the system helped the development of the theory.9The category-based framework of this thesis gives the possibility to develop equationallogic (programming) over non-conventional structures. In this way, equational logic pro-gramming is liberated from the traditional set theoretic point of view. This is similarto the way functional programming and algebraic speci�cation got their true meaningand power with cartesian closed categories and institutions, respectively. The develop-ment of equational logic programming over di�erent types of models and domains (someof them could have a much richer structure than the usual set theoretic domains) andmight prove very bene�cial in terms of unifying equational logic programming with otherprogramming paradigms. By following the results of this thesis one can easily developthe equational logic (programming) over continuous lattices insead of sets and functions,for example. Although the examples we provide in this thesis don't depart fundamentallyfrom the tradition of equational logic programming as it is today, this framework provedalready to be very e�ective in integrating equational logic programming with constraintprogramming (see Chapter 6).1.2.1 Beyond conventional \abstract model theory"The framework underlying this thesis can be characterized as abstract model theory inthe same spirit as the work by the \Hungarian School" in late seventies,10 for example,is characterized as abstract model theory. By abstract model theory (abbreviated AMT)we mean far more than the respective tradition in logic which abstracts the Tarskianapproach to cover other logical systems11 (e.g., [6, 5]). Our category-based framework isvery close in spirit to the theory of institutions [33] in the sense that� it abstracts Tarski's classic semantic de�nition of truth [93], based on a relation ofsatisfaction between models and sentences, and� it uses category theory in a very similar manner to achieve generality and simplicity;in both approaches the models have the abstract structure of a category.In fact, the theory of institutions was a great source of inspiration for our framework;we view that theory as ful�lling the original vision of abstract model theory. Two maindi�erences between our approach and the theory of institutions are:� the concept of satisfaction between models and sentences is signi�cantly less ab-stract in our approach because, although the models are fully abstracted and thesentences generalise the traditional notions of equation, the actual satisfaction re-lation is de�ned in a way that abstracts exactly the traditional equational logicsatisfaction between algebras and equations, rather than being an unde�ned prim-itive as in the theory of institutions; and� our framework does not contain a direct mathematical formulation of the intuitionthat \truth is invariant under change of notation," which is somehow central forthe theory of institutions.9In fact, all code presented as examples in the thesis has been run under the Eqlog system.10[1] is a representative piece of work of this school.11The goal of research in this area being to generalise as much of classical �rst order model theory aspossible. 5



The second point addresses the problem of the technical relationship between our category-based framework and the theory of institutions. Chapter 512 shows that our frameworkcan be naturally embedded into the theory of institutions. On the other hand, ourcategory-based framework can be internalised in any many sorted liberal institution.131.2.2 Category-based equational logicOne of the main contributions of this thesis is to propose a general framework for theequational logic programming paradigm called category-based equational logic whichdistills the essential ingredients characterising equational logics. Equations, equationaldeduction, models (algebras), congruences, satisfaction, etc. are treated in an arbitrarycategory satisfying certain mild conditions which plays the rôle of the category of modelsfor the equational logical system. This category of models comes equipped with a forgetfulfunctor to an [abstract] category of domains. This encodes the principle that any modelis an interpretation of a signature14 into a domain which is usually a set, or a collectionof sets in the case of typed logical systems. All concepts are introduced and results areproved at the highest appropriate level of abstraction. Through a gradual re�nementprocess (which could be seen as \climbing down" the abstraction hierarchy) all concepts(including the rules of inference for category-based equational deduction) can be madeexplicit in the concrete cases, while still avoiding all irrelevant details when focusing ona particular equational logical system. By taking a semantic perspective on terms aselements of a carrier of a free model,15 the quanti�cation of equations is abstracted fromvariables to models, as a result, valuations are abstracted from simple assignments of thevariables to model morphisms.The framework of category-based equational logic is used in this thesis to deal withoperational semantics, modularisation and constraint programming for the equationallogic programming paradigm. Such a framework must achieve a delicate balance be-tween abstraction and concreteness; this balance makes possible the natural encoding ofall important principles and phenomena related exactly to the equational logic program-ming paradigm, while still avoiding the details of any particular logical system. Thisexplains why the category-based framework of this thesis technically lives on a lowerlevel of abstraction than the theory of institutions which was designed to be used in thewider context of declarative programming. The analogy with classical algebra might beenlightening. Although the mathematical structure underlying modern algebra is that ofa ring, the structure of module16 is more important for the more specialised area of linearalgebra. However, there is a close relationship (both technically and in spirit) betweenrings and modules, although rings may also be fundamental for number theory, which isonly indirectly related to linear algebra. In the same way, institutions may be relevantto an area only remotely related to equational logic programming, such as semantics forthe object paradigm [29, 11, 35].A uniform treatment of the model theory of classical equational logic is now possibledue to the comprehensive development of categorical universal algebra; without any claimof completeness, I mention the so-called Lawvere algebraic theories, either in classicalform [69] or in monadic form [70] (although neither of these �ts order sorted algebra12Devoted to modularisation issues.13The precise de�nition is given in Chapter 5.14Sometimes called language or vocabulary in classical logic textbooks.15As opposed to to the syntactic perspective that regards terms as tree-like syntactic constructs.16Not to be confused to the Computing concept of module!6



nicely), the theory of sketches [4], and the recently developed theory of \abstract algebraicinstitutions" [89, 91]. However, no uniform proof theory has previously been developedfor all these equational logics. It could be argued that, at least for computation, the prooftheory is more important than the model theory. In Computing Science model theory isfar more important as a methodology or style of thinking than it is in itself. A majorcontribution of this thesis is that it lays bare the architecture of equational deduction,i.e., the conceptual structure that underlies it. The key to the completeness of category-based equational deduction is to regard the congruence determined on an arbitrary modelA by an arbitrary collection � of [conditional] equations in two di�erent ways: as thecollection of all unconditional equations quanti�ed by A that are syntactically inferredfrom �, and as the collection of equations that are a semantic consequence of �. Becauseof the semantic treatment of equation and satisfaction, there is no distinction betweenthe congruence determined by � on the free models and on other models. Under someadditional conditions related to the �niteness of the hypotheses of the conditions in �and to the �niteness of the model operations (both of them encoded in category-theoreticterms), this congruence can be obtained in an e�ective way.A relevant consequence of the completeness results for category-based equational de-duction is a generic Herbrand's Theorem (in two versions) formulated in the style of[39], i.e., characterising Herbrand models as initial models of the program regarded asan equational theory. This provides mathematical foundations for the equational logicprogramming paradigm in the style of Eqlog [38, 39]. When applied to constraint logics(in Chapter 6), this gives a version of Herbrand's Theorem for extensible constraint logicprogramming. Despite the sophistication of this last result, it is obtained with minimale�ort due to the category-based machinery.1.2.3 Category-based operational semanticsEquational deduction bridges the gap between the operational semantics and the modeltheory of equational logic programming; such a reconciliation is essential for understand-ing the correctness of computer implementations. The completeness and soundness of acomputing system rigorously based on some equational logic depends on the complete-ness and soundness of the operational semantics with respect to the deduction systemof the equational logic involved, as well as on the completeness and soundness of theequational deduction system with respect to its model theory.Our category-based framework supports the development of category-based equa-tional logic into a purely model theoretic approach to the completeness of operationalsemantics for various programming paradigms that are based on some form of equationallogic; this result is independent of the particular [equational] logic involved, as opposedto the combinatorial treatments of the paramodulation-based operational semantics seenin the literature. We generalise the concept of paramodulation to model theoreticparamodulation by de�ning paramodulation as an inference rule with respect to anarbitrary �xed model. We propose a generic scheme for proving the completeness of theparamodulation-based operational semantics for equational logic programming. The coreof this scheme is the analysis of the relationship between the congruence determined bya program � on a model A and the relations induced on A by the operational inferencerules. This scheme also clari�es the rôle played by the Theorem of Constants, the Com-pleteness of Equational Logic, and the Lifting Lemmas in proving the completeness ofoperational semantics. In this approach rewriting is de�ned on algebraic entities that are7



more abstract than terms. This is achieved by isolating the abstract properties of whatare known contexts in the standard case of many sorted algebra.An important class of applications concerns equational deduction modulo a theory.This arises when some equations in a program are non-orientable, making them uselessas rules (i.e., for rewriting or narrowing). The most notorious cases are associativity (A),commutativity (C) and their combination (AC). Also, graph rewriting is a particularcase of rewriting modulo a theory [7]. By taking a semantic perspective on computationsmodulo a theory we introduce the more abstract concept of paramodulation moduloa model morphism and use it for showing that computing in the quotient model ofa theory is the same as computing modulo that theory. One conclusion of this thesisis that there is no fundamental di�erence between ordinary equational deduction andequational deduction modulo a theory. Based on this level of denotational semantics,Chapter 4 extends this conclusion to the realm of operational semantics.1.2.4 Modularisation and extensible constraint logic programmingBy integrating our framework and the theory of institutions, we de�ne the mathematicalstructure underlying modularisation for equational logic programming in the style ofOBJ: the institution of category-based equational logic supports a general treatment ofthe modularisation issues that are speci�c to the equational logic programming paradigm,as well as a category-based semantics for queries and solution forms in the context ofOBJ-like modularisation.In the institution of category-based equational logic, the signatures are functors. Thisabstraction of the notion of signature is based upon the fact that in any equationallogic system, a signature determines a category of models, a category of domains, and aforgetful functor between them. A morphism of signatures consists of a pair of \reduct"functors, one on models and the other on domains. Forgetting from models to domainscommutes with the reduct functors.The concept of solution form is shown to correspond to the Satisfaction Relation ina special \non-logical" institution. This correspondence is useful for understanding thesoundness and completeness problem for equational logic programming module importa-tion in the wider context of institution theory, and thus relating it to the usual logicalconcepts of soundness and completeness.17 The solution to this problem is given at thelevel of the institution of category-based equational logic.Finally, the category-based machinery is used for integrating extensible constraintlogic programming into the equational logic programming paradigm by de�ning its un-derlying logic and regarding it as category-based equational logic in which the modelsform a comma category over a \built-in" model. This idea is based on the insight of[39] to use free expansions of models of built-ins along signature morphisms. This repre-sents a signi�cant generalisation of the initial algebra approach from abstract data typesto constraint solving. In this way extensible constraint logic programming becomes aparadigm based essentially on equational logic.18 This is a big advantage because exten-sible constraint logic programming could bene�t from the high maturity of the semanticsof equational logic, and possibly from some implementation techniques speci�c to equa-tional logic. At the semantic level, this is already very transparent. It will be interesting17This is an example of the use of \abstract model theory" beyond the realm of logical systems, andof extension of concepts from logic to di�erent areas.18More precisely, on category-based equational logics.8



to explore the bene�ts of such an approach at the level of operational semantics.1.3 The Structure of the ThesisAfter the Introduction and Preliminaries, we devote one chapter to each of the four maintopics. The technical dependencies between chapters are shown in the following diagram:PreliminariesCategory-basedequational logic ModularisationOperationalsemantics Extensible constraintlogic programming� �� �� �� �jjjjjjjjjjjjjj55 � �� �jjUUUUUUUUUUUUUUUUUUUUU� �� �OO � �� �llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY OO1.3.1 PreliminariesThe basic categorical concepts of this work are introduced and the category-based frame-work of this thesis is introduced. The �rst section is devoted to various aspects ofcategorical relations, which are at the center of the categorical machinery of this thesis.The second section discusses �niteness from a categorical angle and applies it to cate-gorical relations. Equivalence, composition of binary relations, closures of relations andcon
uent relations are analysed within this framework.The last section de�nes the category-based framework underlying this thesis andgives a list of examples relevant to equational logic programming: many sorted algebra,order sorted algebra, Horn clause logic (with or without equality), and equational logicmodulo a theory. Each example is presented with a fair amount of detail; we also showhow they formally �t into the category-based framework previously introduced. Thepresentation of Horn clause logics contains a body of results showing how they can betechnically regarded as ordinary (conditional) equational logics. Constraint logics arealso mentioned, but we devote the whole of Chapter 6 to this example.1.3.2 Category-based Equational DeductionThe categorical proof theory for equational logics is developed in this chapter. Thisbegins with a category-based treatment of the concept of congruence. At this level,the �niteness of operators (or predicates) arity is encoded as a category-based �nitaritycondition related to congruences. The �rst section gives a category-based de�nition ofthe notion of U -equation and of the satisfaction relation between models and U -equations.The completeness of category-based equational logics is obtained in the next section, andSection 3.4 derives a �rst version of Herbrand's Theorem as its consequence.The last section explores the consequences of the existence of free models. We geta more concrete formulation of the completeness of category-based equational deductionsimilar to the classical approaches. At this level we discuss the rôle played by the Axiomof Choice and of \�niteness of model operations" for the completeness of category-based9



equational deduction. This section ends with a \non-empty sorts" version of Herbrand'sTheorem.1.3.3 Operational SemanticsThis chapter begins with a very brief historical perspective on narrowing, followed by adiscussion on the principles underlying our approach on the operational semantics. Apreliminary section de�nes the category-based context of our treatment of the operationalsemantics, and approaches the notion of rewriting context from a category-based angle.The next section presents the inference rules of the paramodulation-based operationalsemantics for equational logic programming and establishes some related notations. Sec-tion 4.3 is devoted to the completeness of model theoretic paramodulation, Section 4.4 toparamodulation modulo a model morphism, and Section 4.5 to the rôle of con
uence inestablishing the completeness of paramodulation for the case of oriented rules. The the-ory developed in the �rst part of this chapter is applied in the next section to proving thecompleteness of many sorted narrowing when programs are term rewriting systems, andit also reviews the completeness of many sorted basic narrowing assuming the canonicityof the rewriting system.The chapter on operational semantics ends with a section illustrating order sortedbasic narrowing with runs of the Eqlog system. The constructor discipline is brie
ypresented as a control strategy in the context of the Eqlog system.1.3.4 ModularisationThe chapter begins with a general discussion on the OBJ-like modularisation principles(including some history) and its advantages, a description of the soundness and com-pleteness problems for module imports speci�c to equational logic programming, and adiscussion on the rôle of category-based in the treatment of modularisation in equationallogic programming. Section 5.1 presents some basic results in the context of semiexactinstitutions including a theorem that is fundamental to the semantics of parameterisation(i.e., generic modules) for OBJ-like languages.19 Section 5.2 provides the bridge betweenthe theory of institutions and the category-based framework of the thesis, and proves ageneric20 Satisfaction Condition in this context. Quanti�er translations appear as freemodels along signature morphisms, and sentence translations as universal morphismsbetween Kleisli categories. This provides a basis for the category-based semantics ofqueries and solution forms versus modularisation developed in the next section, wherethe main result is the soundness of any module import and the completeness of persis-tent module imports. The soundness and completeness for equational logic programmingmodule imports is shown to be an instantiation of the more abstract notion of soundnessand completeness for institutions with an entailment relation. This involves an eccentricinstitution in which models are queries, sentences are substitutions, and signatures arecollections of logical variables.The last section gives a generalisation of the Theorem of Constants within the frame-work of category-based equational logics.19Including Eqlog viewed as a speci�cation language.20For equational logics. 10



1.3.5 Extensible Constraint Logic ProgrammingThis chapter gives a category-based semantics to extensible constraint logic programmingby embedding constraint logics within the framework of category-based equational logics.It then uses the machinery of the previous chapters for proving a constraint logic versionof Herbrand's Theorem.1.4 The Programming Language EqlogEqlog [38] is a programming and speci�cation language being developed by the author atOxford University, to combine constraint logic programming with equational program-ming. Its default operational semantics is order sorted narrowing21, but particular casescan be computed by e�cient built in algorithms over suitable data structures, with theirfunctions and relations, including equality, disequality, and the usual orderings for num-bers and lists. Initiality in Horn clause logic with equality provides a rigorous semanticsfor functional programming, logic programming, and their combination, as well as forthe full power of constraint programming, allowing queries with logical variables overcombinations of user-de�ned and built in data types [39].Eqlog has a powerful type system that allows subtypes, based on order sorted algebra[41]. The method of retracts, a mathematically rigorous form of runtime type checkingand error handling, gives Eqlog a syntactic 
exibility comparable to that of untypedlanguages, while preserving all the advantages of strong typing [34]. The order sortednessof Eqlog not only greatly increases expressivity and the e�ciency of uni�cation (see[74]), but it also provides a rigorous framework for multiple data representations andautomatic coercions among them. Uniform methods of conversion among multiple datarepresentations are essential for reusing already programmed constraint solvers, becausethey will represent data in various ways. Order sorted algebra provides a precise andsystematic equational theory for this, based on initial semantics (see [73] for a detaileddiscussion, [34] and [73] for some further examples).Eqlog also supports loose speci�cations through its so-called theories, and providesviews for asserting the satisfaction of theories by programs as well as relationships of re-�nement among speci�cations and/or programs. This relates directly to Eqlog's powerfulform of modularity, with generic (i.e., parameterised) modules and views, based on thesame principles as the OBJ language (see [38]). Theories specify both syntactic structureand semantic properties of modules and module interfaces. Modules can be parame-terised, where actual parameters are modules. Modules can also import other modules,thus supporting multiple inheritance at the module level. For parameter instantiation, aview binds the formal entities in an interface theory to actual entities in a module. Mod-ule expressions allow complex combinations of already de�ned modules, including sums,instantiations and transformations; moreover, evaluating a module expression actuallybuilds a software system from the given components.22 Thus parameterised programmingin Eqlog gives signi�cant support for large programs through module composition, and[28] shows that it also provides the power of higher order functions. The semantics ofmodule importation is given by conservative extensions of theories in Horn clause logicwith equality [39]. The stronger notion of persistent extension underlies generic modules.21Section 4.7 contains some examples of order sorted narrowing based Eqlog runs.22Chapter 5 contains some simple examples of parameterised modules and instantiations.11



1.4.1 Eqlog as a framework for decision proceduresFrom the very beginning logic programming was based on �rst order logic, paying tributeto its success in the foundations of mathematics. Prolog is now the only logic program-ming language that is quite widely used worldwide. Eqlog not only combines traditionallogic programming with equational programming, it is also an extensible modular con-straint programming language, which permits user-de�ned abstract data types and thereuse of existing code for constraint solvers for various problems. The fact that Eqlogis implemented in Kyoto Common Lisp supports this 
exibility, because both CommonLisp and C programs can easily be included, and many other languages have translatorsinto C. Gaussian elimination for systems of linear equations or packages for solving sys-tems of linear inequalities are examples of what can be done. Of course, many decidableproblems may not already have such e�cient algorithms, but they can still be solved bythe general method of narrowing, which in some cases can be as e�cient as computationin an ordinary functional language.
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2 PreliminariesThis work assumes some familiarity with the basic notions of universal algebra and cate-gory theory. We generally use the same notation and terminology as Mac Lane's standardcategory theory textbook [64], except that the composition of arrows is denoted by \;"and written in the diagrammatic order. Application of functions (functors) to argumentsmay be written either normally by using parentheses, or else in the diagrammatic orderwithout parentheses.Categories are usually denoted by capital bbold letters; the standard ones usuallyhave a name whose �rst letter is written in capital bbold. For example, the categoryof sets and functions is denoted by Set , and the category of categories and functors isdenoted by Cat . The opposite of a category C is denoted by Cop ; it has the same class ofobjects as C, but all arrows are reversed. Functors are usually (but not always!) denotedby caligraphic capital letters, particularly for `functor variables' as opposed to functorswhose action is known. Objects in categories are usually denoted by small or italic capitalletters; the class of objects of a category C is denoted by jCj. The set of arrows in Chaving the object a as source and the object b as target is denoted by C(a; b).2.0.2 Comma categoriesRecall from [64] that given two functors C C�! E D � D, the comma category (C#D)has arrows cC t�! dD as objects and pairs of arrows hf ; gi as morphisms, such thatcC dDc0C d 0Dt //f C �� gD��t 0 //commutes. For functors collapsing everything to a constant object (i.e., to an identityarrow) we use the object itself as notation. For any object e 2 jEj, the forgetful functor(e#E) = (e#1E)! E is denoted Ee .2.0.3 Limits and colimitsA diagram in a category C is a functor J C�! C. A cone 
 : d ! C consists ofan object d 2 jCj (called the apex of the cone) and a jJ j-indexed family of arrowsfd 
i�! C (i)gi2jJ j such that 
j ;C (u) = 
i for any u in J :j iC (j ) C (i)cdu //C (u) //�jbbDDDDDD �izzzzzz<<f OO 
i EE������������
jYY33333333333313



A limit of C is a minimal cone over C , i.e., a cone � : c ! C such that for any othercone 
 : d ! C there exists a unique arrow f : d ! c in C such that f ;� = 
.Co-cone and colimit are dual to the notions of cone and limit, i.e., their de�ntioncan be obtained by reversing the arrows in the de�nition of limits. This can be visualisedby the following diagram: C (j ) C (i)cd�jDDDDDD ""C (u) //
j333333333333�� �i||zzzzzz
i ��������������f��Particular limits and colimits are obtained by �xing the shape of the diagrams, i.e., thecategory J . When J is discrete (i.e., it consists only of identity arrows) we get productsand coproducts, respectively. When J consists only of two objects and a parallel pair ofarrows between these, we get equalisers and coequalisers, respectively.A functor D0 U�! D creates colimits i� for any colimit D ��! c (of a diagramJ D�! D in D), there exists a colimit �0 in D0 such that �0U = �.A category J is �ltered i� for any objects i ; j 2 jJj, there is an object k 2 jJj suchthat i ! k  j .2.0.4 2-categoriesGiven two functors S;T : A! B, a natural transformation � : S ! T consists of anjAj-indexed family of arrows in B, faS a��! aT ga2jAj such that for all f in A the followingdiagram commutes: a aS aTa 0 a 0S a 0Tf �� f S �� a� // f T��a 0� //As \functor homomorphisms" natural transformations compose point-wise in the obviousway. This is called the vertical composite of natural transformation:A B////#�#� //i.e., a(�; � ) = a�; a� . There is another horizontal composite of natural transformations�� 0 : S;S 0! T ;T 0 A B C;S //T#� // S0 //T 0#� 0 //and there is an Interchange Law: given three categories and four natural transformationsA B C;////#�#� // ////#�0#� 0 //the \vertical" composites and the \horizontal" composites are related by(�; � )(�0; � 0) = (��0); (�� 0): 14



Functors and natural transformations form a 2-category (i.e., Cat is a 2-category).A 2-category is a class of arrows (called 2-cells) for two di�erent compositions whichtogether satisfy the Interchange Law, and in which every identity arrow for the �rstcomposite is also an identity for the second composite. The identities for the verticalcomposites are called 1-cells, and the identities for the horizontal composites are called0-cells.2.1 Categorical RelationsThe categorical version of binary relation plays a central rôle in this work.2.1.1 Representations of binary relationsDe�nition 2.1 Let a be an object of a category X. A binary relation representationon a is a parallel pair of arrows s; t 2 X(k ; a), denoted k hs;ti�!a or just hs; ti. 2Here k plays the rôle of \object of indices" and s; t stand for the projections whichgive the left hand side and the right hand side of any pair of elements belonging to therelation.23Example 2.2 Let � be the usual \less than or equal" relation on the set ! of naturalnumbers. We can de�ne the set of indices to be f(x ; y) j x ; y 2 ! and x � yg, and lets; t : k ! ! be the projections, i.e., s(x ; y) = x and t(x ; y) = y. 2De�nition 2.3 Let k hs;ti�!a and k 0 hs 0;t 0i�! a be binary relation representations on the sameobject a. Then hs; ti is included in hs 0; t 0i (denoted hs; ti �a hs 0; t 0i, or just hs; ti �hs 0; t 0i) i� there is a map h : k ! k 0 between the objects of indices such that s = h; s 0and t = h; t 0. 2 k ak 0 s //t //h��h �� s 0 ??������ t 0 ??������Fact 2.4 For any category X let X!! be the category having the same objects as X andpairs of parallel arrows as maps. Let �X be the functor X! X!! doubling each arrow inX. Then for any object a in X, the inclusion �a between binary relation representationson a is the preorder obtained by collapsing24 the comma category (�X#a). 2De�nition 2.5 Two relation representations Q and Q 0 on the same object a are equiv-alent (denoted Q �a Q 0, or Q � Q 0 for short) if and only if Q � Q 0 and Q 0 � Q .223For technical simplicity, we don't require s and t to be monics. In this way, a binary relation canhave more than one representation, each having di�erent objects of indices. Some of these objects ofindices are not necessarily isomorphic; this allows repetitions of \elements" in a representation of arelation.24The elements of the preorder are the objects of the category, and two elements are related under thepreorder i� there is an arrow between them. 15



Binary relations are classes of equivalent representations:De�nition 2.6 Let a be an object of a category X. A binary relation on a is anequivalence class of �a . 2For simplicity, we will often use representations instead of equivalence classes as binaryrelations. Notice that the concept of inclusion between binary relation representationscan be extended to binary relations proper. We will often write sQt for hs; ti � Q , whereQ is a binary relation.2.1.2 Unions of relationsDe�nition 2.7 Let fQigi2I be a family of relations on an object a of a category X.The union Si2I Qi is the least upper bound of this family with respect to the inclusionrelation. Dually, the intersection Ti2I Qi is the greatest lower bound. 2Lemma 2.8 If X has colimits, then the union Si2I Qi of any family of binary relationson an object a of X exists, and may be constructed as a colimit in the comma category(�X#a).Proof: This follows from Fact 2.4 and from the fact that the forgetful functor (�X#a)!X creates colimits. 2Corollary 2.9 If X has binary coproducts and colimits of �ltered preorders, then it hasunions of binary relations.Proof: By the construction of [small] colimits from binary coproducts and colimits of�ltered preorders (see [64]). 2Fact 2.10 Assume X has coproducts. Let hsi ; tiii2I be a family of relations on a 2 jXjand let f : a ! b be an arrow in X. Then([i2Ihsi ; tii); f = [i2I hsi ; f ; ti ; f i:Proof: Let k be `i2I ki , where ki is the object of indices for hsi ; ti i. Then Si2I hsi ; ti ican be regarded as the coproduct of hsi ; tiii2I in (�X#a). By the universal property ofcoproducts, (Si2I hsi ; ti i); f is the coproduct of hsi ; f ; ti ; f ii2I , that is, Si2I hsi ; f ; ti ; f i. 2De�nition 2.11 A binary relation Q is atomic i� it does not have any proper subrela-tions, i.e., the empty relation and Q are its only subrelations. 2In the case of [many-sorted] sets, the atomic relations are exactly the one-elementrelations.De�nition 2.12 A coproduct `i2I ki in a category X is disjoint i� any map f : p !`i2I ki can be represented as f = `i2I fi with fi : pi ! ki and p = `i2I pi . A categoryhas disjoint coproducts i� it has coproducts and all its coproducts are disjoint. 2Example 2.13 In Set any function f : p ! `i2I ki can be written as f = `i2I fi wherefi : f �1(ki)! ki . This works because the coproducts of sets are disjoint unions.The same situation holds for the case of many-sorted sets and functions. 216



Lemma 2.14 Let X be a category with disjoint coproducts. If R � Si2I Qi (as binaryrelations), then R can be represented as R = Si2I Ri with Ri � Qi .Proof: Let R be p hs;ti�! a and ki be the object of indices of Qi for each i 2 I . Thenthe object of indices of Si2I Qi can be taken as `i2I ki . Let f : p ! `i2I ki be themap between the indices representing the inclusion R � Si2I Qi . Then f = `i2I fiwith fi : pi ! ki and `i2I pi = p. De�ne Ri to be hji ; s; ji ; ti for each i 2 I , wherefji : pi ! pgi2I are the injections of the coproduct co-cone. Now it is easy to see thatRi � Qi for each i 2 I and that R = Si2I Ri . 22.1.3 EquivalencesIn this subsection we introduce the notion of equivalence as a special binary relation.The following is a well known categorical de�nition of equivalence relations:De�nition 2.15 The kernel of an arrow h, denoted ker(h), is the pullback of h withitself. A relation hs; ti on a is an equivalence i� there is a map h such that hs; ti =ker(h). 2Fact 2.16 If X has pullbacks, then ker is a functor (a#X)! (�X#a). 2In ordinary set theory, equivalences are characterised as re
exive, symmetric andtransitive binary relations. The following de�nition deals with re
exivity, symmetry andtransitivity at the level of categorical binary relations.De�nition 2.17 Let X be a category and consider an object a in X. The diagonal ofa is the relationDa =[fht ; ti j t 2 X(k ; a)gThen a relation Q on a is re
exive i� Da � Q .hl ; ri is symmetric i� hl ; ri = hr ; li, andQ is transitive i� hs; ui � Q whenever hs; ti � Q and ht ; ui � Q for some t . 2Fact 2.18 Any equivalence is re
exive, symmetric and transitive. 2Fact 2.19 The symmetric closure of a binary relation hl ; ri on a exists, and is given bysymhl ; ri = hl ; ri [ hr ; li:2De�nition 2.20 A category X has �ltered unions of equivalences i� for each objecta the functor ker : (a#X)! (�X#a) preserves �ltered colimits. 2Fact 2.21 The forgetful functor (a#X)! X creates �ltered colimits. 217



Example 2.22 The category SetS of S -sorted sets and functions has �ltered unions ofequivalences. This reduces to the fact that unions of �ltered families of equivalencerelations on a set A are still equivalence relations. Filteredness is essential, as suggestedby the two equivalences on f1; 2; 3g generated by f(1; 2)g and, f(2; 3)g respectively. Theirunion is not an equivalence since it is not transitive because it does not contain (1; 3).More formally, consider a set A and let � : fA fi!Bigi2I ! (A f!B) be a �ltered colimitin (A#SetS ). Let Ki be the kernel of fi for i 2 I . By Fact 2.21 � : fBigi2I ! B is a�ltered colimit in SetS , therefore B is (`i2I Bi )=�, where b � b 0 i� b and b 0 get mappedinto the same element by some function in the diagram fBigi2I . The existence of �lteredunions of equivalences means that ker(f ) should be Si2I Ki . Then Si2I Ki = f(a; a 0) j9i 2 jI j such that fi(a) = fi(a 0)g and ker(f ) = f(a; a 0) j 8j 2 jI j; fj (a)=� = fj (a 0)=�g.By the de�nition of �, ker(f ) � Si2I Ki . But Si2I Ki � ker(f ) since each Ki � ker(f ).22.2 FinitenessThis section deals with �niteness. The concept of �niteness is essential for proving thecompleteness of equational deduction, and consequently of the operational semantics.2.2.1 Finite objectsThe link between �niteness and �lteredness is now well established in several di�erentbranches of mathematics. Although it is hard to trace back its origins, we mention the rôleplayed by �lteredness in explaining some Birkho�-like axiomatisation results in abstractmodel theory. Our categorical de�nition of �niteness corresponds to the de�nition of\L-small object" in [1] when L is the class of all directed posets, and it also generalisesthe well known notion of a \�nite element" in a partially ordered set.De�nition 2.23 An object k in a category X is �nite i� for any map f : k ! d tothe apex of a colimiting co-cone � : D ! d in X over a �ltered diagram D , there existsi 2 jD j and a map fi : k ! D(i) such that fi ;�i = f . 2Example 2.24 In SetS , the �nite objects are exactly those S -sorted sets that are �niteon each component in the ordinary sense.Consider a �nite S -sorted set k and a map f : k ! d to the apex of a colimitingco-cone � : D ! d over a �ltered diagram D in SetS .D(j ) D(i)dk�jCCCCCC!! //�i}}{{{{{{f OO fi FF�������������Due to the nature of colimits in set theory, d = Sj2jDj �j (D(j )). Therefore, for eachelement e 2 d , there exists j such that e 2 �j (D(j )). The same holds for any subset ofd , in particular for f (k). Since d is �nite and D is �ltered, there exists i 2 jD j such thatf (k) � �i(D(i)). Now it is easy to construct a map fi : k ! D(i) such that fi ;�i = f .18



For the converse, assume the hypotheses and suppose k is not �nite. Let D be an!-diagram such that D(j ) � k and D(j ) is strictly included in D(j + 1) for each j 2 !.Such a diagram exists because k is not �nite. Let f be any right inverse to the inclusion[j2!D(j ) � k . Suppose there exists i 2 ! and fi : k ! D(i) such that fi ;�i = f . Lete be an element in D(i + 1) that doesn't belong to D(i). If fi ;�i was equal to f , thene = f (e) = �i(fi (e)) = e, which clashes with the fact that e doesn't belong to D(i). 2Example 2.25 In a similar manner to the previous example we can easily see that inthe category VectK of vector spaces and linear transformations over some �eld K , the�nite objects are exactly the �nite dimensional vector spaces. 2Lemma 2.26 Suppose X has binary coproducts. Then k1` k2 is �nite if k1 and k2 are�nite.Proof: Consider a colimiting co-cone � : D ! d over a �ltered diagram D in X. Letf = [f1; f2] : k1` k2 ! d with fi : ki ! d . By the �niteness of k1 and k2 and becauseD is �ltered, there is an object j and two maps gi : ki ! D(j ) (for i = 1; 2) such thatgi ;�j = fi . De�ne g to be [g1; g2] : k1` k2 ! D(j ). Then g;�j = f . 22.2.2 Finiteness for binary relationsDe�nition 2.27 A binary relation is �nite i� at least one of its representations has a�nite object of indices. 2Fact 2.28 Any �nite binary relation on a 2 jXj is �nite as an object of (�X#a). 2The converse doesn't necessarily hold. However, a natural condition on the basecategory ensures that �nite binary relations on an object a correspond exactly to the�nite objects in (�X#a). The next de�nition is adapted from [1]:De�nition 2.29 The category X is algebroidal i� each of its objects can be presentedas a �ltered colimit of �nite objects. 2Both SetS and VectK are algebroidal categories. In the former case, any S -sorted setis the union of its �nite subsets, while in the latter case, each vector space over a �eldK is the colimit of its �nite dimensional subspaces. Another well known example comesfrom domain theory. A lattice is called algebraic i� each of its elements is a directedunion of �nite elements.Fact 2.30 If X has binary coproducts, then for any binary relation Q on a, fQ0 �nite jQ0 � Qg is �ltered.Proof: By Lemma 2.26. 2Corollary 2.31 If X is algebroidal and has binary coproducts, then for any binaryrelation Q on a,Q = [fQ0 �nite j Q0 � Qg:Proof: Let Q be hs; ti with d the object of indices. Since X is algebroidal, d is theapex of a colimiting co-cone � : D ! d of a diagram whose nodes are �nite objects in X.For each node i in D , the binary relation h�i ; s; �i ; ti is �nite and hs; ti is the colimit ofh�i ; s; �i ; tii2jDj in (�X#a) since the forgetful functor (�X#a)! X creates colimits. ByLemma 2.8, hs; ti = Si2jDjh�i ; s; �i ; ti. But19



[i2jDjh�i ; s; �i ; ti � [fhs0; t0i �nite j hs0; t0i � hs; tig:Therefore, hs; ti � Sfhs0; t0i �nite j hs0; t0i � hs; tig. This proves the corollary since theopposite inclusion is trivial. 2The following corollary motivates De�nition 2.27 and shows that the �nite binaryrelations on a correspond exactly to �nite objects in (�X#a).Corollary 2.32 If X is algebroidal and has binary coproducts, then for any object a inX, any �nite object in (�X#a) is a �nite binary relation on a.Proof: Assume that k hs;ti�! a is �nite as an object in (�X#a). By Corollary 2.31hs; ti = Sfk0hs0;t0i�! a �nite j hs0; t0i � hs; tig and there exists k0hs0;t0i�! a � hs; ti �nite suchthat hs; ti � hs0; t0i. 2Corollary 2.33 If X is algebroidal and has binary coproducts, then any atomic relationis �nite. 22.2.3 Re
exive-transitive closuresThroughout this subsection we assume that the category X is algebroidal and has disjoint25binary coproducts.Lemma 2.34 A binary relation Q on a is symmetric i� hs; ti � Q implies ht ; si � Qfor all �nite hs; ti.Q is transitive i� for any �nite relations hs; ti and ht ; ui, hs; ui � Q whenever hs; ti �Q and ht ; ui � Q .Proof: Let Q be k hs;ti�!a. By Corollary 2.31,hs; ti = [fhs0; t0i �nite j hs0; t0i � hs; tig;in such a way that hs; ti could be presented as the colimit of the set in the right-hand sideof the previous equality. From this, we deduce that ht ; si = Sfht0; s0i �nite j hs0; t0i �hs; tig. But each �nite ht0; s0i is included in hs; ti by hypothesis, therefore ht ; si � hs; ti.For the second part of this lemma, consider hs 0; t 0i; ht 0; u 0i � Q and let fki �i�! kgi2Ibe a representation of k as a �ltered colimit of �nite objects. Let si = �i ; s 0; ti = �i ; t 0and ui = �i ; u 0. Then hsi ; uii � Q by hypothesis, and because hs; ui = Si2jI jhsi ; uii, wehave hs; ui � Q . 2De�nition 2.35 Let Q and R be relations on the same object a. Then their composi-tion isQ � R = [fhs; ui �nite j hs; ti � Q ; ht ; ui � R for some tg:2Fact 2.36 Let Q and R be relations on the same object a. Thenfhs; ui �nite j hs; ti � Q ; ht ; ui � R for some tg25In the sense of De�nition 2.12. 20



is �ltered. 2Lemma 2.37 Fix an object a in X. Then1. the composition of binary relations is monotonic with respect to the inclusionsbetween relations,2. the composition of binary relations on a is associative, and3. (Q1 [Q2) � R = (Q1 � R) [ (Q2 � R) for any binary relations Q1;Q2;R on a.Proof: 1. The proof of this falls out directly from the de�ntion of inclusions of cate-gorical relations.2. Consider Q ;R;P binary relations on a. Then(Q � R) � P =[fhs; ui �nite j hs; ti � Q � R; ht ; ui � P for some tg:Because of Fact 2.36, for each hs; ti � Q � R �nite, there exists v such that hs; vi � Qand hv ; ti � R. Then(Q � R) � P =[fhs; ui �nite j hs; vi � Q ; hv ; ti � R; ht ; ui � P for some v ; tg:The same holds for Q � (R � P). Therefore (Q � R) � P = Q � (R � P).3. (Q1�R)[(Q2�R) � (Q1[Q2)�R holds by the monotonicity of � with respect to �.For the opposite inclusion, consider hs; ui �nite such that hs; ti � Q1[Q2 and ht ; ui � Rfor some t . Let hsi ; tii � Qi ; hti ; uii � R, i 2 f1; 2g, such that hs; ti = hs1; t1i [ hs2; t2i.Then hsi ; uii � Qi � R and hs; ui = hs1; u1i [ hs2; u2i � (Q1 � R) [ (Q2 � R). 2Proposition 2.38 Any relation Q on an object a in X has a re
exive-transitive closure(i.e., the least re
exive-transitive relation containing Q), namelyQ� = [n2!Qnwhere Q0 = Da and Qn+1 = Qn [Q �Qn .Proof: The re
exivity of Q� holds because of Q0. For proving the transitivity of Q�,we show �rst by induction on m 2 ! that Qm � Qn � Qm+n for any n 2 !. For theinduction step,Qm+1 �Qn = (Qm [Q �Qm) �Qn= Qm �Qn [Q �Qm �Qn (by Lemma 2.37)� Qm+n [Q �Qm+n= Qm+n+1 :Now consider hs; ti; ht ; ui � Q� �nite. Since Q� = Sn2! Qn is a �ltered colimit, thereexists m;n 2 ! such that hs; ti � Qn and ht ; ui � Qm . Therefore hs; ui � Qm+n � Q�.By Lemma 2.34, Q� is transitive.Let R be any re
exive-transitive relation on a and containing Q . By induction onn 2 !, Qn � R. Therefore Q� � R. 2 21



2.2.4 Con
uent relationsIn a set theoretic framework, the following de�nition represents an extension of theordinary notion of con
uence from elements to �nite families (or tuples) of elements.Con
uent relations appear in the context of abstract rewriting systems [55].De�nition 2.39 A binary relation Q on an object a of X is con
uent i� for any �nitehs; ti; hs; t 0i � Q , there exists u such that ht ; ui; ht 0; ui � Q . 22.3 Models and DomainsThis thesis takes a top-down approach to equational logics, in the spirit of abstract modeltheory [5, 33], in the sense that all concepts and results are developed at the highestpossible level of abstraction. New levels of concreteness, necessary for some conceptsand results, are obtained by adding new hypotheses to the previous levels. The basicframework distills the essential ingredients characterising equational logics.The semantics of any [equational] logical system is given by its models. In general,the soundness of the inference rules of a logical system is checked against the models byusing a satisfaction relation between models and sentences (in traditional mathematicallogic this idea was �rst formalised in [93]). Model morphisms are translations betweenmodels. We assume that models and their morphisms form a category. Inspired by thetheory of institutions [33], equational logics can be \localised" to signatures. A modelis an interpretation of a particular signature into a domain. Therefore any model hasan underlying domain, and moreover, this correspondence should be functorial. Anytwo parallel model morphisms identical as maps between the underlying domains are thesame. These hypotheses are formulated within the following general assumption:[BasicFramework]: There is an abstract category of \models" A and a \for-getful" functor U : A ! X to a category of \domains" X that is faithful andpreserves pullbacks.In practice, the forgetful functor U always has a left adjoint F , which means that forevery x 2 jXj (which can be thought as a domain of variables) there is a \free model" xF ,in the sense that there is a \canonical interpretation" x� : x ! xFU of \the variables"into the free model satisfying the following universal property: for each f : x ! AUinterpreting variables in a model A, there exists a unique model morphism f ] : xF ! Aextending f , in the sense that x�; f ]U = f .x xFU xFAU Ax� //fBBBBBB !! f ]U{{wwwwwww f ]}}||||||Notice that (A;U) can be regarded as a concrete category (in the sense of [60])over the category of domains. The condition that U preserves pullbacks relates to thefact that congruences are equivalences; this will become more transparent later. Noticethat U automatically preserves pullbacks whenever it has a left adjoint (see [64]).The simplicity of this basic framework is an expression of the simplicity of equationallogic in general. This framework supports the internalisation of all concepts and results22



in equational logic; this internalisation will be called category-based equational logic.The rest of this section is devoted to the presentation of some major equational logicalsystems used in Computing Science within the framework of our general assumption.2.3.1 Many sorted algebraMany sorted algebra (abbreviated MSA) seems to have been �rst studied by Higgins [53]around 1963, and Benabou [8] gave an elegant category theoretic development around1968, overcoming some of the technical di�culties26 in [53]. The use of sorted sets (alsocalled indexed families) for MSA was introduced by Goguen in lectures at the Universityof Chicago in 1968, and �rst appeared in print in [24]. Sorted sets allow a simplernotation than alternative approaches, and also allow overloading; however, overloadingonly reveals its full potential in order sorted algebra. It was later noted that using sortsin automatic theorem proving can be an advantage, because it can greatly reduce thesearch space (e.g., see [97]). The basic de�nitions for overloaded MSA are quite simple:De�nition 2.40 Given a set S , we let S � denote the set of all �nite sequences of elementsfrom S , and we let [] denote the empty sequence of elements from S . Given an S -sortedset A and w = s1:::sn 2 S �, let Aw = As1 � � � � � Asn ; in particular, let A[] = f?g, someone pointed set.A signature (S ;�) is an S � � S -indexed set � = f�w ;s j w 2 S �; s 2 Sg; we oftenwrite just � instead of (S ;�). Notice that this de�nition permits overloading, in thatthe sets �w ;s need not be disjoint; this can be useful in many applications.A �-algebra A consists of an S -sorted set A and a function �A : Aw ! As for each� 2 �w ;s; the set As is called the carrier of A of sort s. A �-homomorphism from a�-algebra A to another B is an S -sorted function f : A! B such that27f (�A(a)) = �B(f (a))for each a 2 Aw . 2Let Alg� denote the category with �-algebras as objects and �-homomorphisms asmorphisms. There is a forgetful functor U : Alg� ! SetS from the category of �-algebrasto the category of S -sorted sets which forgets the interpretations of the operations in �.In this example, Alg� is the category of models and SetS is the category of domains.Given a many sorted signature �, an S -sorted set X will be called a set of variablesymbols if the sets Xs are disjoint from each other and from all the sets �w ;s. Given a setX of variable symbols, we let T�(X ) denote the (S -sorted) term algebra with operationsymbols from � and variable symbols from X ; it is the free �-algebra generated by X ,in the sense that if v : X ! A is an assignment, i.e., a (many sorted) function to a �-algebra A, then there is a unique extension of v to a �-homomorphism v ] : T�(X )! A.In order to make this construction more precise, we de�ne (T�(X ))s to be the least setof strings of symbols such that1. �[];s [ Xs � (T�;s(X )), and2. � 2 �s1:::sn;s and ti 2 T�;si(X ) imply that the string �(t1; : : : ; tn) is in T�;s(X ).26These di�culties are discussed in [37], which gives a more technical survey of work in MSA.27By f (a) we understand (f (a1); : : : ; f (an )) where a = (a1; : : : ; an).23



The �-structure of T�(X ) is the canonical one. (Strictly speaking, the usual term algebrais not free unless the constant symbols, in �[];s for s 2 S , are mutually disjoint; however,even if they are not disjoint, a closely related term algebra, with constants annotated bytheir sort, is free.) This construction is a left adjoint to the forgetful functor U : Alg� !SetS .Also, we let T� denote the initial term �-algebra T�(;), recalling that this meansthat there is a unique �-homomorphism !A : T� ! A for any �-algebra A. Call t 2 T�a ground �-term. Given a ground �-term t , let tA denote the element !A(t) in A. CallA reachable i� !A is surjective, i.e., i� each element of A is \named" by some groundterm.2.3.2 Order sorted algebraThe �rst paper on order sorted algebra (abbreviated OSA) [25] says that its main mo-tivation is to provide a better way of treating errors in abstract data types;28 anothermotivation is that the use of subsorts can greatly speed up certain theorem proving prob-lems [96]. OSA adds to MSA a partial ordering on the set of sorts, which is interpretedas inclusion among the corresponding carriers; all approaches to OSA share this essentialidea. The ideas in [25] were further re�ned by Goguen and Meseguer, starting around1983. In [34] the basic OSA de�nitions are presented in a much more general form thanin [41], and we follow that more general approach here.De�nition 2.41 [34] An order sorted signature is a triple (S ;�;�) such that (S ;�)is a many sorted signature and (S ;�) is a partially ordered set. An order sorted signatureis monotone i�� 2 �w1;s1 \ �w2;s2 and w1 � w2 imply s1 � s2:A (S ;�;�)-algebra is a many sorted (S ;�)-algebra A such that s � s 0 in S impliesAs � As 0. An order sorted �-algebra A is monotone i�� 2 �w1;s1 \ �w2;s2 and w1 � w2 and s1 � s2 imply that �w1;s1 : Aw1 ! As1equals �w2;s2 : Aw2 ! As2 on Aw1.A (S ;�;�)-homomorphism is a many sorted (S ;�)-homomorphism h : A ! B suchthat s � s 0 in S implies hs(a) = hs 0(a) for all a 2 As.A partially ordered set (S ;�) is (upward) �ltered i� for any two elements s; s 0 2 Sthere is an element s 00 2 S such that s; s 0 � s 00. A partially ordered set S is locally�ltered i� each of its connected components29 is �ltered. An order sorted signature(S ;�;�) is locally �ltered i� (S ;�) is locally �ltered. 2Notice that there cannot be any overloaded constants if � is monotone. Also note thatoverloaded OSA is a proper generalisation of MSA, because (overloaded) MSA is thespecial case where the partially ordered set of sorts is discrete; some other approaches donot have (even ordinary non-overloaded) MSA as a special case.Given a signature � in the sense of De�nition 2.41, the interpretations of an overloadedoperation symbol � 2 �w1;s1\�w2;s2 in an algebra A need not necessarily agree on elements28See [43] for a discussion of the di�culties with handling errors in MSA.29Given a poset (S ;�), let � denote the transitive and symmetric closure of �. Then � is anequivalence relation whose equivalence classes are called the connected components of (S ;�).24



that belong to the intersection of carriers for w1 and w2; thus, a strong form of overloadingis supported. For this reason, in [34] this approach is called overloaded OSA. Notethat De�nition 2.41 generalises [41], where both the signatures and algebras are assumedto be monotone. Goguen and Diaconescu introduce in [34] the concept of signature ofnon-monotonicities as a mechanism for saying which operation declarations should beconsidered non-monotonic.In [41], overloaded OSA is developed with coherent signatures in a way that closelyparallels traditional general algebra; in particular, there are order sorted versions ofsubalgebra, congruence, term, deduction, initial and free algebras, completeness, etc.Regularity guarantees that every order sorted term has a well de�ned least sort; this cansimplify the implementation of overloaded OSA. Here is the formal de�nition:De�nition 2.42 An order sorted signature (S ;�;�) is regular i� it is monotone, andgiven � 2 �w1;s1 and w0 � w1, there is a least rank hw ; si such that w0 � w and � 2 �w ;s.Also (S ;�;�) is coherent i� it is locally �ltered and regular. 2A weaker condition that is necessary and su�cient for all terms to have a least sort parseis given in [41]. In essence, the regular OSA of [41] allows \multiple universes," one foreach connected component of the sort hierarchy, without bothering whether they overlap.However, the programme of general algebra can be carried out in much greater generalitythan this. In fact, [34] emphasises that overloaded OSA can be developed for arbitrary lo-cally �ltered signatures; in particular, initial algebras exist for signatures that are neitherregular nor monotone. In fact, all the standard results of general algebra carry throughfor any locally �ltered signature, and this extends to signatures of non-monotonicities aswell. An important technical result about the loose semantics of overloaded OSA, whichalso extends to non-monotonicities, is that any variety of algebras is equivalent (in thecategorical sense) to a quasi-variety of many sorted algebras. This result implies thatoverloaded OSA has all the nice mathematical properties of MSA; for example, it can beused to prove the initiality, Birkho� variety and quasi-variety theorems.One of the interesting recent developments in the theory of OSA is by Hubert Comon[17] who showed that OSA speci�cations can be represented as bottom-up tree automata.The redundancy of the regularity hypothesis follows easily from this representation too.Moreover, the representation of OSA speci�cations as bottom-up tree automata provesto be very e�ective as an implementation technique, the regularity condition being re-dundant at the level of implementation too.Given an order sorted signature (S ;�;�), the �-algebras and their homomorphismsform a category Alg�. This is the category of models for OSA. The domains are themany sorted sets. We emphasise that the domains for OSA should not have an ordersorted structure. This idea is supported by the way OSA is implemented; at the theorylevel, the necessity to work with many sorted domains rather than order sorted domainswill become more transparent later. The forgetful functor U : Alg� ! SetS forgets boththe algebraic and the order sorted structure.Other approaches to OSA could be treated in a similar manner. For a recent com-parative survey on di�erent approaches on OSA see [34].2.3.3 Horn clause logicsThe model theory of equational logics has an algebraic nature due to the absence ofpredicates (relational symbols). This is a big advantage over model theories involving25



relations, since powerful and elaborate algebraic methods can be used (see [33, 41] for thesemantics of programming languages). However, it is well known that Horn clause logics(abbreviated HCL), for example, do not lack nice semantical properties like completenessand the existence of initial models. Moreover, the way these properties are obtained hasa strong algebraic 
avour [39]. This shows that Horn clause logics somehow have analgebraic character.Theorem 2.43 below describes an embedding of the category of models of any �rstorder signature as a retract of the category of algebras of the algebraic signature obtainedfrom the original �rst order signature by turning the predicates into operations. The ideaof interpreting the predicates as `boolean valued' operations is hardly new. It has evenbeen used for promoting narrowing as an operational semantics for logic programming[19]. However, our approach is slightly di�erent, because from the very beginning weavoid a full boolean structure on the new sort of truth values. Moreover, our approachemphasises the model theory side (Theorem 2.43). The result is an e�ective methodfor applying algebraic techniques to a large class of model theoretic problems in logicprogramming. For example, the construction of initial models, and more generally offree models of logic programs [39], follows immediately from the well known constructionof initial and free algebras (see [41, 45], etc). The same principle applies to free extensionsalong theory morphisms, which were suggested in [39] as a semantic basis for constraintlogic programming.Recall (e.g., from [33]) that a (many sorted) �rst order signature is a triple(S ;�;�) such that (S ;�) is a many sorted signature in the sense of De�nition 2.40,and � is an S+-indexed family of sets of predicate or relation symbols. A mor-phism (f ; g; k) : (S ;�;�) ! (S 0;�0;�0) between two �rst order signatures consists ofan equational signature morphism (f ; g) together with an S+-indexed family of mapskw : �w ! �0f +(w) on predicate symbols.30 AmodelM of a �rst order signature (S ;�;�)consists of a �-algebra structure in the sense of De�nition 2.40, together with an inter-pretation �M � M w for each predicate symbol � 2 �w as a relation on the carriers. Amorphism h : M ! M 0 between (S ;�;�)-models M and M 0 is a �-homomorphismsuch that for any predicate symbol � 2 �s1:::sn , if m 2 �M then h(m) 2 �M 0.For a �rst order signature (S ;�;�), let ModS ;�;� denote the category of (S ;�;�)-models and their morphisms. We will often write (�;�) for (S ;�;�), leaving the sortset implicit.Theorem 2.43 Given a many sorted �rst order signature (S ;�;�), consider an algebraicsignature (S b ;�b [�b) de�ned in the following way:� S b is S plus a new sort b,� �b is a collection of new operation symbols f�b j � 2 �g such that �b 2 �s1:::sn ;bwhenever � is an s1:::sn-ary relational symbol, and� �b is just � plus a new constant t of sort b.Then1. there is a forgetful functor H�;� : Alg�b[�b ! Mod�;� such that for all � 2 �,a 2 �H�;�(A) i� �bA(a) = tA,30Here f + is f � restricted to non-empty strings.26



2. H�;� has a left adjoint left inverse31 E�;�, and3. there is a translation ��;� of (�;�)-Horn clauses to (�b[�b)-conditional equationsthat regards every �-equation as a �b -equation and maps every atom �(s) to the(�b [�b)-equation �b(s) = t, such that for any Horn clause � and any (�b [�b)-algebra A,A j=�b[�b ��;�(�) i� H�;�(A) j=�;� �:Proof: We omit the proof of 1. For 2.,it is enough to de�ne E�;� on models (itsde�nition on model morphisms is obtained from the general categorical constructionof left adjoints from universal arrows; see [64]). Thus given any (�;�)-model A =((As)s2S ; (�A)�2�; (�A)�2�), we have to build a (�b [ �b)-algebra E�;�(A) which is freewith respect to the forgetful functor H�;�.A H(E(A))H(B)hDDDDDDD !!__________________________________H(h 0)yyssssssssThe carrier of E�;�(A) is the same as the carrier of A, except that a new carrier for thesort b is de�ned byAb = ftAg [ fh�; ai j � 2 � and a 62 �Ag:The interpretations of the �-operation symbols are those of A, and for each � 2 �s1:::sn .De�ne�bA(a) = tA if a 2 �A; otherwise �bA(a) = h�; ai:Given any (�b [�b)-algebra B and any (�;�)-model morphism h : A! H�;�(B), thereis exactly one (�b [ �b)-morphism h 0 from E�;�(A) to B extending h (see the abovediagram). Of course, h 0s = hs for every s 2 S , h 0b(tA) = tB , and h 0b(h�; ai) is �bB(h(a)) foreach a 62 �A. This means that E�;�(A) is the free (�b[�b)-algebra over the (�;�)-modelA. Notice that H�;�(E�;�(A)) = A.3. This reduces to showing that for any (�b [ �b)-algebra A, any tuple s of termsin T�(X ) and any valuation v : X ! A, v ](s) � �H�;�(A) i� v ](�b(s)) = tA. This holdsbecause v ](�b(s)) = �bA(v ](s)). 2Fact 2.44 H�;� is natural in (�;�), i.e., H is a natural transformation. 2Notice that in general the embedding functor E�;� is not natural in (�;�). However,the naturality of E can be obtained by slightly modifying the algebraic signature corre-sponding to a �rst order signature (�;�) whereby instead of the new sort b we introducea new sort b� together with a new constant t� for each relation symbol �. Theorem 2.43can be easily translated into this new framework.31When composition is written in the diagrammatic order. In category theory textbooks where thecomposition of arrows is written in anti-diagrammatic order, e.g., [64], this is referred to as a rightinverse. 27



The following result shows that free models in HCL (more generally, free extensionsalong HCL theory morphisms) are in fact free algebras regarded as models through theforgetful functor H. This remark includes the important case of Herbrand models, whichare in fact term models with the empty interpretation for the relational symbols.Corollary 2.45 1. Let (S ;�;�) be a �rst-order signature and let � be a set of Hornclauses over this signature. Then for every S -sorted set X , the free model M�(X ) overX in the quasi-variety Mod� determined by � is the image of the free (�b [�b; ��;�(�))-algebra over X under the forgetful functor H.2. Let � : (S ;�;�;�) ! (S 0;�0;�0;�0) be a morphism of theories in many-sortedHorn clause logic with equality. Then every �-model M has a free extension M 0 along �which can be obtained as the free extension in MSA and translated back to HCL underH.Proof: 1. First notice that by Theorem 2.43, H�;� maps the quasi-variety Alg�b[�b ;�(�)to Mod� and that E�;� maps Mod� to Alg�b[�b ;�(�).Alg�b[�b ;�(�) Mod�SetSb SetSH //�� ��//Next, the forgetful functor Alg�b[�b ;�(�) ! SetS is right adjoint as the composite ofthe right adjoint forgetful functors Alg�b[�b ;�(�) ! SetSb and SetSb ! SetS . The leftadjoint to SetSb ! SetS just adds to the S -sorted sets the empty set as the carrier of sortb. On the other side of the diagram, the free (�b [ �b; �(�))-algebra is obtained asE�;�(M�(X )). The conclusion follows from the fact that E�;�;H�;� = 1.2. This uses the same argument as the proof of the previous part of this corollary,by noticing that � induces a morphism of algebraic theories �b : (�b [ �b; ��;�(�)) !(�0b [ �0b; ��0 ;�0(�0)) in the obvious way.Alg�0b[�0b ;�(�0) Mod�0Alg�b[�b ;�(�) Mod�H0 //Alg(�b) �� Mod(�)��H //The free extension of M along � is the same as H�0 ;�0((E�;�(M ))$), where (E�;�(M ))$is the free extension of E�;�(M ) along �b. 2The �nal remark of this subsection is that given a �rst order signature (�;�), thecategory of models for HCL can be taken as Alg�b[�b , and the category of domainsshould be taken as SetS . Notice that in HCL, unlike MSA, the forgetful functor from thecategory of models to the category of domains (i.e., Alg�b[�b ! SetS) is not monadic.28



2.3.4 Equational logic modulo axiomsEquational deduction modulo a set of axioms (abbreviated ELM ) becomes vital whendealing with non-orientable equations in the context of rewriting. A detailed expositionof the subject is given in [30, 56, 20, 63]. Although in practice non-orientable axioms aremostly unconditional32, there is no theoretical reason to exclude the case of equationaldeduction modulo a set of conditional equations.De�nition 2.46 [30] Given a MSA signature (S ;�) and a collection E of �-equations,a �-term modulo E is just an element t of T�;E (X ) (i.e., the quotient of the termalgebra T�(X ) determined by E ). 2Equational deduction modulo E is based on a generalisation of the usual concepts ofMSA to \concepts modulo E", including the inference rules. In order to have a modeltheory for equational logic modulo E , we need an adequate notion of model for thistype of logic. It is therefore natural to consider Alg�;E as the category of models forthe equational logic modulo E . This idea is consistent with having \algebras moduloaxioms" as models for ELM. The category of domains is the category SetS of S -sortedsets and functions. The forgetful functor U : Alg�;E ! SetS forgets both the axioms andthe algebraic structure of the algebras.Example 2.47 The logic of Mosses's uni�ed algebras from [75] can be regarded as equa-tional logic modulo a conditional theory. All uni�ed speci�cations of a given uni�edsignature contain a core essentially consisting of Horn clauses. Uni�ed algebras appearas models of this speci�cation. 22.3.5 Summary of ExamplesThe following table gives a summary of how the logical systems presented above �tour abstract model theoretic framework. We also include the case of constraint logics(abbreviated CL), which will be presented in detail in Chapter 6.A (cat. of models) X (cat. of domains) U forgets:MSA Alg� SetS algebraic structureOSA Alg� SetS algebraic structure + order sortednessHCL Alg�b[�b SetS algebraic structure + sort bELM Alg�;E SetS axioms + algebraic structureCL (A#Alg(�)) SetS 0 comma category structure +algebraic structureIt is possible to have any combination of any of these logical systems, such as ordersorted Horn clause logic with equality. An interesting case is given by the logic underlyingEqlog, which combines all of the logical systems presented above; in particular, Eqlog'sextensible constraint logic programming also involves CL.32An interesting example of conditional non-orientable axiom is provided by idempotence, sometimesgiven in its conditional form: x + y = x if x = y .29



3 Category-based Equational DeductionIn this chapter we develop a categorical proof theory for equational logics and we proveits completeness with respect to the model theory. The following technical assumptionunderlies the whole chapter:[DeductionFramework]: BasicFramework + the category A of modelshas pullbacks and coequalisers.The proof theory is based on a categorical abstraction of some basic concepts whichconstitute the very essence of equational logic and universal algebra. This includes no-tions like congruence, term algebra, substitution, equation (represented here as parallelpairs of arrows, hardly a new idea, see [51, 52]), and satisfaction. Following the main ideaof [18], the quanti�cation of equations is abstracted from variables to models, and as aresult, valuations are abstracted from simple assignments of the variables to model mor-phisms. This new level of abstraction is based on a semantic view of terms as elementsof the carrier of a free model, rather than as tree-like syntactical constructs. The factthat equational deduction can be fully extended to this level without any fundamentaldi�culty illustrates the precedence of semantics over syntax for equational logics. Thesemantic architecture of a particular equational logic system seems to be the only thingthat really matters for its deductive system. A technical consequence is the possibilityof developing the main core of the equational proof theory without using freeness.3.1 CongruencesThe construction of quotient models and the formulation of a complete system of inferencerules for category-based equational logics both rely upon a notion of congruence.De�nition 3.1 Let A be an arbitrary model. The binary relation Q on the underlyingdomain of A is a congruence i� it is a kernel of a model morphism, i.e., i� there isa model morphism � in A such that Q = U(ker�). The quotient of A by Q is thecoequaliser of ker�. Its target model is denoted A=Q and is also sometimes called thequotient of A. 2Fact 3.2 Any model congruence is a domain equivalence. 2Lemma 3.3 Let Q = CU be a congruence on a model A. Then C = ker(coeq(C )).Proof: C � ker(coeq(C )) by the universal property of kernels. Let C be ker� forsome model morphism �. There exists a [unique] h such that coeq(ker�); h = �. Butker(coeq(ker�)) � ker(coeq(ker�); h) and therefore ker(coeq(C )) � C = ker�. 2The idea of relating congruences to kernels of model morphisms has a long traditionin general algebra, including MSA and OSA. In the context of Horn clause logics (seeSection 2.3.3), the previous de�nition gives an appropriate notion of congruence for modeltheories with relational symbols [39]. 30



De�nition 3.4 Let Q be a binary relation on the underlying domain of a model A.Then the congruence closure of Q is the least congruence on A containing Q ; it maybe denoted C(Q). 2De�nition 3.5 Suppose the congruence closures of binary relations exist in A and Xhas unions of binary relations. Then the forgetful functor U : A! X is �nitary i�C(Q) = [fC(Q0) j Q0 � Q �nitegfor any model A and any binary relation Q on the underlying domain of A. 2All forgetful functors from models to domains presented as examples in Section 2.3are �nitary. This is due to the fact that all operation and relational symbols involvedtake only a �nite number of arguments, as will be seen in Section 3.5.3.2 Equations, Queries and SatisfactionTraditionally, equations are pairs of terms constructed from the symbols of a signatureplus some variables. In the context of many sorted equational logic the importance ofexplicit quanti�cation was emphasized for the �rst time by Goguen and Meseguer [37].The survey [62] shows that explicit qunati�cation adds a key syntactic information inthe case of constraints and uni�cation. In this way, the quanti�er becomes part of theconcept of equation.Although terms are syntactic constructs, from a model theoretic perspective they arejust elements of the free term model over the set of quanti�ed variables. Any valuationof the variables into a model extends uniquely to a model morphism evaluating bothsides of the equation. Thus a more semantic treatment of quanti�cation regards quan-ti�ers as models rather than as collections of variables, and regards valuations as modelmorphisms rather than as evaluations of variables into models. This has already beendone in [18] in the context of many sorted algebra. This non-trivial generalisation ofthe notions of sentence and satisfaction in equational logic also supports the extension ofthe equational proof theory along the same lines without any di�culty. Moreover, thissemantic approach to equational logic brings a sense of simplicity and unity to the prooftheory, which has somehow been lost in the more traditional syntactical frameworks.De�nition 3.6 Let A be any model. Then a U -identity on A is a binary relationk hs;ti�!AU on the underlying domain of A. An identity hs; ti in A is satis�ed in a modelB with respect to a model morphism h : A ! B i� s; hU = t ; hU . This is denotedB j= hs; ti[h].A U -equation is a universally quanti�ed expression (8A)hs; ti where A is a modelrepresenting the quanti�er and hs; ti is an identity in A. A model B satis�es (8A)hs; tii� B satis�es the identity hs; ti for all model morphisms h : A! B .A U -query is an existentially quanti�ed expression (9A)hs; ti where A is a modelrepresenting the quanti�er and hs; ti is an identity in A. A solution of (9A)hs; ti in amodel B is any model morphism h : A! B for which hs; ti is satis�ed in B with respectto h. When B is a free model, h is called an solution form. 2The notion of U -equation (query) deals with families of equations (queries), ratherthan single equations (queries), as sentences. This agrees with Rodenburg's work [82]31



showing that equational logic with conjunction satis�es the Craig Interpolation Property33whereas normal equational logic does not. Our terminology is in
uenced by Lassez whoreplaced the traditional logic programming terminology of computed answer substitutionby that of solved form [67]. The modern terminology has the advantage to allow more
exibility for the representations of solutions (i.e., staying away of from the traditionalrepresentations of solution forms as substitutions is very bene�cial at the level of oper-ational semantics) and is also more intuitive (i.e., solutions in di�erent models can beobtained by interpreting the solutions forms).Example 3.7 OSA equations Let (S ;�;�) be a coherent (i.e., regular and locally �l-tered) order sorted signature and let X be an S -sorted set of variables. The collectionof all well-formed �-terms over X , denoted T�(X ), has a canonical structure as an ordersorted �-algebra.An order sorted equation (8X )t =s t 0 is an universally quanti�ed pair of termshaving the same sort (i.e., t ; t 0 2 (T�(X ))s). Any parallel pair of many sorted functionsk ! T�(X ) de�nes a many sorted family of such equations.Given an order sorted �-algebra A, any valuation v : X ! A of variables X into Aextends uniquely to an order sorted �-morphism v ] : T�(X )! A giving the denotationsin A for the terms in T�(X ). A satis�es the identity t =s t 0 with respect to the valuationv i� t and t 0 have the same denotation, i.e., v ](t) = v ](t 0). When dealing with a manysorted family of equations k ht;t 0i�! T�(X ), the satisfaction of ht ; t 0i by A with respect tothe valuation v means t ; v ]U = t 0; v ]U .It appears that this de�nition of order sorted equations is more restrictive than theone given by Goguen and Meseguer [41]. However, the two can be shown to agree. In [41],an order sorted equation (8X )t = t 0 is a universally quanti�ed pair of terms having theleast sorts LS (t) and LS (t 0) in the same connected component. An order sorted algebrasatis�es t = t 0 with respect to the valuation v i� v ]LS(t)(t) = v ]LS(t 0)(t 0). Let's consider wa common supersort of both LS (t) and LS (t 0). Then for any order sorted algebra A andany valuation h : X ! A, we have A j= t = t 0[h] i� A j= t =w t 0[h].This de�nition of order sorted equations also holds without assuming coherence ofthe signature by using annotated terms (or parse trees). 2Example 3.8 Let � be an algebraic signature and and let E be a collection of �-equations. An equation moduloE [30], denoted (8X )t =E t 0, is a universally quanti�edpair of elements in T�;E (X ) (i.e., t and t 0 are terms modulo E ). Any parallel pair offunctions k ! T�;E (X ) de�nes a family of such equations. A (�;E )-algebra satis�est =E t 0 for the valuation v : X ! A i� v ](t) = v ](t 0), where v ] is the unique extensionof v to a �-homomorphism T�;E (X )! A. 2De�nition 3.9 (8A)hs 0; t 0i if hs; ti is a U -conditional equation quanti�ed by the modelA, where hs; ti are the hypotheses of the conditional equation. A model B satis�es(8A)hs 0; t 0i if hs; ti i� for any morphism h : A! B , s; hU = t ; hU implies s 0; hU = t 0; hU .2 The following de�nition is a standard extension of the concept of satisfaction betweenmodels and sentences to satisfaction between sets of sentences:De�nition 3.10 A set � of equations satis�es the equation e, written � j= e, i� anymodel satisfying � also satis�es e. 233The Craig Interpolation Property is an important semantic property for logical systems [21].32



3.3 CompletenessOur approach to the completeness of category-based equational deduction follows the tra-ditional approach (probably originating with Birkho�'s work on universal algebra [10]),in that the central concept is the congruence determined by an arbitrary collection �of [conditional] equations on an arbitrary model A. The key to the completeness resultis to regard this congruence in two di�erent ways: the �rst way is as the collection ofunconditional equations quanti�ed by A that can be syntactically inferred from �, whilethe second is as the collection of unconditional equations quanti�ed by A that are seman-tic consequences of �. Because of the semantic treatment of equation and satisfactionunderlying this work, there is no distinction between the congruence determined by �on the free models (this case corresponds to the traditional treatments of the complete-ness of equational logics) and on other models. This is very important in the contextof the semantics of constraint logic programming given in Chapter 6, because it involves\built-in models" that are not term models in general.The rôle of (categorical) projectivity was �rst pointed out in [18], and in the presenceof a left adjoint to the forgetful functor from models to domains, it is directly relatedto a categorical formulation of the Axiom of Choice for domains. Despite the highlevel of generality and abstraction, the rules of inference for category-based equationaldeduction are made gradually more explicit. They can be easily recognised even in themost abstract formulation of completeness. In the case of conditional category-basedequational deduction, the most syntactic formulation of the completeness result dependsdirectly on two �niteness conditions. The �rst one requires that the hypotheses of theequations should be �nite, while the second corresponds in practice to �nite arities forthe operator symbols.De�nition 3.11 Let � be a set of conditional equations. A congruence C on A isclosed under �-substitutivity i� for all (8B)hs 0; t 0i if hs; ti in � and any morphismh : B ! A, hs; hU ; t ; hUi � C implies hs 0; hU ; t 0; hUi � C . 2Proposition 3.12 Let h : A! M be a model morphism. Then M j= � implies ker(h)is closed under �-substitutivity.Proof: Let (8B)hs 0; t 0i if hs; ti be a conditional equation in � and let � : B ! A beany model morphism. B A M� // h //Suppose hs;�U ; t ;�Ui � ker(h). Then s;�U ; hU = t ;�U ; hU . But �; h : B ! M andM is closed under �-substitutivity, therefore s 0; (�; h)U = t 0; (�; h)U . This means thaths 0;�U ; t 0;�Ui � ker(h). 2Corollary 3.13 Let C be a congruence on a model A. Then A=C j= � implies that Cis closed under �-substitutivity. 2The following de�nition is a weakening of the traditional concept of projective objectin category theory (see [64]):De�nition 3.14 An object A in a category C is coequaliser projective i� for anycoequaliser e : B ! M in C and for any map g : A! M there exists a map f : A! Bsuch that f ; e = g. 33



B MAe // gOOf``A A A2Termmodels are always coequaliser projective. This will be proved later in connectionwith a categorical formulation of the Axiom of Choice for the category of domains (seeSection 3.5.3).Proposition 3.15 If all quanti�ers in � are coequaliser projective, then a congruenceC on a model A is closed under �-substitutivity i� A=C j= �.Proof: Because of Corollary 3.13, we only have to prove that A=C j= � if C is closed un-der �-substitutivity. Assume C is closed under �-substitutivity. Let (8B)hs 0; t 0i if hs; tibe any conditional equation in � and let h : B ! A=C be any model morphism. Sup-pose s; hU = t ; hU . Because B is coequaliser projective, there exists h 0 : B ! A suchthat h 0; (coeqC ) = h. By Lemma 3.3, C = ker(coeqC ), therefore hs; h 0U ; t ; h 0Ui � CU .Since C is closed under �-substitutivity, hs 0; h 0U ; t 0; h 0Ui � CU . s 0; hU = t 0; hU followsimmediately from h = h 0; (coeqC ). 2De�nition 3.16 For any model A, let�A� denote the least congruence on A closed under�-substitutivity. 2Corollary 3.17 Completeness TheoremIf �A� exists and the quanti�ers in � are coequaliser projective, then1. A=�A� is the free �-model over A, and2. � j= (8A)hs; ti i� s �A� t .Proof: 1. Let A f!M be a model morphism such that M j= �. By Proposition 3.12,ker(f ) is closed under �-substitutivity. Because �A� is the least congruence on A closedunder �-substitutivity, �A�� ker(f ), which means that f equalises �A� . We concludethere exists a unique map A=�A� f 0!M such that e; f 0 = f , where e denotes the coequlisercoeq(�A� ). A A=�A�Mcoeq�A�//fDDDDDDD!! f 0��2. From Proposition 3.15 we know that A=�A� j= �. Suppose s �A� t and considera �-model M and any model morphism A f!M . By 1., there is A=�A� f 0!M such thate; f 0 = f . s; f U = t ; f U since s; eU = t ; eU . We thus conclude that � j= (8A)hs; ti.Conversely, consider e : A ! A=�A� . Since � j= (8A)hs; ti, s; e = t ; e, thereforehs; ti � ker(e) =�A� . 2 34



The following two results provide an inference-based version of the completeness theo-rem for equational logics. This relies upon a syntactic deduction oriented construction of�A� . In the case of unconditional equations, �A� has a rather simple representation thatshows that any category-based equational deduction is equivalent to a category-basedequational deduction in which all applications of the substitutivity rule take place beforeany application of the congruence rule.34These results are obtained under the following technical assumption:[ConcreteDeductionFramework]: DeductionFramework + the cate-gory X of domains has unions of binary relations and ! colimits + congruenceclosures exist in A.However, the following result doesn't use the existence of !-colimits in the category ofdomains:Proposition 3.18 If � contains only unconditional equations, then �A� exists and�A�= C([fhs; f U ; t ; f Ui j (8B)hs; ti 2 �; f 2 A(B ;A)g):Proof: C(Sfhs; f U ; t ; f Ui j (8B)hs; ti 2 �; f 2 A(B ;A)g) is closed under �-substitutivityand is a congruence by de�nition. Consider another congruence C closed under �-substitutivity on the model A. Then[fhs; f U ; t ; f Ui j (8B)hs; ti 2 �; f 2 A(B ;A)g � Csince hs; f U ; t ; f Ui � C for any (8B)hs; ti 2 � and any f 2 A(B ;A). ThereforeC([fhs; f U ; t ; f Ui j (8B)hs; ti 2 �; f 2 A(B ;A)g) � Cby taking the congruence closure. 2When � contains proper conditional equations, �A� can be constructed in the limit byalternating the applications of the rule of congruence and of the rule of substitutivity:Proposition 3.19 Assume ConcreteDeductionFramework. If the forgetful functorU : A! X is �nitary and the hypotheses of all conditional equations in � are �nite, thenthe least congruence on A closed under �-substitutivity exists.Proof: De�ne hs0; t0i to be Sfhs; f U ; t ; f Ui j (8B)hs; ti 2 �; f 2 A(B ;A)g, and for eachn 2 !, de�ne� hs2n+1; t2n+1i to be Chs2n ; t2ni,and de�ne� hs2n+2; t2n+2i to behs2n+1; t2n+1i[Sfhs 0; hU ; t 0; hUi j (8B)hs 0; t 0i if hs; ti 2 �;B h�! A; hs; hU ; t ; hUi �hs2n+1; t2n+1ig.34The rules of congruence and substitutivity are discussed at the end of this subsection.35



Observe that for each n 2 !, hsn ; tni � hsn+1; tn+1i. The union �A�= Sn2!hsn ; tni couldbe realised as an !-colimit of the inclusion chain hs0; t0i � hs1; t1i � ::: in the commacategory (�X#AU) (the !-completeness of X lifts to the comma category (�X#AU)). Weshall prove that �A� is the least congruence on A closed under �-substitutivity. BecauseU is �nitary,C(�A� ) = [fChS ;T i j hS ;T i ��A� �nitegFor each �nite hS ;T i ��A� there exists n 2 ! such that hS ;T i � hsn ; tni. ThenChS ;T i � Chsn ; tni � hsn+2; tn+2i ��A� , therefore C(�A� ) ��A� , which means that�A� is a congruence.For any (8B)hs 0; t 0i if hs; ti in � and any model morphism h : B ! A, if hs; hU ; t ; hUi��A� , then because hs; ti is �nite, there exists n 2 ! such that hs; hU ; t ; hUi � hsn ; tni.By the construction of the chain fhsn ; tnign2!, we have hs 0; hU ; t 0; hUi � hsn+2; tn+2i ��A� .This shows that �A� is closed under �-substitutivity.Now consider an arbitrary congruence C on A closed under �-substitutivity. Byinduction on n, hsn ; tni � C for all n 2 !. Therefore �A�� C .From all this we conclude that �A� is the least congruence on A closed under �-substitutivity. 2Corollary 3.20 Assuming theConcreteDeductionFramework, category-based equa-tional logic is complete under the following two inference rules:[congruence] (8A)hs; ti(8A)Chs; ti[substitutivity] (8A)hs; hU ; t ; hUi(8A)hs 0; hU ; t 0; hUiwhere (8B)hs 0; t 0i if hs; ti is in � and h : B ! A is any model morphism. 23.4 Herbrand's TheoremHerbrand's Theorem provides mathematical foundations for logic programming. In thissection we present a version of Herbrand's Theorem in our category-based framework,based on the categorical characterisation of Herbrand Universes as initial models forequational logic programs. This idea was �rst exploited in the context of order sortedHorn clause logic with equality by Goguen and Meseguer [39]. The results in this sub-section can be seen as a category-based generalisation of the extension of their results toequational logics with projective models as quanti�ers.For this section only, we assume that the category A has an initial model; we denoteit by 0A. In the case of many sorted equational logic this is the initial algebra of groundterms.Corollary 3.21 Herbrand's TheoremAssume theConcreteDeductionFramework andthat U is �nitary and consider � a collection of conditional equations with �nite hypothe-ses and coequaliser projective quanti�ers. Then1. the initial model of � exists, we denote it by 0�, and2. � j= (9B)q i� 0� j= (9B)q for any U -query (9B)q and any model B .36



Proof: 1. From Proposition 3.19 and the �rst part of the Completeness Theorem.2. Since 0� is a �-model, � j= (9B)q implies 0� j= (9B)q. For the converse, supposethat 0� j= (9B)q and take any �-model M . Let h : B ! 0� be a solution for (9B)q in0�. Let !M denote the unique model morphism 0� ! M . Then h; !M is a solution for(9B)q in M . 2At the end of the following section we present another version for Herbrand's Theoremthat relies on the present one but provides foundations for solving queries using resolutionand paramodulation-like techniques by directly relating the satisfyability of a query by aprogram to the existence of solution forms to the query. This is formulated in a contextcorresponding to `non-empty sorts' in the case of many sorted logics [39]. The nextde�nition gives a category-based formulation of this condition:De�nition 3.22 The forgetful functor U from the category A of models to the categoryX of domains has non-empty sorts i� for each domain x 2 jXj there exists at least onemap from x to the domain underlying the initial model 0A. 2Example 3.23 Consider an algebraic signature (S ;�). The initial algebra for this sig-nature is T�, i.e., the algebra of ground terms. There exists at least one S -sorted functionfrom any S -sorted X to T� i� T�;s 6= ; for all s 2 S . A su�cient [but not necessary]condition is that for each sort s 2 S , there is at least one constant of that sort, i.e.,�[];s = ;. 23.5 Consequences of FreenessSo far, our development has avoided the use of freeness, corresponding to the existenceof term models in the particular cases discussed in the preliminary chapter. By using thisconcept, we can further explicitate the inference rules for equational deduction by split-ting the rule of congruence into equivalence (i.e., re
exivity + symmetry + transitivity)and closure under operations.Moreover, by assuming freeness, we relate the projectivity condition on quanti�ersto a condition on the category of domains corresponding to the Axiom of Choice. Wecan also see how the �nitarity condition on the forgetful functor from models to domainsboils down in practice to the �niteness of the arities of the model operations. Finally, inthe presence of freeness, we can formulate and prove a more computational version forHerbrand's Theorem.This section assumes the forgetful functor U has a left adjoint F .3.5.1 The existence of congruence closuresThe congruence closure of any binary relation can be constructed in two steps stronglyreminiscent of the rules of equivalence (i.e., re
exivity, symmetry and transitivity) andcongruence (i.e., closure under \model operations") from equational logic [37, 41, 39].Proposition 3.24 Let k hs;ti�!AU be a relation on the underlying domain of the model A.Then the congruence closure of hs; ti exists and it is constructed by the following steps:� operations: de�ne s] and t ] to be the unique extensions of s and t , respectively, tomodel morphisms kF ! A, and 37



� equivalence: let hS ;T i be the kernel of coeqhs]; t ]i.The congruence closure Chs; ti is hSU ;TUi.Proof: hSU ;TUi is a congruence by construction as a kernel pair of a model morphism.Now let � : A ! B be any model morphism. We have to prove that hs; ti � ker(�U)implies hSU ;TUi � ker(�U). kF ker(e)kFU Ak AU B //_ _ _ _ _ _ _t]AAAAAA  s]AAAAAA  T||xxxxxxxS||xxxxxxxt]UGGGGGGG ##s]UGGGGGGG## �}}|||||| eGGGGGGGGG ##k�zzzzzzz<< s //t // �0oo_ _ _ _ _ _ _ _ _Then hs; ti � ker(�U) implies s;�U = t ;�U . s];� = t ];� because of the univer-sal property of the free model kF . Then there is a model morphism �0 such thatcoeqhs]; t ]i;�0 = �. This implies that S ;� = T ;�, which implies hS ;T i � ker�. 2The operations step stands for the closure of the original relation hs; ti under the\model operations". This can be achieved categorically by using the universal propertyof the free model over the indices of the relation. The equivalence step corresponds tothe equivalence generated by the closure under operations. Because this is done at thelevel of model morphisms, the closure under operations is preserved.De�nition 3.25 Consider a binary relation hs; ti on the underlying domain of a modelA. Then hs; ti is closed under operations i� hs]U ; t ]Ui � hs; ti.The closure of hs; ti under operations is the least relation closed under operationsand containing hs; ti, and is denoted Ophs; ti. 2Fact 3.26 Let hs; ti be any binary relation on the underlying domain of a model A.Then its closure under operations exists and is given by hs]U ; t ]Ui.Proof: All we have to show is that h(s]U)]; (t ]U)]i � hs]; t ]i. This follows from theco-universal property of the co-unit � of the adjunction between the category of domainsand the category of models, or more precisely from kF�; v = (vU)] for any kF v! A. 2Example 3.27 Let (S ;�) be a many sorted signature and let hs; ti be an S -sortedbinary relation on the carrier of the S -sorted �-algebra A. Then� hs]U ; t ]Ui is obtained by taking the union of the increasing chain of S -sorted rela-tions hsn ; tnin2!, where hs0; t0i = hs; ti and hsn+1; tn+1i = hsn ; tni[fh�A(sn); �A(tn)i j� 2 �g. h�A(sn); �A(tn)i is obtained by relating the results of all the applications ofthe operation �A to all pairs of elements related by hsn ; tni. The union Sn2!hsn ; tniis the same as relating all the results of the applications of all the derived operatorsto the pairs of elements related by hs; ti.� closing hs]U ; t ]Ui under equivalence produces the congruence coequalising the S -sorted �-morphisms s] and t ]. The congruence is recovered categorically as thekernel of the coequaliser of s] and t ].2 38



The construction of the congruence closure of a binary relation can also be done inmost cases by swapping the two steps corresponding to the closure under equivalenceand closure under model operations, i.e., closing under equivalence �rst and under modeloperations afterwards. This requires coequalisers in the category of domains. Althoughour category-based framework is too abstract for proving the validity of this alternativeconstruction of the congruence closure half of it still holds at this level:Lemma 3.28 Further to theDeductionFramework assume the category X of domainshas coequalisers. Let hs; ti be a relation on the underlying domain of the model A. ThenOph�s ;�ti � Chs; tiwhere h�s;�ti is the equivalence closure of hs; ti, i.e., h�s ;�ti = ker(coeqhs; ti).Proof: By the universal property of kernels and Proposition 3.24, it is enough to showthat �s]; e = �t ]; e where e is the coequaliser of s] and t ].This follows from the fact that s; eU = t ; eU , which implies that �s; eU = �t ; eU , andfurther implies that �s]; e = �t ]; e using the uniqueness part of the universal propertycorresponding to the adjunction determined by U . 2De�nition 3.29 We say that congruences are concrete i� any equivalence closedunder operations is a congruence. 2Corollary 3.30 If congruences are concrete, then category-based equational logic iscomplete under the following inference rules:[re
exivity] (8A)hs; si[symmetry] (8A)hs; ti(8A)ht ; si[transitivity] (8A)hs; ti (8A)ht ; ui(8A)hs; ui[operations] (8A)hs; ti(8A)hs]U ; t ]Uisubstitutivity23.5.2 Finitary model operationsIn this subsection we show how the �nitarity of U (De�nition 3.5) reduces in practice tothe �niteness of the model operations. The category-based formulation of `�nitary modeloperations' is that the forgetful functor U from models to domains preserves �lteredcolimits. We need the following technical condition on the category of domains:[DomainRegularity]: the category of domains X is algebroidal and has col-imits and �ltered unions of equivalences.39



Proposition 3.31 Under theDeductionFramework andDomainRegularity assump-tions, U is �nitary if the forgetful functor U from models to domains preserves �lteredcolimits.Proof: Let k hs;ti�!AU be an arbitrary binary relation on the underlying domain of themodel A. Because X is algebroidal, k is the colimit of a �ltered diagram of �nite domainsfkigi2I . Let � be the colimiting co-cone fkigi2I ! k and let si = �i ; s and ti = �i ; t foreach i 2 jI j.F preserves colimits because it is a left adjoint, hence �F is still a colimiting co-cone.�iF ; v ] = v ]i for v 2 fs; tg by the universal property of ki ; �, thereforehs]; t ]i = colimi2I hs]i ; t ]i iin the comma category (�A#A). ThenChs; ti = U(ker(coeqhs]; t ]i)) (by Proposition 3.24)= ker(U(coeqhs]; t ]i)) (U preserves kernels)= ker(U(coeq(colimi2I hs]i ; t ]i i)))= ker(U(colimi2I (coeqhs]i ; t ]i i))) (coeq : (�A#A)! (A#A) is left adjoint toker : (A#A)! (�A#A))= ker(colimi2I (U(coeqhs]i ; t ]i i))) (U preserves �ltered colimits)= colimi2I ker(U(coeqhs]i ; t ]i i)) (X has �ltered unions of equivalences)= colimi2IU(ker(coeqhs]i ; t ]i i)) (U preserves kernels)= colimi2IChsi ; ti i (Proposition 3.24)This means that Chs; ti = Si2I Chsi ; tii. 2Whenever the domain category X is Set -based, it has �ltered unions of equivalences(as shown in Example 2.22). This includes all of the examples discussed in Section 2.3.Corollary 3.32 All of the forgetful functors from categories of models to categories ofdomains presented in Section 2.3 are �nitary.Proof: All hypotheses of Proposition 3.31 related to the category of domains are triv-ially ful�lled by SetS . The forgetful functors from categories of models to categories ofdomains preserve �ltered colimits because of the �nitarity of the model operations.35When the model operations are �nitary, the forgetful functor from model to domainscreates �ltered colimits, and creation is a stronger property than preservation. 23.5.3 The Axiom of Choice versus projectivityWe use a form of the Axiom of Choice formulated in our category-based framework forproving that free models are always coequaliser projective:35For the case of universal algebra, see Proposition 2, p 208 in Mac Lane's category theory textbook[64]. For all other cases the proof is very similar. 40



Proposition 3.33 If each coequaliser e in the category of models is a split epi at thedomain level, i.e., if eU has a left inverse, then each free model is coequaliser projective.Proof: Let x 2 jXj be an arbitrary domain. We have to prove that xF is coequaliserprojective. Let A e!B be a model coequaliser and let xF h!B be any model morphism.A BxFe // hOOh 0aaBBBBBBLet m be the left inverse to eU and let xF h 0!A be the unique model morphism such thatx�; h 0U = x�; hU ;m.We now show that h 0; e = h:x�; (h 0; e)U = x�; h 0U ; eU= x�; hU ;m; eU (by the de�nition of h 0)= x�; hU (by the de�nition of m)h 0; e = h follows because the arrow x� is universal from x to U . 2In practice, this form of the Axiom of Choice is always satis�ed. In all of the examplespreviously discussed, model coequalisers are pointwise surjective because they are simplymany sorted functions. The usual formulation of the Axiom of Choice asserts that foreach element belonging to the image of a function, one can pick an element in the sourcethat gets mapped into the previous one. In terms of functional composition, this isexactly the same as asserting the existence of a left inverse for any surjection, sometimescalled a choice function. A special remark is needed for the order sorted case, where thefact that the forgetful functor forgets the inclusions between the subsort interpretationsis essential.3.5.4 Herbrand's Theorem revisitedFor this paragraph we further assume that the category A of models has an initial object0A.As pointed out by Goguen and Meseguer [39], there are de�nite advantages in thecase when models do not have empty sorts. In this context, it is possible to have a morecomputational version of Herbrand's Theorem. The following result instantiated to theinstitution of order sorted Horn clause logic with equality gives Herbrand's Theorem fornon-empty sorts as formulated by Goguen and Meseguer in [39].Theorem 3.34 Herbrand's Theorem Under theConcreteDeductionFramework andDomainRegularity assumptions, consider any collection � of conditional equations with�nite hypotheses and with coequaliser projective quanti�ers, and any U -query (9B)qwhere B is any coequaliser projective model. Suppose that U preserves �ltered colimitsand has non-empty sorts.Then � j= (9B)q i� � j= (8y)q; hU for some domain y 2 jXj and some modelmorphism h : B ! yF .Proof: By Herbrand's Theorem 3.21, it is enough to prove that 0� j= (9B)q i� � j=(8y)q; hU for some domain y 2 jXj and some model morphism h : B ! yF .41



Assume that 0� j= (9B)q. Let h : B ! 0� be a solution for (9B)q in 0�. Consider0X the initial domain. Since left adjoint functors preserve colimits, we may assume that0XF = 0A, hence the unique model morphism !0� : 0XF ! 0� is a coequaliser by virtueof the construction of 0� (see Corollary 3.17). Since B is coequaliser projective, thereexists a model morphism h0 : B ! 0XF such that h0; !0� = h. Then � j= (80X)q; h0U .B 0�yF 0XF = 0Ah //h0KKKKKKKKK%%f �� v ]// !0�OOFor the converse, assume that � j= (8y)q; fU for some domain y 2 jXj and somemodel morphism f : B ! yF . Since U has non-empty sorts, there exists a domain mapv : y ! 0AU . Then f ; v ]; !0� is a solution for (9B)q in 0�. 2The model morphism h in this theorem is a solution form for q under �; logic pro-gramming deals with the computation of such morphisms.
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4 Operational SemanticsBy the operational semantics of a computing system one usually means a mathematicalde�nition of how programs are executed by the system. For relational programming,most implementations use SLD-resolution as introduced by Prolog, and for equationallogic programming most implementations use some re�nement of narrowing.Narrowing is a particular case of paramodulation. Paramodulation was �rst intro-duced as an operational inference rule in the context of attempts to integrate equalityinto resolution-based theorem provers [80]. Narrowing was introduced by Slagle [86].Later, narrowing was used as a basis for semantic uni�cation (i.e., uni�cation moduloa set of rules) algorithms. Basic narrowing appeared for the �rst time in Hullot's work[57]. The completeness result for innermost narrowing in the context of canonical termrewriting systems is originally due to Fribourg [22]. H�olldobler's thesis [54] gives a sys-tematic presentation of the current state of art of this �eld including also interestinghistorical references. Our presentation of the completeness of di�erent re�nements ofparamodulation is in
uenced by [54].Equational logic programming systems based on Horn clause logic with equality usea mixture of resolution (applied to relational symbols) and narrowing. However, it isimportant to notice that in the context of the embedding of Horn clause logics into equa-tional logics described in Section 2.3.3, resolution appears as a re�nement of narrowing inthe presence of relational symbols.36 This has mainly theoretical implications rather thanpractical ones because the use of resolution greatly improves the e�ciency of the system,but it is important for an uniform algebraic treatment of the operational semantics ofequational logic programming languages based on Horn clause logic with equality.4.0.5 Completeness of Paramodulation: its ArchitectureOur approach to the completeness of paramodulation departs fundamentally from pre-vious treatments in that it is based on model theory rather than on combinatorial tech-niques involving term manipulations. We generalise the concept of paramodulation tomodel theoretic paramodulation by de�ning paramodulation as an inference rulewith respect to an arbitrary �xed model. The ordinary concept of paramodulation isrecovered as model theoretic paramodulation with respect to the initial algebra for analgebraic signature. The category-based dimension of our new approach brings out notonly the simplicity of the categorical arguments (vis �a vis set theoretical arguments),but more importantly, it shows that the core of the paramodulation-based operationalsemantics for equational logic programming can be developed independently of the de-tails of the particular equational logic involved. In this way, the results of this workcan be applied to a variety of equational logic programming systems that are rigorouslybased on some version of equational logic and whose operational semantics is based onsome re�nement of paramodulation (some form of narrowing, in general). This includessystem based on many sorted or order sorted equational logic, Horn clause logic (withequality), equational logic modulo axioms, etc. These results might be relevant even forconstraint programming since constraint logic (i.e., the logic underlying constraint logic36This is explained in Section 4.2.1 below. 43



programming in the style of Eqlog, see Chapter 6) can be regarded as category-basedequational logic. Another important consequence of the model theoretic approach toparamodulation is a direct treatment of computations modulo axioms. This is achievedby considering the paramodulation relation induced by the program on the initial modelof the respective theory. For example, the programming language Eqlog is based on ordersorted Horn clause logic with equality [38, 39] and supports refutations modulo axioms(associativity, commutativity, and their combination).This chapter proposes a general scheme for the treatment of the completeness ofparamodulation-based operational semantics. The core of this scheme is an analysis ofthe relationship between �A� (given a program � and a model A, the least congruence onA closed under �-substitutivity) and the relations induced on A by the operational in-ference rules, mainly paramodulation (this relation is denoted as �A� . This is technicallyconnected to the concept of solution for equational queries through Theorem of Con-stants and Completeness of Equational Logic and to the concept of solved form throughLifting Lemmas. The terminology \solved form" was �rst introduced by Lassez [67] asa replacement to the traditional logic programming terminology of \computed answersubstitution." The new terminology is more adequate to the modern methods of solvingqueries by system transformations rather than resolution-like techniques (see the survey[62]). Solution and solved forms are respectively the semantic and computational sidesof the same concept. The soundness of the operational semantics means that any solvedform is a solution and the completeness means that any solution form is an instantiationof a solved form.37 In other words, the set of solutions of a query is the same as the set ofsolutions of the solved form. The connection to the model theory of equational logic pro-gramming is done via Herbrand's Theorem; this connects directly to the mathematicalfoundations of logic programming.Herbrand'sTheorem The concept ofsolution formfor equational queries �A� ?=�A�The concept ofsolved form
� �� �PPPPPPPPPPP((� �� �Completeness ofoperational semanticsKKKKK KKKKKKKK%%Theorem of ConstantsCompleteness of Equational Logic //� �� �LiftingLemmas}}}}}}~~}}}}}}� �� �This �gure visualises the architecture of the completeness of our approach toparamodulation-based operational semantics as discussed abovely. Because of e�ciencyconcerns, equational logic programming systems actually implement various re�nementsof paramodulation rather than paramodulation itself. Most of these are re�nementsof narrowing, and one of the most powerful re�nements is basic innermost normalisednarrowing [54]. The completeness of di�erent narrowing techniques is obtained in the37However, the concept of completeness is usually taken to subsume soundness.44



same way as the completeness of plain paramodulation, the only di�erences occurring atthe level of the Lifting Lemmas. As shown in [54], the completeness of di�erent narrowingtechniques requires some restrictions on the programs.38One of the most important properties of programs is con
uence. We show that thecompleteness of paramodulation and the transitivity of the paramodulation relation aretechnically equivalent. By approaching con
uence from a model theoretic angle, we showthat the transitivity of the paramodulation relation is in fact equivalent to the con
uenceof the program with respect to a given reachable model. In this way, model theoreticparamodulation is complete for oriented application of rules if and only if the programis con
uent.4.1 PreliminariesThe framework for the categroy-based treatment of operational semantics is the generalframework of category-based equational logic, i.e., a \forgetful" functor U : A! X froma category of models to a category of doamins, and satisfying the following technicalconditions:[OperationalFramework]: DeductionFramework + DomainRegular-ity + the forgetful functor U has a left adjoint F and preserves �ltered colimits+ congruences are concrete.De�nition 4.1 A conditional U -rule is an oriented conditional �nite U -equation with�nite hypotheses, usually written as (8B)l!r if hs; ti where hs; ti is called the hypothe-ses of the rule and l!r the conclusion (or the head) of the rule. The rule is atomicif its conclusion (head) is atomic as a binary relation. 2The quanti�er B can in general be any model (see De�nition 3.6). However, we restrictourselves here to the case of [coequaliser] projective quanti�ers, a condition stronglyrelated to the completeness of the equational deduction (see Theorem 3.17). Recall fromProposition 3.33 that in the presence of a form of the Axiom of Choice, all free models are[coequaliser] projective. As a matter of notation, whenever a model is freely generatedby a domain x (which in practice will be a collection of variable symbols), we will write8x rather than 8xF ; also for valuations we will use maps x ! AU rather than modelmorphisms xF ! A.4.1.1 Rewriting contextsThe concept of context plays a primary rôle in the mathematical formulation of rewritingas an inference rule. This paragraph is concerned with the category-based de�nitionof context. Such a de�nition is crucial for the category-based treatment of rewritingbecause the notion of rewriting context ultimately has an algebraic nature; this makesthe de�nition of rewriting independent of the tree-like representations of terms. In thisway, rewriting can be de�ned on algebraic entities that are more abstract than the terms.This is achieved by abstracting the properties of contexts known from the standardcase of many-sorted algebra. One of the most important properties is the unary natureof contexts, i.e., rewriting contexts behave as unary functions. The following recalls thede�nition of context in many-sorted algebra:38However, these restrictions are generally met in practice.45



De�nition 4.2 Let � be a many-sorted algebraic signature. Then a rewriting �-context is a �-term with one variable symbol having a single occurrence of that variablesymbol.Given any �-algebra A, a rewriting �-context c determines a map cA : A ! A thatevaluates the context for any given value in A of the variable symbol of c. This isrepresented by the following diagram,fzg T�(fzg)A�o //aJJJJJJJJJ$$ a]��where for each a 2 A, a : fzg ! A satis�es a(z ) = a. Then cA : A ! A is de�ned bycA(a) = a](c) where a ] is the unique extension of a to a �-homomorphism. 2Note that in general cA is not an algebraic homomorphism. However, it is easy tonotice that the rewriting contexts form a monoid under the composition (i.e., by pluggingone context into another), and as shown in the following, the evaluation of contextscommutes with algebraic homomorphisms:Proposition 4.3 Let c be any rewriting context in an algebraic signature � and h : A!B be a �-homomorphism. Then cA; h = h; cB .Proof: Using the notation of De�nition 4.2, for each a 2 A we have:(cA; h)(a) = h(a](c))= (a; h)](c) (by the universal property of T�(fzg))= h(a)](c)= cB (h(a))= (h; cB)(a):2This last property suggests the natural transformation nature of the rewriting contextsand motivates the following de�nition:De�nition 4.4 Let U : A ! SetS be a forgetful functor from a category A of models.A U -context is a natural transformation c : U ! U . The composition of U -contexts isthe usual composition of natural transformations. 2From now on, we will in general use the more intuitive notation cA[t ] instead of t ; cAfor the evaluation of a context c in a model A. This notation is closer to the usualnotations for contexts in rewriting.De�nition 4.5 A binary relation hs; ti on the underlying domain of a model A is closedunder context evaluation i� hcA[s]; cA[t ]i � hs; ti for any context c. The least relationclosed under context evaluations and containing hs; ti is called the context closure ofhs; ti. 2 46



Proposition 4.6 Let hs; ti = fhsi ; ti i j i 2 I g be a binary relation on the underlyingdomain of a model A. If hs; ti is closed under operations, then it is also closed undercontext evaluations.Proof: Let hs]U ; t ]Ui be the closure under operations of hs; ti by Fact 3.26. By hy-pothesis, hs; ti = hs]U ; t ]Ui. Then for any context chcA[s]; cA[t ]i = hcA[s]U ]; cA[t ]U ]i= hs]U ; cA; t ]U ; cAi= hcIF ; s]U ; cIF ; t ]Ui (by the naturality of c)� hs]U ; t ]Ui= hs; ti:2An essential property of rewriting contexts in MSA is that the converse of the previousresult holds for transitive relations on reachable algebras:Proposition 4.7 Let � be a many-sorted algebraic signature and A a reachable �-algebra. Then a transitive relation on A is closed under operations i� it is closed underrewriting context evaluations.Proof: Let � be a transitive relation on A. In the virtue of Proposition 4.6, it su�ces toshow that � is closed under operations if it is closed under rewriting context evaluations.Let � be an arbitrary operation symbol in � and let a = (a1 : : : an) � (b1 : : : bn) = b.We have to show that �A(a) = �A(b). For simplicity (and without restricting generality)we can assume that n = 2. Because A is reachable, there exist t and t 0 ground termssuch that tA = a1 and t 0A = b2. Let c[z ] = �(t ; z ) and c 0[z ] = �(z ; t 0) be contexts, withvariable symbol z . Then�A(a) = cA[a2]� cA[b2] (since a2 � b2)= �A(a1; b2)= c0A[a1]� c0A[b1] (since a1 � b1)= �A(b):Now, �A(a) � �A(b) because of the transitivity of �. 2This crucial property is central to the category-based de�nition of the notion of rewrit-ing context:De�nition 4.8 Let U : A ! X be a forgetful functor from a category of models to acategory of domains. A monoid C of rewriting contexts for U is a submonoid of allU -contexts such that any transitive relation on a reachable model that is closed underrewriting context evaluations is also closed under operations. 2In principle it is possible to have various monoids of rewriting contexts for a �xedcategory of models and category of domains. Some of these could be very di�erentfrom from the standard ones, thus generating non-conventional notions of rewriting andparamodulation.Corollary 4.9 Let C be a �xed monoid of rewriting contexts. An equivalence on A is acongruence i� it is closed under rewriting context evaluations. 247



4.2 Inference RulesThis section presents the inference rules for the operational semantics of equational logicprogramming as a re�nement of paramodulation. Recall from [54] the notion of occur-rence in a term. For any term t and any occurrence � in t , let t j� denote the subterm oft whose root is positioned at �, and let t j� s denote the term obtained from t replacingt j� with s as a subterm in t . An equational goal is a pair ht1; t2i of terms. The notionof occurrence can be extended from terms to goals by regarding any goal ht1; t2i as aterm having two subterms t and t 0. The instantiation of a term by a substitution � isdenoted t�, and the composition of substitutions is written simply by concatenation andin diagrammatic order. The empty substitution is denoted �.The presentation of the rules of inference for the operational semantics of equationallogic programming follows the more classical approach of computed anwer substitutionsrather than the more modern approach of transformation of system of equations (see[20]).39 The main reason for this choice is the example nature of this section and alsothat this presentation of the the inference rules for the operational semantics is faithfulto the current implementation of the Eqlog system.De�nition 4.10 Let � be an algebraic signature and � be a program in �, i.e., acollection of �-rules. Then the paramodulation rule isG [ fht1; t2igG� [ hs�; t�i [ f(ht1; t2ij� r )�gwhere (8X )l!r if hs; ti is a new variant40 of a rule in �, G is a list of goals, and � isthe most general uni�er of l and ht1; t2ij�. A single inference step of this rule is denoted����!!p.A rewriting step (denoted ����!!R) is a paramodulation step such that the domainof the substitution � doesn't contain any variable from ht1; t2i.A narrowing step (denoted ����!!n) is a paramodulation step such that ht1; t2ij� isnot a variable. 2The elimination of trivial goals is done directly through syntactic uni�cation:De�nition 4.11 The re
ection rule is:G [ fht1; t2igG�where G is a list of goals and � is the most general uni�er of t1 and t2. One step of thisrule is denoted ����!!r . 2By preventing the application of narrowing steps at occurrences introduced by thecomputed substitutions, the search space of the narrowing chains is reduced drastically.This restriction is called basic narrowing and still preserves the completeness of theoperational semantics when the program is a canonical rewriting system [54]. In orderto be able to write down the rule of basic narrowing as an inference rule without sideconditions, [54] introduces a new representation for goals consisting of a skeleton part39Originating from Martelli and Montanari's work on syntactic uni�cation [71].40Obtained by renaming all variables in the rule with new names.48



(just goals in the ordinary sense, i.e., pairs of terms) and an environment part (theaccumulation of the computed substitutions). By also using the rule of innermostre
ection, it is enough to restrict the application of the narrowing steps to only thoseoccurrences that are leftmost innermost.De�nition 4.12 A redex in a goal is an occurrence at which a narrowing step could beapplied. An innermost redex is a redex such that there doesn't exist any other redexbelow it.The rule of basic innermost narrowing is:hG [ fht1; t2ig; �ihG [ hs; ti [ fht1; t2ij� rg; ��iwhere � is a innermost redex in ht1; t2i for ht1�; t2�i, � is the most general uni�er of(ht1; t2ij�)� and l and (8X )l!r if hs; ti is a new variant of a clause in �. One step ofthis rule is denoted ����!!in .The rule of innermost re
ection is:hG [ fht1; t2ig; �ihG [ fht1; t2ij� x g; ��iwhere � is a innermost redex in ht1; t2i for ht1�; t2�i and � is the substitution replacing anew variable x by (ht1; t2ij�)�. One step being denoted as ����!!ir . 2Let 2 denote the empty list of goals. Recall that a chain of inference steps is calleda refutation i� it ends in 2.De�nition 4.13 A substitution � is an instantiation of another substitution ' (written� � ') i� there exists a substitution 
 such that � = '
. 2Fact 4.14 The relation � on substitutions is a preorder. 2De�nition 4.15 Consider a system of inference rules for equational logic programmingoperational semantics. A computed answer substitution41 is the accumulation of thesubstitutions computed by a refutation chain. 2The inference system is sound i� for any list of goals G, any solved form is a solutionform for G, and it is complete i� any solution form for G is an instantiation of somesolved form.4.2.1 Resolution as a re�nement of paramodulationIn this paragraph we show how resolution can be regarded as paramodulation in thecontext of the embedding of Horn clause logics into equational logics developed in Section2.3.3.De�nition 4.16 Let (S ;�;�) be a �rst order signature and � a collection of (S ;�;�)-clauses. The resolution rule is41Called \solved form" in the scheme proposed in the introduction to this chapter.49



G [ fp(t)gG� [ C �where (8X )p(s) if C is a new variant of a clause in �, p is a relational symbol in �, and� is the most general uni�er of p(s) and p(t). 2Fact 4.17 By using the transformations described in Section 2.3.3, a resolution step canbe performed by a narrowing step followed by a re
ection step.Proof: Using the notations of the previous de�nition, the clause (8X )p(s) if C becomesa �b [ �b-rule (8X )pb(s) ! t if C b where C b is the transformation of the (�;�)-condition C into the corresponding set of �b [ �b-equations. This rule can be used forperforming a narrowing step at the topmost symbol of the selected goal fromGb [ fhpb(t); tigand getting Gb� [ C b� as a result after eliminating ht; ti by a re
ection step. 24.3 Model Theoretic ParamodulationIn this section we extend the concept of paramodulation to model theoretic paramodula-tion within the framework of category-based equational logic, and study the relationshipbetween the paramodulation relation induced by a program � on a model A and theleast congruence on A closed under �-substitutivity. Accordingly to the general schemeproposed in the introduction, this goes at the heart of the category-based treatmentof the operational semantics for equational logic programming. The completeness ofparamodulation is explained by the identity between these two relations. We show thatthis identity problem reduces exactly to the transitivity of the paramodulation relation.For simplicity of notation, we will often omit42 writing the forgetful functor U in caseof domain maps underlying model morphisms, i.e., we write s; h rather than s; hU .4.3.1 The paramodulation relationThis paragraph introduces the concept of model theoretic paramodulation in the form ofa binary relation induced by a given program on an arbitrary model. We assume a �xedmonoid C of rewriting U -contexts.De�nition 4.18 Let � be a collection of conditional U -rules and consider an arbitrarymodel A. Then a binary relation � on A is closed under �-paramodulation i� for anyrule (8B)l!r if hs; ti in �, for any model morphism h : B ! A, and for any rewritingU -context c,cA[l ; h] � b if s; h � t ; h and cA[r ; h] � bfor any b in the underlying domain of A.The least binary relation on A closed under re
exivity, symmetry and �-paramodulationis denoted as �A� . 2The concept of the least binary re
exive-symmetric relation closed under paramodu-lation is an algebraic abstraction of the relation on terms induced by paramodulation asa refutation rule:42Only in this section and the following one. 50



Fact 4.19 Let T� be the initial �-algebra for an algebraic signature �, i.e., the algebraof ground terms. For any collection � of conditional �-rules,�T�� = fht1; t2i j ht1; t2i �����!!�R 2gi.e., the least relation on T� closed under re
exivity, symmetry and �-paramodulationconsists exactly of those pairs of terms for which there exists a paramodulation andre
exivity refutation using �. 2Given a program � we can de�ne the concept of (model theoretic) paramodula-tion with respect to a model A as an inference rule on A-goals, i.e., symmetrical pairsof elements from A:[mtp] hs; h; t ; hi hcA[r ; h]; bihcA[l ; h]; bifor any rule (8B)l!r if hs; ti in �, for any model morphism h : B ! A, and for anyrewriting U -context c. The symmetry axiom is explained by the fact that the goals inequational logic programming are not oriented, i.e., the position of the sides in a goaldoesn't matter.Proposition 4.20 For any model A, the least relation on A closed under re
exivity,symmetry and �-paramodulation exists and is given by�A�= [n2! �A�;nwhere �A�;0= DAU (the diagonal) and�A�;n+1=�A�;n [ sym([fhcA[l ; h]; bi j hcA[r ; h]; bi; hs; h; t ; hi ��A�;ng)for each n 2 !.Proof: The re
exivity of Sn2! �A�;n is given by �A�;0. In order to prove its symmetry,we show by induction on n 2 ! that �A�;n is symmetric. We use Lemma 2.34. Considerhs 0; t 0i � Sn2! �A�;n �nite. Since f�A�;n j n 2 !g is �ltered, there exists n 2 ! such thaths 0; t 0i ��A�;n. The rest follows by the induction hypothesis and by the remark that theunion of two symmetric relations is symmetric too.In order to prove the closure under �-paramodulation of Sn2! �A�;n , consider(8B)l!r if hs; ti 2 �; h : B ! A a model morphism and c a rewriting contextsuch that hs; h; t ; hi; hcA[r ; h]; bi � Sn2! �A�;n. Because of the �niteness of both hs; h; t ; hiand hcA[r ; h]; bi, there exists m 2 ! such that s; h �A�;m t ; h and cA[r ; h] �A�;m b. There-fore, cA[l ; h] �A�;m+1 b.Now, consider any other re
exive-symmetric binary relation Q on A that is closedunder �-paramodulation. By induction on n 2 !, �A�;n� Q . Then Sn2! �A�;n� Q . 2The intuitive meaning of �A�;n is the re
exive-symmetric relation generated by apply-ing at most n �-paramodulation steps.The soundness of model theoretic paramodulation is given by the following result.Any pair of elements that can be refuted through paramodulation, can be proved usingstandard equational deduction too. 51



Proposition 4.21 Let � be a collection of conditional U -rules. Then for any model A,�A���A� .Proof: Since �A� is closed under re
exivity and symmetry because it is a congruence, allwe have to show is that it is also closed under �-paramodulation. Let (8B)l!r if hs; tibe any rule in � and h : B ! A be a model morphism such that s; h � t ; h and suchthat cA[r ; h] � b for some rewriting context c and some b.Because �A� is closed under �-substitutivity, we have that l ; h � r ; h. Because �A� isclosed under operations and by Proposition 4.6, cA[l ; h] � cA[r ; h]. Then cA[l ; h] � b bythe transitivity of �A� . 2The completeness of model theoretic paramodulation is given by the opposite inclusionand works only for the case of reachable models:Proposition 4.22 Let � be a collection of conditional U -rules and let A be a reachablemodel. Then �A� is an equivalence i� �A�=�A� .Proof: Since �A� is an equivalence and because of Proposition 4.21, we have to showonly that if �A� is an equivalence then �A���A� .The closure of �A� under �-substitutivity is obtained directly from the closure under�-paramodulation for the particular case when the context c is the identity, and fromthe re
exivity of �A� .Because A is reachable and �A� is an equivalence, the closure of �A� under operations isthe same as its closure under rewriting context evaluations. The closure under rewritingcontext evaluations is shown by proving by induction on n 2 ! that �A�;n; uA ��A� forany rewriting context u. So consider(8B)l!r if hs; ti 2 �; h : B ! A a model morphism and c a rewriting contextsuch that s; h �A�;n t ; h and cA[r ; h] �A�;n b. By applying the induction hypothesis for n,we get that uA[cA[r ; h]] �A� uA[b] which means that (c; u)A[r ; h] �A� uA[b]. Now since �A�is closed under �-paramodulation, we obtain that (c; u)A[l ; h] �A� uA[b], meaning thatuA[cA[l ; h]] �A� uA[b]. Because�A�;n+1=�A�;n [ sym([fhcA[l ; h]; bi j hcA[r ; h]; bi; hs; h; t ; hi ��A�;ng)we can conclude that �A�;n ; uA ��A� by using Fact 2.10.Because congruences are concrete, �A� is a congruence (which is closed under �-substitutivity as shown above). Since �A� is the least congruence closed under�-substitutivity, we have �A���A� . 2So, the completeness of model theoretic paramodulation reduces to the transitivityof the paramodulation relation:Completeness of model theoretic paramodulation = transitivity of the paramod-ulation relation. 52



4.3.2 Completeness of model theoretic paramodulationProposition 4.22 links the completeness of paramodulation to the equivalence propertyof the paramodulation relation �A� . In fact, �A� is always re
exive and symmetric. Inthis way, the transitivity of the paramodulation relation is technically equivalent to thecompleteness of paramodulation.In this paragraph, �A� is shown to be transitive when backward applications of therules in � are allowed. This solution is more on the side of theorem proving rather thanlogic programming, but the next section deals with this problem in a di�erent way byrelating it to con
uence.De�nition 4.23 Let � be a collection of conditional U -rules. Let � denote the collectionof conditional U -rules obtained by reversing the orientation of the rules in �, i.e.,� = f(8B)r!l if hs; ti j (8B)l!r if hs; ti 2 �g2Fact 4.24 For any model A and any collection � of conditional U -rules, �A�=�A�[�. 2For the rest of the section we suppose that all coproducts in the category X of domainsare disjoint.Proposition 4.25 Let � be a collection of conditional atomic U -rules. Then for anymodel A, �A�[� is transitive.Proof: Because of Lemma 2.34 it is enough to prove that if ha; bi ��A�[� and hb; di ��A�[�then ha; di ��A�[� for a; b; d �nite. Since hb; di is �nite, there exists n 2 ! suchthat hb; di ��A�[�;n . Therefore, we show by induction on n 2 ! that a �A�[� b andhb; di ��A�[�;n implies a �A�[� d , where a; b; d are �nite. For the induction step, assumethat a �A�[� b and hb; di ��A�[�;n+1. In the virtue of Lemma 2.14 and because the rulesin � are atomic, we may further assume thatb = cA[l ; h] for some (8B)l!r if hs; ti 2 � [ �;B h�! A and c rewriting contextsuch that s; h �A�[�;n t ; h and cA[r ; h] �A�[�;n d . Now, by applying a �[�-paramodulationclosure step for (8B)r!l if hs; ti (still in � [ �) and h, we obtain that cA[r ; h] �A�[�a since �A�[� is closed under � [ �-paramodulation. Because a �A�[� cA[r ; h] andcA[r ; h] �A�[�;n d , we can apply the induction hypothesis and conclude by a ��A�[� d . 2The completeness of model theoretic paramodulation when backward applications ofrules are alowed is given by the following corollary:Corollary 4.26 Let � be a collection of conditional atomic U -rules. Further assume thatany re
exive-symmetric-transitive relation in the category of domains is an equivalence.Then for any reachable model A, we have �A�[�=�A� . 253



Completeness of many sorted paramodulation. We conclude this section withan example. We illustrate how the general scheme discussed in the introduction to thechapter can be used in conjuction with the previous results on model theoretic paramod-ulation to prove the completeness of paramodulation as a refutation procedure in thecase of many sorted algebra.We �x an algebraic signature �.Corollary 4.27 Let � be a collection of conditional �-rules. If � j=� (8X )ht1; t2i, thenthere exists a rewriting refutation of ht1; t2i using � [ �, i.e., ht1; t2i �[�����!!�R 2.Proof: By the Theorem of Constants (5.52),� j=� (8X )ht1; t2i i� � j=�X (8;)ht1; t2iwhere �X is the signature obtained by adjoining X to � as new constants. By theCompleteness Theorem, ht1; t2i belongs to �T(�X )� , i.e., the least congruence on T(�X )closed under �-substitutivity. By Theorem 4.26, ht1; t2i belongs to �T(�X )�[� , i.e., the leastre
exive relation on T(�X ) closed under � [ �-paramodulation. The rest follows by Fact4.19. 2De�nition 4.28 For any algebraic signature �, let F (�) be the collection of all func-tional re
exive axioms, i.e., F (�) = f(8x1 : : : xn)f (x1 : : : xn ) = f (x1 : : : xn) j f 2 �g.2 A similar version of the following Lifting Lemma appears in [54]:Proposition 4.29 Lifting Lemma Let G be a �nite set of goals. If G� �����!!�p;r 2 withcomputed answer substitution �, then G�[F(�)����!!�p;r 2 with computed answer substitution
 such that �� � 
.Proof: We prove by induction on n 2 ! that if G� �����!!np;r 2, then G�[F(�)����!!�p;r2 with
 computed answer substitution such that �� � 
. For the induction step, there are twocases: when the �rst step is a re
ection, and when it is a paramodulation.Suppose G�����!!r G0�' �����!!n�1p;r 2 where G = G0 [ fht1; t2ig, ' = mgu(t1�; t2�)and �0 is the answer substitution computed by the last n � 1 refutation steps. Then'�0 = �.There exists '0 = mgu(t1; t2) and a unique substitution � such that �' = '0�. We cando a re
ection step G����!!r G0'0. Since (G0'0)� = G0�', by the induction hypothesis,there is G0'0�[F(�)����!!�p;r 2 with 
 0 the computed answer substitution such that ��0 �
 0. Therefore, there exists a refutation G�[F(�)����!!�p;r 2 with 
 = '0
0 computed answersubstitution and such that�� = �'�0= '0��0� '0
0= 
 54



Now, suppose that G� �����!!p (G�j� r )' �����!!n�1p;r 2 where (8X )l!r if hs; ti is anew variant of a clause in � and ' = mgu(G�j�; l) for some occurrence � in G�.First, assume that � is a basic occurence (i.e., not introduced by �). In this case,G�j� = (Gj�)�. Since the variables of the selected clause don't clash with the logicalvariables, ' is the most general uni�er of (Gj�)� and l�. Let '0 be the most generaluni�er of Gj� and l . Then there exists a unique � such that �' = '0�. We have thatG����!!p (Gj� r ) and that ((Gj� r )'0)� �����!!n�1p;r 2. By applying the same argumentas in the previous case when the �rst refutation step was a re
ection, we deduce theexistence of a computed answer substitution 
 such that �� � 
.The last case occurs when � is not a basic occurence. Then � = �1�2 where Gj�1is a variable. Let � be the substitution � restricted only to the variable Gj�1 . Then� = � + �0 where dom� \ dom�0 = ;. Then G F(�)����!!�p G�����!!p (G�j� r )'. Becauseof the renaming of the variables we may also assume that dom' \ dom�0 = ;. Thenwe have that �'�0 = (� + �0)' = �', which implies that (G�j� r )'�0 �����!!n�1p;r 2because (G�j� r )'�0 = (G�j� r )'. By the induction hypothesis there exists a refutation(G�j� r )'F(�)[�����!!�p;r 2 with 
 0 computed answer substitution such that �0�0 � 
 0 where�0 is the substitution computed by the refutation (G�j� r )' �����!!n�1p;r 2. Then 
 = �'
 0and by a similar argument as in the previous cases we can prove that �� � 
. 2Corollary 4.30 Let � be a collection of conditional �-rules. Then the refutation pro-cedure through re
exivity and paramodulation via � [ � [ F (�) is complete. 24.4 Paramodulation modulo a Model MorphismThis section proposes an abstract treatment for computations modulo axioms. Each the-ory determines a quotienting morphism for each model A (see Theorem 3.17) constructingthe free model over A satisfying that theory. This quotienting can be considered as themodel theoretic expression of the (logical) theory. In this way, the study of computationsmodulo a model morphism generalises the study of computations modulo axioms. Westudy the relationship between provability by paramodulation in a model and provabilityby paramodulation in the quotient model. A standard example is given by the quotientof an initial model (i.e., model of ground terms) modulo axioms.43The following result shows that any model morphism preserves provability underparamodulation:Proposition 4.31 Let � be a collection of conditional U -rules and f : A ! A0 be anarbitrary model morphism. Then�A� ; f ��A0�Proof: It is enough to show by induction on n 2 ! that�A�;n; f ��A0�;nFor the induction step consider43Section 4.5.3 elaborates on this example. 55



(8B)l!r if hs; ti 2 �; h : B ! A a model morphism and c a rewriting contextsuch that hs; h; t ; hi; hcA[r ; h]; bi ��A�;n . By induction hypothesis,hs; h; f ; t ; h; f i; hcA[r ; h; f ]; b; f i ��A0�;n. Hence hcA[l ; h]; bi; f = hcA[l ; h; f ]; b; f i ��A0�;n+1,which proves that �A�;n+1; f ��A0�;n+1. 2The equality�A� ; f =�A0�doesn't hold in general because in its present form it dismisses the rôle played in proofsby the quotienting. A way to integrate the quotienting into the proof theory is given byintroducing a new inference rule:De�nition 4.32 Let �A;f� be the least re
exive-symmetric relation closed under�-paramodulation and under[modf] Qker(f ) �Q � ker(f )where Q is any binary relation on the underlying domain of A. 2Fact 4.33 The relation �A;f� exists and can be obtained in the manner of Proposition4.20 by an alternation of �-paramodulation steps with modf. 2Proposition 4.34 Let f : A ! A0 be a model morphism and � be a collection ofconditional U -rules. Then�A;f� ; f ��A0� :Proof: By similarity to the proof of Proposition 4.31. 2The following theorem is the main result of this section:Theorem 4.35 Let f : A ! A0 be a coequaliser in the category of models and � be acollection of conditional U -rules. Then�A;f� ; f =�A0� :Proof: By Proposition 4.34 it is enough to prove the inclusion �A0� ��A;f� ; f . We showby induction on n 2 ! that�A0�;n��A;f� ; f :For n = 0 it is enough to prove that DA0U = DAU ; f , since DAU � ker(f ). Theinclusion DAU ; f � DA0U is obvious. Consider hs 0; s 0i � DA0U . Because f U is split-epi,there exists s such that s; f = s 0. Hence hs; si; f = hs 0; s 0i and DA0U � DAU ; f .For the induction step, consider cA0 [l ; h 0] �A0�;n+1 b0 with(8B)l!r if hs; ti 2 �; h 0 : B ! A0 a model morphism and c a rewriting context56



such that hs; h 0; t ; h 0i; hcA0 [r ; h 0]; b 0i ��A0�;n.Because B is coequaliser projective, there exists h : B ! A such that h; f = h 0 and bsuch that b; f = b 0. B AA0h 0AAAAAA   h //_ _ _ f��cA0 [l ; h 0] = cA0 [l ; h; f ]= l ; h; f ; cA0= l ; h; cA; f (naturality of c)= cA[l ; h]; f :Similarly cA0 [r ; h 0] = cA[r ; h]; f . By the induction hypothesis hs; h; t ; hi; f ; hcA[r ; h]; bi; f��A;f� ; f . Because �A;f� is closed under the rule modf, hs; h; t ; hi; hcA[r ; h]; bi ��A;f� .Because �A;f� is closed under �-paramodulation , we have hcA[l ; h]; bi ��A;f� . HencecA0 [l ; h 0] = cA[l ; h]; f ��A;f� ; f . 2Model theoretic paramodulation together with modf de�ne the concept of paramod-ulation modulo a model morphism. The previous theorem shows thatParamodulation modulo a model morphism = paramodulation in the quotientmodel.As already mentioned, paramodulation modulo axioms can be regarded as a particularcase of paramodulation modulo a model morphism. Actually, by taking the semanticapproach on equational theories expressed by De�nition 3.6, these two notions appearto be two sides of the same concept. This point of view is supported by regarding thekernel of a model morphism as a theory, or better as the consequences of a theory in thesource of the model morphism.4.5 Con
uenceUsing the rules of a program as non-oriented equations can lead to very ine�cient searchwithin the space of paramodulation chains. A �rst crucial point in reducing the size ofthe space of inference chains is to make use of the orientation of the rules. This also addsdirection to the refutation, bringing it closer to the true meaning of computation. Thecompleteness of paramodulation with oriented rules depends essentially on the con
uenceof the program. This section explains the relationship between the transitivity of theparamodulation relation determined by a program � on a model A and the con
uence of� as a collection of [oriented] rules.Con
uence (also called the Church-Rosser property44) is central to the theory ofrewriting. Con
uence and termination are essential properties of rewriting systems asmodels of computation. Con
uent and terminating rewriting systems can be used asdecision procedures for equality (see [30]). Our concept of con
uence for a programgeneralises the traditional one in the sense that it depends on a given model rather thanbeing �xed (to the model of ground terms).44More precisely, Church-Rosser and con
uence are di�erent properties that can be easily provedequivalent in most cases. However, there are some situations when there is a subtle di�erence betweenthese two properties (see [20]). 57



4.5.1 Model theoretic rewritingAny program determines a rewriting relation on the underlying domain of any model:De�nition 4.36 Let � be a collection of conditional U -rules. Then a binary relation�on a model A is closed under �-rewriting i� for any rule (8B)l!r if hs; ti in � and forany morphism h : B ! A,cA[l ; h]� cA[r ; h] if s; h �A� t ; hfor any rewriting U -context c. The least relation on A closed under re
exivity, transitivityand �-rewriting is denoted as �A� . 2Fact 4.37 Let � be a collection of conditional U -rules. For any model A,�A� exists andis given by�A�= (�A� )� where �A� =[fhcA[l ; h]; cA[r ; h]i j s; h �A� t ; hg;i.e., �A� is the transitive-re
exive closure of the least relation closed under �-rewriting.2 In De�nition 4.36, h plays the rôle of the matcher for the left-hand side of a rule toan element of the algebra. For example, in the case of the OBJ system, the algebra Ais the initial algebra of ground terms (or the initial algebra of a theory for the case ofrewriting modulo axioms). In this case, h matches the left-hand side of a rule in theprogram with a subterm of the term to be rewritten. But the rewriting is done only afterthe system proves the validity of the hypotheses instantiated by the matcher h. Thealgebraic formulation of this last condition is given by s; h �A� t ; h, since �A� containsexactly all identities in A that can be proved from � by paramodulation.The following result shows that the rewriting relation is preserved under model mor-phisms:Proposition 4.38 Let � be a collection of conditional U -rules. For any model morphismf : A! A0�A� ; f ��A0� :Proof: Consider(8B)l!r if hs; ti 2 �; h : B ! A a model morphism and c a rewriting contextsuch that s; h �A� t ; h. By Proposition 4.31, s; h; f �A0� t ; h; f , hence cA[l ; h]; f =cA0 [l ; h; f ]�A0� cA0 [r ; h; f ] = cA[r ; h]; f . 2De�nition 4.39 Let � be a collection of conditional U -rules and f : A! A0 be a modelmorphism. The binary relation � on A is closed under �-rewriting modulo f i� forany rule (8B)l!r if hs; ticA[l ; h]� cA[r ; h] i� s; h �A;f� t ; h:The least relation on A closed under re
exivity, transitivity, �-rewriting modulo f , andmodf is denoted �A;f� . 2 58



The following result is in the spirit of Section 4.4 and it shows that rewriting moduloa model morphism45 is the same as rewriting in the quotient model.Theorem 4.40 Let � be a collection of conditional U -rules and f be a coequaliser inthe category of models. Then�A;f� ; f =�A0� :Proof: By similarity to the proof of Theorem 4.35 and by using this theorem for�A;f� ; f =�A0� . 24.5.2 Transitivity versus con
uenceFor this section we assume the category X of domains has disjoint coproducts (see De�-nition 2.12).Lemma 4.41 Let � be a collection of conditional atomic U -rules and A be any model.For any a; b; b 0 �nite, if a �A� b and b �A� b0, then a �A� b0.Proof: If a �A� b, then because ha; bi is �nite and by Fact 4.37 and Proposition 2.38,there exists n 2 ! such that ha; bi � (�A� )n . We prove by induction on n 2 ! thatif ha; bi � (�A� )n and b �A� b0, then a �A� b0. For the induction step, suppose thatha; bi � (�A� )n+1. By Lemma 2.14 we may assume that ha; bi � �A� � (�A� )n . In thevirtue of Fact 2.36, we may further assume that there exists d such that ha; di � �A� andhd ; bi � (�A� )n. By Lemma 2.14 and because of the atomicity of the rules in �, we mayassume thata = cA[l ; h] with hcA[r ; h]; bi � (�A� )n and s; h �A� t ; hfor some rule (8B)l!r if hs; ti in �, for some model morphism h : B ! A and for somerewriting U -context c, and such that b �A� b0. By the induction hypothesis, cA[r ; h] �A� b0.Because �A� is closed under �-paramodulation, a �A� b0. 2The following result describes the paramodulation relation �A� as the \set" of pairsof elements that can be rewritten to the same \element". This intuition constitutes thebasis for using term rewriting systems as a decision procedure for equality.Proposition 4.42 Let � be a collection of conditional atomic U -rules. Then for anymodel A�A�= [fha; a 0i �nite j a �A� d and a 0�A� d for some dg:Proof: We �rst show by induction on n 2 ! that�A�;n� [fha; a 0i �nite j a �A� d and a 0�A� d for some dgFor the induction step, let's suppose that a �n+1 b witha = cA[l ; h] for some (8B)l!r if hs; ti 2 �; h : B ! A and c rewriting context45Or modulo axioms; see the discussion ending Section 4.4.59



such that s; h �A�;n t ; h and cA[r ; h] �A�;n b. By the induction hypothesis, cA[r ; h] � dand b � d for some d because hcA[r ; h]; bi is �nite and fha; a 0i �nite j a � d ; a 0 � dgis �ltered (by using Lemma 2.26). Because s; h �A� t ; h, we also have that cA[l ; h]� d .Then ha; bi � Sfha; a 0i j a �A� d and a 0�A� d for some dg.For the opposite inclusion, we apply Lemma 4.41. Consider a; a 0 �nite such thata �A� d and a 0�A� d for some d . Then a �A� d and, consequently, a �A� a 0. 2De�nition 4.43 Consider a model A and � a collection of conditional U -rules. � isA-con
uent i� the rewriting relation �A� is con
uent. 2The notion of A-con
uence represents a generalisation of the traditional notions ofcon
uence in the theory of term rewriting systems.46 The simplest and best known onecorresponds to the case when A is the [initial] algebra of ground terms T� for an MSAsignature �. In Section 4.5.3 we explain the relationship between A-con
uence and thenotion of con
uence modulo an equivalence as presented in [55, 61, 20, 30].The following establishes the crucial link between the con
uence of � and the transi-tivity of the paramodulation relation induced by �:Proposition 4.44 Consider a model A and � a collection of conditional atomic U -rules.Then � is A-con
uent i� �A� is transitive.Proof: Assume � is A-con
uent and consider a � b � c �nite. In the virtue ofProposition 4.42, there exists d ; d 0 such that a � d , b � d , b � d 0 and c � d 0. Bythe con
uence of �, there exists d 00 such that d � d 00 and d 0 � d 00. Thus, a � d 00 andc � d 00. By applying again Proposition 4.42, a � c.For the converse, let's assume that �A� is transitive and consider a � b and a � cwith a; b; c �nite. By Lemma 4.41, a � b and a � c. Therefore, b � c, and b � d ,c � d for some d by Proposition 4.42. 2The following corollary shows that in the case of con
uence, the refutation procedureusing paramodulation and re
exivity is complete for oriented rules. In the presence ofcon
uence the application of the rules in � (i.e., the backward application of the rules in�) is no longer necessary.Corollary 4.45 Let A be a reachable model and � be a collection of A-con
uent con-ditional atomic U -rules. Further assume that any re
exive-symmetric-transitive relationin the category of domains is an equivalence. Then �A�=�A� .Proof: By applying Proposition 4.22. 2Through the Lifting Lemma 4.29 we can apply the previous result to the case ofparamodulation in MSA:Corollary 4.46 Let � be an algebraic signature. If � is a con
uent collection of con-ditional �-rules, then the refutation procedure through re
exivity and paramodulationusing � [ F (�) is complete. 246See [30] for a detailed exposition of the concept of con
uence for term rewriting systems. Otherimportant surveys are [20, 56]. 60



4.5.3 Con
uence modulo a Model MorphismIn this section we argue that the notion of A-con
uence (De�nition 4.43) correspondsto con
uence of rewriting on equivalence classes in the case of a quotienting morphismde�ned by a theory.The notion of rewriting on the congruence classes (called class-rewriting in thesurvey [20]) was introduced by Lankford and Ballantyne [65] for permutative congruences,that is congruences for which each congruence class is �nite. For example, associativityand/or commutativity gives rise to permutative congruences.Let � be an algebriac signature and let E be a collection of �-equations. In thecontext of the de�nitions introduced by Section 4.4, let A be the algebra of ground termsT�, A0 be the initial �;E -algebra T�;E , and f : T� ! T�;E be the quotienting morphism.Rewriting (paramodulation) modulo f is the same as rewriting (paramodulation) moduloE . Given a collection � of conditional �-rules, class-rewriting relation de�ned by � andE (denoted �=E in [20, 61] is �T�;f� . By Theorem 4.40 we have the following:Corollary 4.47 A term rewriting system � is con
uent modulo axioms E i� it is T�;E -con
uent. 2The term rewriting literature contains several papers [55, 61] and surveys [56, 20]studyign alternative notions of con
uence modulo axioms and their relationship withcon
uence of rewriting on congruence classes.4.6 Narrowing in MSAThis section is entirely devoted to the application of the general theory developed inSections 4.3 and 4.5 to the particular case of many sorted narrowing including some of itsre�nements. Although all results of this section had been established before, the way theyfall as a direct consequence of the general category-based results on the completeness ofparamodulation is new and can be taken as an example for applying the theory developedin Sections 4.3 and 4.5 to other cases of interest.The structure of this section is in
uenced by the gradual development of the com-pleteness results for di�erent re�nements of narrowing given in [54]. We �x an MSAsignature �. The rôle of the model A is now played by the [initial] algebra of the groundterms.De�nition 4.48 A �-rule (8X )l!r if hs; ti is a rewrite rule i� var47(r)[ varhs; ti �var(l) = X . It is collapse free48 i� l is not a variable. 2The main di�erence between rewrite rules and oriented equations (or simply rules)is that in the case of the former the system doesn't have to \invent" values for thevariables that might occur in the right hand side or in the condition of a rule but not inits left hand side. This makes rewriting systems appropriate for computations by givingdirection to rewriting. An important consequence is the fact that the presence of thefunctional re
exive axioms is no longer necessary:47By var(t) we mean the set of all variables occurring in the term t . More formally, var(t) is the leastset X such that t 2 T�(X ) (see [30]).48An interesting discussion on the rôle played by this concept for the completeness of paramodulationcan be found in [54]. 61



Lemma 4.49 Let � be a rewriting system and G be a list of goals. Then G�[F(�)����!!�R 2implies that G �����!!�R 2.Proof: Any application of a paramodulation step with a clause from F (�) would pro-duce a non-empty answer substitution, therefore they are not used in the refutation.2 The application of Corollary 4.45 requires a new version of Lifting Lemma adequateto the new context. Recall (see [30], for example) that a term t is said to be in normalform when no rewriting can be applied to t anymore. A substitution is said to be innormal form i� all its terms are in normal form.Proposition 4.50 Lifting Lemma Let � be a collapse free rewriting system and � bea substitution in normal form. If G� �����!!nR 2 then G �����!!nn;r 2 with the computedanswer substitution � such that � � �.Proof: We prove this lifting lemma by induction on n 2 !.The �rst case occurs when the �rst step of the refutation chain is the removal ofan identity t� = t 0� with ht1; t2i 2 G. Let ' be the most general uni�er of t1 andt2. Then there exists �0 such that '�0 = �. �0 is in normal form since � is in normalform. If G = G0 [ fht1; t2ig, then since (G0')�0 �����!!n�1R 2, the induction hypothesisimplies that G0' �����!!n�1n;r 2 with the computed answer substitution �0 such that �0 � �0.But G����!!r G0' with ' the computed answer substitution. The answer substitutioncomputed by the refutation G �����!!nn;r 2 is '�0 � '�0 = �.The second case occurs when the �rst step of the refutation is a proper rewriting step.Then G�����!!R G�j� r' [ hs; ti' for (8X )l!r if hs; ti a new variant of a clause in �and l' = G�j�.� � in normal form implies that (G�)j� = (Gj�)�, i.e., � is a basic occurence,� � collapse free implies that Gj� is not a variable, and� dom'\ dom� = ; implies the existence of �0 in normal form such that '0�0 = �+'where '0 = mgu(l ;Gj�). This works because l(�+') = l' = (Gj�)� = (Gj�)(�+').�0 is in normal form because both � and ' are in normal form.Then G����!!n Gj� r'0 [hs; ti'0 and (Gj� r'0 [hs; ti'0)�0 = G�j� r'[hs; ti'����!!n�1R2. Now, we can apply the induction hypothesis in the same manner with the formercase (when the �rst refutation step was a re
ection) and deduce the conclusion of thislemma. 2Corollary 4.51 Let � be a con
uent collapse free rewriting system. The refutationprocedure through re
exivity and narrowing is complete. 24.6.1 Canonical term rewriting systemsThis paragraph reviews the completeness of basic innermost narrowing from [54]. Thisworks under the further assumption of the termination of the term rewriting systeminvolved. A rewriting system that is both con
uent and terminating is called canonical.62



The completeness of basic innermost narrowing is obtained directly from Corollary4.51 via the following49:Proposition 4.52 [54] Let � be a canonical collapse free term rewriting system and Gbe a list of goals. Then G �����!!�n;r 2 implies that hG; �i �����!!�r ;in;ir 2 with the samecomputed answer substitution.Sketch of Proof: When the substitution � is in normal form, inG� �����!!�R 2 rewritingis applied only at basic occurrences. The canonicity of � implies the we can select achain of innermost rewrites. Innermost re
ection is needed to move to redeces abovean innermost redex with respect to ����!!R because innermost redeces with respect to����!!n might not correspond to innermost redeces with respect to ����!!R. 2Basic innermost narrowing can be combined with rewriting on the goals. As discussedin [54], this can be very bene�cial in cutting o� non-terminating narrowing chains. Insome cases it also adds to the e�ciency of the computation. The completeness of basicinnermost narrowing combined with rewriting follows directly from Corollary 4.51 viathe following:Proposition 4.53 [54] Let � be a canonical collapse free term rewriting system and letG be a list of goals. If G �����!!�n;r 2 then hG; �i �����!!�R;r ;in;ir 2 with the same computedanswer substitution and narrowing applied only to normalised goals. 24.7 Computing in EqlogThe Oxford prototype implementation of Eqlog is an extension of the OBJ3 system(developed at SRI International; its user manual is [46]). The Eqlog system adds an im-plementation of order sorted basic leftmost innermost narrowing. The current goal to beprocessed is selected to be the leftmost one from the goal list. The goals are representedin the manner of De�nition 4.12, i.e., having a skeleton part and an environment partrepresenting the accumulation of the computed answer substitutions. The main narrow-ing loop implements a depth-�rst search on the space of all narrowing chains regardedas a search tree.4.7.1 OS uni�cation in EqlogThe implementation of uni�cation follows the order sorted version of Martelli-Montanarialgorithm described in [74]. It is known (see [74]) that an order sorted uni�cation prob-lem may fail because of the sort structure. In some cases, this can dramatically speedup the whole computation because most of the computation time is spent on failing uni-�cations. On the other hand, a successful uni�cation problem might have a �nite mostgeneral solution set (see [74, 27]) rather than a single most general uni�er. However, thefollowing property of OSA signatures assures the existence of a most general uni�er forany successful uni�cation problem:De�nition 4.54 A monotonic OSA signature (S ;�;�) is coregular (called unitary in[74]) i�49Using the environment-skeleton representation of goals described in Section 4.2.63



1. for any two sorts s; s 0 2 S there is at most one maximal common subsort, and2. for any operator symbol � 2 � and any sort s 2 S , the set fw 2 S � j � 2�w ;s 0 and s 0 � sg has at most one maximal element.2 Although the Eqlog system assumes that all signatures of modules are coregular,50 italso has a facility for showing the eventual non-coregularities of a signature of the currentmodule. One typesset show noncoreg on .to turn it on and,set show noncoreg off .to turn it o�.4.7.2 Examples with narrowingConsider the following module de�ning an ADT of lists over a set of elements (representedhere by the sort Elt). The non-empty lists form a subsort NList of the sort of all lists(i.e., List). The empty list and the usual list selectors have the same name as theirLisp counterparts, while the constructor function (cons in Lisp) is simply denoted byconcatenation. In order to get a purely logical inference procedure for this example wehave to use an ADT de�nition for the natural numbers rather than import them asbuilt-ins.51 The function giving the length of a list is denoted by #.0, s, nil, and are declared as constructors.obj LIST issorts Elt Nat NList List .subsort NList < List .op 0 : -> Nat [cons] .op s : Nat -> Nat [cons] .op a : -> Elt .op nil : -> List [cons] .op __ : Elt List -> NList [cons] .op car : NList -> Elt .op cdr : NList -> List .op #_ : List -> Nat .var E : Elt .var L : List .eq car(E L) = E .eq cdr(E L) = L .eq # nil = 0 .eq #(E L) = s(# L) .endo50Experiments made in Oxford showed that the vast majority of OBJ modules are coregular.51The Eqlog system inherits the built-in natural numbers from the OBJ system.64



By typingset show narrowing on .the user can see the actual inference steps performed by the Eqlog system which alternatesre
ection and basic leftmost innermost narrowing steps. Successful re
ection steps areomitted. The meaning of all �elds is obvious except for next-position, which refersto the occurrence at which the redex of the next narrowing step has to be found. Thisoccurrence is a list of natural numbers representing the path to the redex within the treeunderlying the term if the search process backtracks, otherwise is still unknown.For example, the queryfind Lst : List such that # Lst = s(s(0)) ; car(Lst) = a .produces the following output:##########################################solve in % :car(Lst) = a# Lst = s(s(0))reflection failed------------------------------------------depth in the narrowing chain: 1current goal list (skeleton):E_978 = a# Lst = s(s(0))current answer substitution:E_978: Elt -> UNBOUNDL_977: List -> UNBOUNDLst: NList -> E_978 L_977next-position: unknown------------------------------------------depth in the narrowing chain: 2current goal list (skeleton):s(# L_983) = s(s(0))current answer substitution:E_984: Elt -> aE_978: Elt -> aL_977: List -> L_983Lst: NList -> a L_983next-position: unknownreflection failed------------------------------------------depth in the narrowing chain: 3current goal list (skeleton):s(0) = s(s(0))current answer substitution: 65



E_984: Elt -> aL_983: List -> nilE_978: Elt -> aL_977: List -> nilLst: NList -> a nilnext-position: unknownreflection failedconstructor clash------------------------------------------depth in the narrowing chain: 3current goal list (skeleton):s(s(# L_989)) = s(s(0))current answer substitution:E_984: Elt -> aL_983: List -> E_990 L_989E_978: Elt -> aE_990: Elt -> UNBOUNDL_977: List -> E_990 L_989Lst: NList -> a (E_990 L_989)L_989: List -> UNBOUNDnext-position: unknownreflection failed------------------------------------------depth in the narrowing chain: 4current goal list (skeleton):s(s(0)) = s(s(0))current answer substitution:E_984: Elt -> aL_983: List -> E_990 nilE_978: Elt -> aE_990: Elt -> UNBOUNDL_977: List -> E_990 nilLst: NList -> a (E_990 nil)L_989: List -> nilnext-position: unknownA solution is:Lst: NList -> a (E_990 nil)This example also shows how the sorts of the logical variables are dynamically changedduring the computation process. The Eqlog system accepts a certain class of badly typedterms in queries which are treated by using the method of retracts,52 but this is hiddento the user. In our example, accordingly to the original declaration of the type of thelogical variable Lst, the term car(Lst) is not well typed because car is de�ned only on52Inherited from the OBJ3 system; for a detailed discussion on retracts and their semantics see [34].66



the subsort NList of the non-empty lists. However, during the computation process theorder sorted uni�cation function changes the sort of Lst to NList. This could be easilynoticed in the �rst narrowing step performed by the system, and also shows up in the�nal result.4.7.3 Constructor disciplineConsider the following query:find Lst : NList such that # Lst = 0 .Because the rule # nil = 0 would never be selected due to the type constraint on Lst,the system proceeds into endless applications of the rule #(E L) = s(# L).However, such a situation could be easily avoided by noticing that there is no possiblerefutation from goals of the form s(...) = 0. This suggests a constructor disciplineas a way to stop non-terminating computations and also as a way to reduce the searchwithin the space of narrowing chains. Although the constructor discipline is used inequational logic programming as a control facility (the programmer has the full optionto declare some operations as constructors), the concept of constructor has a precisemathematical meaning at the level of algebraic speci�cations. In [73], Meseguer andGoguen showed that only order sorted algebra solves the constructor-selector problem.De�nition 4.55 [30] A subsignature 
 � � is a subsignature of constructors fora speci�cation (�;E ) i� T�;E�
 is a reachable 
-algebra. A subsignature of uniqueconstructors is a subsignature of constructors 
 such that T�;E is the initial (i.e., groundterms) 
-algebra. 2The main principle underlying any constructor discipline for equational logic pro-gramming can be concisely formulated as follows:Constructors cannot be narrowed.The Eqlog system implements this principle in two di�erent ways.53 The �rst oneoccurs when the topmost operators of the sides of a goal are di�erent constructors.54In this case, since it is impossible to develop the narrowing chain into a refutation, thecomputation backtracks55. The second way to apply the constructor discipline is tobanish from narrowing the positions where the corresponding operator is a constructor.The main consequence in this case is to speed up of the computation of innermost redeces.53Many other implementations of narrowing embed some sort of constructor discipline, notably theALF system [49].54Actually, the Eqlog system implements a stronger version of this: before a narrowing step is per-formed, the system tries to �nd the outermost occurrence at which the corresponding operators aredi�erent constructors, and such that all outer positions are occupied by constructors within both sidesof the goal. If such a position is found, then the computation backtracks without trying to perform thenarrowing step.55In the previous example of an Eqlog run, this corresponds to the message constructor clash.67



5 ModularisationA promising approach to developing large and complex systems (which may be software,hardware, or both) is to start from a description of the system as an interconnection ofsome speci�cation modules. This permits the veri�cation of many properties to be carriedout at the level of design rather than code, and thus should improve reliability. Withsuitable mechanical support, it might also improve the e�ciency of the developmentprocess. In addition, it promotes reuse, because some modules may be taken directlyfrom a library, or else may be modi�cations of library modules. For this reason, manymodern programming and speci�cation languages support some form of modularisation,and most mathematical results about modules have appeared in the context of formalsoftware engineering, particularly speci�cation languages. There has been much recentinterest in module composition systems under the name of \megaprogramming" [98, 94].Modularisation for equational logic programming has been studied less. Two basicproblems are the soundness and completeness of the translation of queries and their solu-tions along module imports. It is important to notice that in ELP the notion of moduleis very similar to that in equational (i.e., functional) programming56 and, although eachquery is related to a certain module, the query is not part of the module. Given a moduleimport P  ! P 0 (technically regarded as a morphism of theories),  is sound i� for anyquery q in P , any of its solutions is translated to an solution of  (q). The completenessof  means that any solution of  (q) corresponds to a solution of q.57 Our notion ofmodule import is not restricted only to inclusion of theories, a module import could beany morphism of theories. In this context, we prove the soundness property for arbitrarymodule imports.A particularly important relation between theories is that of conservative extension,which says that any model of a subtheory can be expanded to a model of the supertheory.This semantic property can be important for the reuse of modules. Other semanticproperties of extensions arise in connection with parameterised (i.e., generic) modules.The completeness property is proven to hold for the case of essentially persistent moduleimports.58The theory of institutions [33] provides an abstract mathematical formulation of theconcept of `logical system' very adequate for the study of modularisation in declarativeprogramming languages rigorously based on logical systems. In order to use the ma-chinery provided by the theory of institutions to modularisation problems speci�c toequational logic programming, we have to integrate the framework of category-basedequational logics with institutions. The institution of category-based equational logicsprovides the most abstract framework which is still concrete enough to deal with con-cepts like queries and solutions. The primary mathematical structure in this approachis the notion of Kleisli category. Translations of queries along module imports appearas functors between Kleisli categories. The more general case of quanti�ers as models(rather than collections of variables) reveals that the translations of the quanti�ers along56For example, there are only very small diferences between Eqlog and OBJ modules.57Section 5.3.2 shows how soundness and completeness of module imports relates to the traditionalconcept of soundness and completeness for logical systems.58A property stronger than conservative extension.68



module imports are simply free constructions.The institution of category-based equational logics is abstract enough to encode equa-tional logic programming modules as signatures and module imports as morphisms of sig-natures. This di�erent level of use of the institution of category-based equational logicsis the basis for a category-based semantics for equational logic programming queries andsolutions. The institution of category-based equational logics also supports a category-based version of the Theorem of Constants. We place this result here exactly because ofits connection to the basic mathematical structures of this chapter, although in principleit is not related to modularisation issues. The model-theoretic dimension of our moregeneral version of the Theorem of Constants is also related to the so-called \method ofdiagrams" from classical �rst-order model theory.The soundness and completeness problem for translations of queries and their solu-tions along module imports is shown to be an instantiation of the soundness and com-pleteness at the level of institutions with an entailment system. This fact resorts to aspecial and rather eccentric institution having collections of logical variables as signa-tures, queries as models, and substitutions as sentences. A substitution is an answerfor a query i� the query satis�es the substitution. The only inference rule de�ning theentailment relation encodes the translation of substitutions along module imports.5.0.4 Some HistoryThe earliest work on software modules with which we are familiar is by Parnas [77,78, 79]. Program modules di�er from earlier program structuring mechanisms such assubroutines, procedures and blocks, in that they may include a number of procedure anddata de�nitions, may be parameterised, may import other modules, and may hide certainelements. A major motivation for modules in this sense is to facilitate the modi�cationof software, by localizing the representation of data and the operations that depend uponit; this is called information hiding. Such modules support software reuse because theycan be speci�ed, veri�ed, and compiled separately. Note that this notion of module isessentially syntactic: it concerns texts that describe systems.The earliest work that we know on speci�cation modules is by Goguen and Bur-stall, for their speci�cation language Clear [12, 13], the semantics of which is based oninstitutions.59 This approach to modules has been applied to various logic-based lan-guages, particularly OBJ [46], Eqlog [38], foops [40, 47] (which combines the functionaland object paradigms), and fooplog [40] (which combines functional, logic and objectparadigms); it could also be applied to any pure logic-based programming language, suchas (pure) Lisp and (pure) Prolog. In [26], this is even extended to imperative program-ming. The module system of (Standard) ML [50] has also been strongly in
uenced bythis work on Clear.Clear introduced the ideas that a speci�cation module determines a theory, and thatsuch theories can be put together using colimits; these ideas have their origin in someearlier work by Goguen on General SystemsTheory [23, 36]. Clear provided operations forsumming, renaming, extending, hiding, importing and (in the case of generics) applyingtheories. Theories in turn denote classes of models. The earliest work that we knowgiving a calculus of modules is also due to Goguen and Burstall [31]. Building on Clear,they studied laws for horizontal structuring relationships, and vertical implementing (alsocalled \re�nement") relationships, concluding that the axioms of a 2-category should be59Other early work on modules for speci�cation languages was by Liskov on the language CLU [3].69



satis�ed.60 Some general laws for the module operations of Clear appear in [23], andothers occur in the proofs in [13]. Some recent results on the formal properties of modulecomposition over institutions appear in [29].The module algebra of Bergstra, Heering and Klint [9] attempts to capture the hori-zontal structure of modules with equations among certain basic operations on modules,including sum, renaming, and information hiding. These equations, together with con-structors for signatures and sentences, give a many sorted equational presentation, aboutwhich some interesting results can be proved, including a normal form theorem. Un-fortunately, this work has �rst order logic built into its choice of the constructors forsignatures and sentences. However, Bergstra et al. abstract some interesting generalprinciples from this special case. [21] develops a module algebra in the context of thetheory of institutions. In [21] it is shown that all reasonable institutions support certainsimple operations on theories; what properties ensure that these operations have variousdesirable properties is also explored. A new categorical axiomatisation of the notion ofinclusion permits simple de�nitions for these operations on theories.Much interesting work using institutions has been done by Tarlecki [89, 90, 91, 92]and by Sannella and Tarlecki [83, 84, 85].5.1 Institutions and ModularisationInstitutions are much more abstract than Tarski's model theory, and they also add an-other basic ingredient, namely signatures and the possibility of translating sentences andmodels from one signature to another. A special case of this translation may be familiarfrom �rst order model theory: if � ! �0 is an inclusion of �rst order signatures, and ifM is a �0-model, then we can form M ��, called the reduct of M to �. Similarly, if eis a �-sentence, then we can always view it as a �0-sentence (but there is no standardnotation for this). The key axiom, called the Satisfaction Condition, says that truth isinvariant under change of notation, which is surely a very basic intuition for traditionallogic.De�nition 5.1 An institution = = (Sign;Sen;Mod; j=) consists of1. a category Sign, whose objects are called signatures,2. a functor Sen : Sign ! Set , giving for each signature a set whose elements arecalled sentences over that signature,3. a functorMod : Signop ! Cat giving for each signature � a category whose objectsare called �-models, and whose arrows are called �-(model)morphisms, and4. a relation j=�� jMod(�)j � Sen(�) for each � 2 jSignj, called �-satisfaction,such that for each morphism � : �! �0 in Sign, the Satisfaction ConditionM 0 j=�0 Sen(�)(e) i� Mod(�)(M 0) j=� eholds for each M 0 2 jMod(�0)j and e 2 Sen(�). 260This is consistent with the fact that in our category-based semantics for queries and solutions, thecategory of modules and module imports comes equipped with a 2-categorical structure induced by the2-categorical structure of the category-based equational signatures.70



We will often denote the reduct functor Mod(�) by ��, and the sentence translationsSen(�) simply by �( ) or even �.All logics presented in Section 2.3 are institutions. Once a logic is proved to bean institution, OBJ-like modularisation principles can be applied to any programminglanguage rigorously based on that logic. [21] contains a series of results obtained atthe level of institution theory and supporting OBJ-like protecting module imports andparameterised (generic) programming.De�nition 5.2 A theory (�;E ) in an institution = = (Sign;Sen;Mod; j=) consists of� a signature �, and� a set E of �-sentences closed under semantical deduction, i.e., e 2 E if E j=� e.61A theory morphism � : (�;E )! (�0;E 0) is just a morphism of signatures � : �! �0such that Sen(�)(E ) � E 0. Let Th(=) denote the subcategory of theories in =. 2The principle of \initial algebra semantics" is formalised at the level of institutions(see [33]) by the concept of liberality:De�nition 5.3 Let = = (Sign;Sen;Mod; j=) be an institution. A theory morphism �is liberal i� the reduct functor Mod(�) has a left-adjoint.The institution = is liberal i� all theory morphisms in Th(=) are liberal. 2In general, equational logics tend to be liberal, while �rst order logics are not liberal.In [89], Tarlecki relates the liberality of an institution to the quasi-variety property whichmust be ful�lled by the class of models of any theory in that institution, meaning thatthe models of any theory must be closed under products and submodels.625.1.1 ExactnessAn important model theoretic property of many logical systems is that �nite colimitsare preserved by the model functor. Thus, if we combine some theories Ti in a diagramT : I ! Th(=) having colimit (i.e., result of combination) C , then the denotations ofthe Ti and C behave in the way one would hope: Mod(C ) is the limit of the diagramT ;Modop : I ! Cat . In particular (and assuming that the categories of �-models areconcrete), our intuition would lead us to hope that a model of T1LT2 (the co-product)would consist of a pair of models, one of T1 and the other of T2; i.e., we intuitively expectMod(T1LT2) to be Mod(T1) �Mod(T2). The situation is similar for a pushout oftheory morphisms T0 ! T1 and T0 ! T2, which for simplicity we assume are theoryinclusions, so that T0 is shared between T1 and T2: we expect that a model of T1LT0 T2(the pushout) can be constructed from a pair of models, one of T1 and the other ofT2, by identifying their reducts to T0; that is, we expect Mod(T1LT0 T2) to be thepullback of Mod(T1)!Mod(T0) and Mod(T2)!Mod(T0). This property, which wecall exactness, seems to have �rst arisen in [85], and is also used in the pioneering workof Tarlecki [91] on abstract algebraic institutions, and of Meseguer [72] on categoricallogics63.61Meaning that M j=� e for any �-model M that satis�es all sentences in E .62In the case of the usual logical systems, this corresponds exactly to the power of Horn clauseaxiomatisations.63Meseguer [72] introduced the term exactness, but used it for the concept that we call semiexactnesshere. 71



De�nition 5.4 An institution is exact i� the model functor Mod : Sign ! Catoppreserves �nite colimits, and is semiexact i� Mod preserves pushouts. 2Although many sorted logics tend to be exact, their unsorted variants tend to beonly semiexact. In particular, the model functor does not preserve coproducts for eitherunsorted �rst order logic or unsorted equational logic. This is undesirable from the pointof view of modularisation. Combining this with the well known fact that the coproductof unsorted terminating term rewriting systems need not be terminating, although it isterminating in the many sorted case, we might conclude that unsorted logics are unnaturalfor many applications in Computing Science.It is not hard to see that any chartered institution is exact.64 Charters were introducedby Goguen and Burstall [32] as a general way to produce institutions. The basic intuitionis that the syntax of a logical system is an initial algebra. Because it appears thatmost institutions of interest in Computing Science can be chartered, it follows that mostinstitutions of interest in Computing are exact. In particular, both many sorted �rstorder logic and many sorted equational logic are exact. On the other hand, unsortedequational logic is not exact.Notice that, for any institution =, the model functor Mod extends to Th(=), bymapping a theory (�;E ) to the full subcategory Mod(�;E ) of Mod(�) formed by the�-models that satisfy E . The following result shows that one can lift exactness fromsignatures to theories, so that exactness depends only on the behavior of signatures,and is independent of what happens with sentences. Semiexactness for theories playsan important rôle in the \categorical logics" described by Meseguer in [72]. In [21] it isshown that this follows from the corresponding property for signatures:Proposition 5.5 If an institution is semiexact, then Mod : Th ! Catop preservespushouts.Proof: Let �1 : (�0;E 0) ! (�1;E1) and �2 : (�0;E 0) ! (�2;E2) be morphisms oftheories and let �01 : (�2;E2) ! (�;E ) and �02 : (�1;E1) ! (�;E ) be their pushout.Recall from [33] that (�01; �02) is the pushout of (�1; �2) in Sign and E is the deductiveclosure of �02(E1) [ �01(E2). (�1;E1)(�0;E 0) (�;E )(�2;E2) �02KKKKKKKK%%�1rrrrrrrrr99�2LLLLLLLLL%% �01ssssssss99Let M1 be a �1-model of E1 and M2 a �2-model of E2 such that M1��1 = M2��2;now let M 0 denote this �0-model. Then by the Satisfaction Condition, M 0 satis�es E 0.By semiexactness and the construction of pullbacks in Cat , there is a �-model M suchthat M ��02 = M1 and M ��01 = M2. By the Satisfaction Condition again, M satis�es thetranslations of both E1 and E2, and thus satis�es E . We have now shown that any pair of64Using the facts that Mod is 2-representable for chartered institutions, and that 2-representablefunctors preserve colimits. 72



models (M1;M2) with M1 2 jMod(�1;E1)j and M2 2 jMod(�2;E2)j and M1��1 =M2��2determines a (�;E )-model M .Conversely, any (�;E )-model M is determined in this way by its translations M1 =M ��02 and M2 = M ��01 which, by the Satisfaction Condition, satisfy E1 and E2, respec-tively.Because the models of a theory form a full subcategory of the models of its signature,we can extend this argument to model morphisms. Therefore, ��02 : Mod(�;E ) !Mod(�1;E1) and ��01 : Mod(�;E )!Mod(�2;E2) are the pullback of ��1 :Mod(�1;E1)!Mod(�0;E 0) and ��2 : Mod(�2;E2)!Mod(�0;E 0). 2A proof of the following result was sketched in [85] and given in [21]:Corollary 5.6 If an institution is exact, then Mod : Th ! Catop preserves �nite col-imits.Proof: By exactness, Mod maps the initial object of Sign to the terminal (singleton)category. Because the only model of this category satis�es the empty theory (i.e., thetautologies over the initial signature) we conclude that the model functor maps theinitial theory to the terminal category. Now we are done, because all �nite colimits canbe constructed from pushouts and an initial object. 25.1.2 Parametric modules and viewsDe�nition 5.7 A theory morphism � : P ! T is conservative i� for any model M 2jMod(P)j there exists a model N 2 jMod(T )j such that N �� = M . 2Persistence is a stronger notion than conservative extension, and is important for thesemantics of parameterised data types (e.g., see [33]).De�nition 5.8 A theory morphism � : P ! T is persistent i� its associated reductfunctor �� : Mod(T ) ! Mod(P) has a left adjoint such that each component of theunit of the adjunction is an equality. 2Fact 5.9 A persistent theory morphism is conservative. 2Example 5.10 Consider the following classical example of generic lists over elements ofmonoids. The monoid operations are abstract and they can be used as generic operationsfor computations involving all elements of a list.th MON issort Mon .op e : -> Mon .op _*_ : Mon Mon -> Mon [assoc] .var x : Mon .eq e * x = x .eq x * e = x .endth 73



th LIST*[X :: MON] issort List .subsort Mon < List .op __ : List List -> List [assoc] .op nil : -> List .op # : List -> Mon .vars L L' : List .eq L nil = L .eq nil L = L .eq #(nil) = e .eq #(L L') = #(L) * #(L') .endthThe module LIST* imports the module MON without introducing any new elementsor identifying any old elements. This means that the module import MON ,! LIST� ispersistent. This is so because for any monoid M the free LIST*-model over M consistsof lists with elements fromM and its reduct to MON gives exactly the original monoid M .2 The following result (from [21]) is related to the semantics of applying a generic mod-ule to an actual parameter module using a \view," as proposed in Clear and implementedin OBJ3 and Eqlog:Proposition 5.11 Given a semiexact institution with pushouts of signatures, let (�0;  0)be the pushout of theory morphisms � : P ! T and  : P ! P 0. Then:1. If the functor �� : Mod(T ) ! Mod(P) has a left inverse �$ : Mod(P) !Mod(T ), then there is a left inverse �0$ of ��0 such that the following diagramcommutes: Mod(P) Mod(T )Mod(P 0) Mod(T 0)�$ //� OO �0$ // � 0OO2. �0 is persistent if � is persistent.Proof: To show the �rst assertion, pick an arbitrary model N 0 of P 0. Then N = N 0� isa model of P by the Satisfaction Condition. Let M be �$(N ). Then M �� = N 0� = N .By Proposition 5.5, there is a model M 0 of T 0 such that M 0� 0 = M and M 0��0 = N 0.The mapping N 0 7! M 0 de�nes the functor �0$ on objects, and its de�nition on arrowsis similar. Next, �0$ preserves identities because 1M 0� 0 = �0$(1N 0)� 0 and 1M 0��0 =�0$(1N 0)��0 for any P 0-model N 0. By Proposition 5.5, 1M 0 = �0$(1N 0). The same argumentgives the preservation of composition by �0$.For the second assertion, we will show that �0$ is left-adjoint to ��0 if �$ is left-adjointto ��, that is (using the above notations), M 0 is a free T 0-model over N 0 if M is a freeT -model over N . Pick an arbitrary T 0-model M 01 and an arbitrary model morphism74



h : N 0! M 01��0. We have to prove that there is a unique model morphism h] : M 0! M 01such that h]��0 = h. Notice that by Proposition 5.5, any h] : M 0 ! M 01 is uniquelydetermined by its reducts h = h]��0 : N 0 ! M 01��0 and f = h]� 0 : M ! M 01� 0 and bythe condition h� = f ��.N 0 M 0��0 N M ��M 01��0 (M 01� 0)��__________hEEEEEEE"" h]��0�� ________________h� IIIIIIII$$ f ����Now let f be the unique model morphismM ! M 01� 0 such that h� = f �� (since Mis free over N ). Then the morphism h] : M 0 ! M 01 determined by (f ; h) is the desiredextension of h to a model morphism M 0! M 01. 2Example 5.12 Based on Example 5.10, consider the following speci�cation of lists:th List issorts Elt List .subsort Elt < List .op empty : -> List .op append : List List -> List [assoc] .var L : List .eq append(L , empty) = L .eq append(empty , L) = L .endthThe operation append is associative and has the empty list as an identity. In this way,List is a re�nement of the theory of monoids. There is a view from MON to List:view list from MON to List issort Mon to List .op (_*_) to append .op e to empty .endvThe instantiation LIST*[list] of the generic module LIST* via list is the pushout ofMON ,! LIST� with list. In this example, the operation # appends all lists from a listof lists. By the previous theorem, LIST*[list] protects List. This fact can be checkeddirectly as well. 2In this example, LIST*[list] is a simple module expression involving essentiallyonly one instantiation of a generic module. The evaluation of this module expressionwas obtained as a pushout in the category of theories. In the case of more complicatedmodule expressions65 the evaluation is done by taking the colimit of the correspondingdiagram in the category of theories.65Possibly involving combinations between various kinds of module imports and instantiations ofgeneric modules via views. 75



5.2 Satisfaction Condition for Category-based Equational LogicIn order to apply the theory of institutions to our framework, we have to answer thefollowing questions:1. What is a morphism of signatures in the case of category-based equational logics?2. What are the translations of models and sentences along signature morphisms, and,in particular, what is the translation of the quanti�ers along signature morphisms?3. Does the satisfaction relation betweenmodels and sentences in category-based equa-tional logics given by De�nition 3.6 verify the Satisfaction Condition?The answers to these questions would be helped by taking a closer look at the typicalcase of many sorted equational logic:De�nition 5.13 A signature morphism � : (S ;�) ! (S 0;�0) in MSA is a pair hf ; giconsisting of a map f : S ! S 0 on sorts and an S � � S -indexed family of maps gu;s :�u;s ! �0f �(u);f (s) on operator symbols. 2Example 5.14 � of the previous de�nition determines a forgetful functor Alg(�) :Alg�0 ! Alg� on models and another forgetful functor Set f : SetS 0 ! SetS on domains.Notice the commutativity of the following diagram:Alg�0 SetS 0Alg� SetSU 0 //Alg(�) �� Setf��U //where U and U 0 are the corresponding forgetful functors from many sorted algebras tomany sorted sets. 2To resume, any signature morphism determines a pair of forgetful functors, one onmodels (Alg(�) in the previous example), and one on domains (Set f in the previous ex-ample). Each of them has a left adjoint, meaning that any model has a free extensionalong a signature morphism (while free extensions along theory morphisms is problem-atic in many logical systems, most of them still support free extensions along signaturemorphisms; a typical example being �rst order logic). Finally, forgetting model structure�rst along a signature morphism and afterwards to domains is the same as forgetting todomains �rst and domain structure afterwards.All these ideas are formalised by the following de�nition:De�nition 5.15 A category-based equational signature is a functor U : A! X. Amorphism of category-based equational signatures is a couple hM;Di : U ! U 0of functors such thatM;U = U 0;D and D has a left adjoint.A0 X0A XU 0 //M �� D��U //2 76



Notice that consequently to De�nition 5.3, a morphism of category-based equationalsignatures is liberal i�M has a left adjoint.The following array shows how some concepts from many sorted equational logic arere
ected at the level category-based equational logics:MSA category � based equational logicssignature functor(S ;�) U : A! XS X� A� = hf ; gi hM;Dif Dg MSet f DAlg(�) M��equation U�equation5.2.1 Many-sorted institutionsThis section introduces a class of institutions for which the signature morphisms canbe regarded as morphisms of category-based equational signatures. In this was, theseinstitutions admit an internalisation of category-based equational logic.In any institution that has \sorted" signatures, the category of domains for a theoryis in fact the category of models for the simple signature containing only the \sorts"of the signature of the theory. Assuming a certain degree of liberality of the respectiveinstitution, the forgetful functor from the category of the models of the theory to thecategory of the domains has a left-adjoint. The following de�nition makes the notion ofsorted signature precise and is generic for all examples of Section 2.3:De�nition 5.16 Amany-sorted institution is a tuple= = (Sign;Sort ;Mod;Sen; j=)such that� (Sign;Mod;Sen; j=) is an institution,� Sort : Sign ! Set is a functor that has a left-adjoint left-inverse Q, and� = is liberal on signature morphisms.A domain in = is a model for a signature of the form Q(S ) for S an arbitrary set. 2Now, we are in the situation to internalise the category-based equational logics inmany-sorted institutions:Proposition 5.17 Let = = (Sign;Sort ;Mod;Sen; j=) be a many sorted institution with" the co-unit of the persistent adjunction Q a Sort : Set * Sign.Any signature morphism � : �! �0 determines a liberal morphism of category-basedequational signatureshMod(�);Mod(Q(Sort�))i : U� ! U�077



where U� =Mod("�) is the forgetful functor form the category Mod(�) of �-models tothe category of domains Mod(Q(Sort�)) for any signature � of =.Proof: Any signature morphism � : �! �0 induces a translation of sortsSort(�) : Sort�! Sort�0 which determines a domain reduct functorMod(Q(Sort�)) :Mod(Q(Sort�0)) ! Mod(Q(Sort�)) having a left adjoint Q(Sort�)$ in the virtue ofthe liberality of the institution = on signature morphisms. Mod(�) has a left adjoint bythe liberality of �. Mod(�) Mod(�0)Mod(Q(Sort�)) Mod(Q(Sort�0))Mod("�) �� Mod(�)oo Mod("�0)��Q(Sort�)$//Mod(Q(Sort�))ooThe diagram commutes on right adjoints because of the naturality of ", i.e., "�; � =Q(Sort�); "�0, and by the application of the model functor to this identity. 2The liberality condition of De�nition 5.16 is avery mild condition in practice. Eveninstituions notorious for not being liberal, like �rst order logic, are still liberal on signaturemorphisms.Corollary 5.18 The signature morphisms in MSA, OSA, HCL, ELM are morphisms ofcategory-based equational signatures.Proof: In all cases this holds by the liberality of the repsective insdtituion on signaturemorphisms. A special mention is necessary for ELM. In this institution the signaturemorphisms are MSA theory morphisms, and we use the liberality of the institution ofMSA. 25.2.2 Sentence translations along morphisms of category-based equationalsignaturesBefore de�ning the translations of equations along morphisms of category-based equa-tional signatures, we have another look at the example of many sorted equational logic:Example 5.19 Each function f : S ! S 0 translates any S -sorted set X into the S 0-sorted set X� by taking the [pointwise] left Kan extension of f along X :X�s 0 = af (s)=s 0Xs for any sort s 0 2 S 0:S S 0 S 0Set Setf //XAAAAAA   X���Any MSA signature morphism � = hf ; gi : (S ;�)! (S 0;�0) de�nes an S -sorted map��X : T�(X )! T�0(X�)��: X U(T�(X ))U(T�0(X�)��)X� //jMMMMMMMMMM && j ]U=��X��78



First, note that X � U(T�0(X�)��) because if x 2 Xs then x 2 X�f (s) and X�f (s) �T�0(X�)f (s) = (T�0(X�)��)s; let j : X ! U(T�0(X�)��) denote this inclusion. Then wesimply de�ne ��X = j ], where j ] is the unique extension of j to a �-homomorphismT�(X ) ! T�0(X�)��. Any �-equation (8X )hs; ti is translated to the �0-equation(8X�)h��X (l); ��X (r)i. 2Notice that, in the previous example, the term algebra T�0(X�) is exactly the freeextension of T�(X ) along �. From this, we may conclude that:Translations of quanti�ers are free extensions along signature morphisms.This generalisation also covers the case when quanti�ers are not free models. The trans-lation of equations along signature morphisms in MSA is a particular case of the followingabstract de�nition:De�nition 5.20 Let hM;Di be a liberal morphism of category-based equational signa-tures (A U�! X) ! (A0 U 0�! X0). Then the U -equation (8A)hs; ti is translated to theU 0-equation (8A$$)hs�; t�i, k k$DAU A$$MU = A$$U 0Dk� //t �� t�D��A�U//where $ denotes the left adjoint to D, $$ denotes the left adjoint toM, � and � denotethe units of the adjunctions determined byM and D, and s� and t� denote the unique\extensions" of l ;A�U and r ;A�U to maps in X0.Similarly, a U -query (9A)hs; ti is translated to the U 0-query (9A$$)hs�; t�i. 2Since translations of quanti�ers along liberal signature morphisms are free expan-sions of models and coequaliser projectivity is a property of the quanti�ers essential forthe completeness of the deduction system, we need to investigate the preservation ofcoequaliser projectivity under free expansions of models. The following lemma66 gives asu�cient condition for the preservation of coequaliser projectivity under free expansions:Lemma 5.21 Let N : A ! B be a left adjoint to a coequaliser preserving functorM : B! A. Then N preserves coequaliser projective objects.Proof: Consider A 2 jAj a coequaliser projective object. We have to prove that AN iscoequaliser projective in B.B 0M BN B 0 BA ANM ANeM // e //h 0 OO A� // hMOOh 0]MeeKKKKKKKK hOOh 0]bbEEEEEELet e : B 0 ! B be a coequaliser B, and take an arbitrary h : AN ! B . Because eM is acoequaliser in A (by hypothesis), there exists h 0 : A! B 0M such that h 0; eM = A�; hM,66It is used only in Chapter 6 in the context of the category-based semantics for constraint logicprogramming. 79



where A� : A! ANM is the universal arrow from A toM. Let h 0] : AN ! B 0 be theunique map such that A�; h 0]M = h 0. ThenA�; (h 0]; e)M = A�; h 0]M; eM= h 0; eM= A�; hM (by de�nition of h 0)By the universal property of A� we have that h 0]; e = h. 2Kleisli translations In this paragraph we study the particular case when the sen-tences, either equations or queries, are quanti�ed by \variables". This technically cor-responds to the existence of \term" models, i.e., the existence of left adjoints to theforgetful functors from models to domains.In this case, the translation described by De�nition 5.20 could be characterised asa morphism (i.e., functor) of Kleisli categories satisfying a certain universal property.This result together with the Satisfaction Condition for category-based equational logicsconstitute the technical basis for the development of the category-based semantics ofequational logic programming queries and their solutions in the context of modularisationin the style of Eqlog.By using the same notations as in De�nition 5.20, further assume that U and U 0 haveleft adjoints F and, F 0 respectively, with � and " and, �0 and "0 respectively, the unitsand the co-units of the respective adjunctions. Fix a domain x 2 jXj. We may assumethat (xF)$$ = (x $)F 0 in the virtue of the general principle of composition of adjunctions.Fact 5.22 The diagram of De�nition 5.20 de�ning the translations of equations andqueries reads as: k k$DxFU (xF)$$MU = x $F 0U 0Dk� //t �� t�D��xF�U//2Lemma 5.23 There exists a unique natural transformation 
 : D;F ! F 0;M such that�0D = D�; 
U . Moreover,M" = U 0
; "0M and F� = �F ; $
.Proof: The natural transformation 
 is uniquely de�ned by the formula �0D = D�; 
Uby using the universal property of the unit �.Now, by the triangular laws for adjunctions, we have U 0D�;M"U =MU�;M"U =1M;U , and by the previous formula and the triangular laws for adjunctions we haveU 0D�;U 0
U ; "0MU = U 0�0D; "0U 0D = 1U 0 ;D = 1M;U . Then U 0D�;M"U =U 0D�;U 0
U ; "0MU . By the universal property of the unit �, we deduceM" = U 0
; "0M.x x $D x $F 0U 0DxF x $DFU x $F 0MUx� //x� �� x$�0D//x$D��� ����������x�FU// x$
U //For the last identity, �x x 2 jXj. Then 80



x�; x�FU ; x $
U = x�; x $D�; x $
U (by the naturality of �)= x�; x $�0D (by the De�nition of 
)= x�; xF�U (as unit of the composite of adjunctionsin two di�erent ways)By the universal property of x� we deduce that x�F ; x $
 = xF�. 2Corollary 5.24 When the category-based equational signatures have left adjoint, wecan de�ne the translation of sentences along morphisms of category-based equationalsignatures that are not necessarily liberal.Proof: By replacing F� from Fact 5.22 with �F ; $
. 2In order to give the universal characterization of this translation as a morphism ofKleisli categories we have to resort to the (rather sophisticated) theory of monads in2-categories developed by Street in [88]:De�nition 5.25 Let C be a 2-category.Amonad hX ;S i consists of an object X , a 1-cell X S�! X and a pair of 2-cells 1 ��!S , S ;S ��! S (called the unit and the multiplication) satisfying the commutativediagrams S SS S SSS SSS SS SS� //BBBBBBBBBBBB ��� �Soo|||||||||||| S� //�S �� ���� //A monad functor hU ; �i : hX ;S i ! hY ;T i consists of a 1-cell X U�! Y and a2-cell U ;T ��! S ;U satisfying the commutative diagramsUT UTT SUT SSUU SU UT SU�FFFFFFF"" �T //U� �� S� // �U��U� OO �U // � //A monad functor transformation hU ; �i ��! hU 0; �0i is a 2-cell U ��! U 0 satis-fying the commutative diagram UT U 0TSU SU 0� �� �T // �0��S� //The 2-categoryMnd(C) has monads as objects, monad functors as 1-cells, and monadfunctor transformations as 2-cells. 2De�nition 5.26 For any 2-category C, let C� denote the 2-category obtained from Cby reversing all 1-cells (so that C�(x ; y) = C(y; x )). Mnd(C�)� has the monads of C asobjects, monad opfunctors of C as 1-cells and monad opfunctor transformationsas 2-cells. 2 81



Theorem 5.27 (from [88]) In a 2-category C suppose hX ;T i and hX 0;T 0i are monads.Any adjunction H a D : X * X 0 sets up a natural bijection between the monad functorshD ; 
i : hX 0;T 0i ! hX ;T i and the monad opfunctors hH ; �i : hX ;T i ! hX 0;T 0i. 2Also, any category-based equational signature canonically determines a monad. How-ever, category-based equational signatures are more general than monads because someadjunctions fail to be monadic. As already mentioned, an important class of examplesin this sense is given by the order sorted theories.De�nition 5.28 Category-based equational signatures form a 2-category EqSig suchthat� objects are category-based equational signatures,� 1-cells are morphisms of category-based equational signatures, and� 2-cells h�; � i : hM;Di ! hM0;D0i are pairs of natural transformations � : M !M0, � : D ! D0 such that �U = U 0� .2Corollary 5.29 There exists a forgetful 2-functor Mnd : EqSig� ! Mnd(Cat) whichdetermines (by Theorem 5.27) a canonical 2-functor Mndop : EqSig ! Mnd(Cat�)�mapping morphisms of category-based equational signatures to monad opfunctors.Proof: Mnd maps a category-based equational signature U : A ! X to its at-tached monad hX;T i of Cat , morphisms of equational logics hM;Di to monad functorshD; 
Ui : hX0;T 0i ! hX;T i (
 de�ned by Lemma 5.23) and maps 2-cells h�; � i to monadfunctor transformations � . Straightforward calculations assure the correctness of thesede�nitions.Mndop maps morphisms of category-based equational signatures hM;Di to the monadopfunctors h $; �i : hX;T i ! hX0;T 0i corresponding to the monad functor hD; 
Ui, where$ is the left-adjoint to D. 2Recall (from [64]) that any monad hX;T i in Cat determines a Kleisli category XThaving the same objects as X but \substitutions" as arrows, i.e.,XT (x ; y) = fh[ j h 2 X(x ; yT )gThe composition of arrows in XT is given by h[; h 0[ = (h; h 0T ; z�)[:x yT zT T zTh // h 0T // z� //When the monad is determined by a category-based signature U , the Kleisli category XTis in fact the substitution system determined by U . In this case, a simple calculation showsthat the composition in XT corresponds exactly to the composition of substitutions:x yFU zFUyh // h 0]U //y� OO h 0uuuuuuuu ::82



When there is no danger of confusion we identify X(x ; yFU) with XT (x ; y) via thebijection [.Following [88], for any 2-category C, there is an \inclusion" 2-functor IncC : C !Mnd(C) mapping each object X to the trivial monad hX ; 1i. The well-known construc-tion of the Eilenberg-Moore algebras categories appears a right 2-adjoint to IncCat [88].The following de�nition is the basis in [88] for recovering the theory of monadicity in theabstract framework of an arbitrary 2-category C:De�nition 5.30 The 2-category C admits construction of algebras i� IncC has aright 2-adjoint. 2Theorem 5.31 (from [88]) Cat� admits construction of algebras. The left 2-adjoint toInc�Cat� : Cat ! Mnd(Cat�)� is the Kleisli construction, which evaluated at hX;T i isXT and the unit hJT ; !i : hX;T i ! hXT ; 1i is given by� JT : X! XT with xJT = x for any x 2 jXj, and fJT = (f ; x 0�)[ for any f 2 X(x ; x 0),and� ! : T ; JT ! JT with x! = (1xT )[ for any x 2 jXj.hX;T i hXT ; 1i XThY; 1i YhJT ;!i//hK ;�iJJJJJJJJ%% hK;1i�� K��2 From Theorem 5.31 and Corollary 5.29 we deduce the main result of this paragraph:Corollary 5.32 For any morphism of category-based equational signatureshM;Di : (A U�! X) ! (A0 U 0�! X0) there exists a unique functor K : XT ! X0T 0 suchthat� JT ;K = $; JT 0 , and� (1xT )[K = (x�)[, where � : T ; $ ! $; JT 0 is the natural transformation part ofMndophM;Di. Mndop(U) = hX;T i hXT ; 1iMndop(U 0) = hX0;T 0i hX0T 0; 1iMndophM;Di= h $;�i�� hJT ;!i // hK;1i��hJT 0 ;!0i //2By spelling out the two properties of K we get exactly the translation described by theversion of De�nition 5.20 presented at the beginning of this paragraph (see Fact 5.22).83



5.2.3 The Satisfaction ConditionThe following result can be regarded as a generic proof of the Satisfaction Condition forany equational logic. All examples in Section 2.3 generate [equational] institutions byfollowing the same pattern. The equational version of this theorem can be extended toconditional equations without any problem.Theorem 5.33 Let hM;Di be a liberal morphism of category-based equational signa-tures (A U�! X) ! (A0 U 0�! X0). Then for any model B 2 jA0j and for any sentence(�A)hs; ti, with � 2 f8;9g,B j=U 0 (�A$$)hs�; t�i i� BM j=U (�A)hs; tiProof: The right adjoint M determines a natural bijection A(A;BM) ' A0(A$$;B)mapping each model morphism A h!BM to the model morphism A$$ �h!B such that h =A�; �hM. A A$$MBMA� //hFFFFFFF ## �hM��For each v : k ! AU , we have:k�; (v�; �hU 0)D = k�; v�D; �hU 0D= v ;A�U ; �hU 0D (by De�nition 5.20)= v ;A�U ; �hMU= v ; hUTherefore,B j=U 0 (8A$$)hs�; t�i i� s�; �hU 0 = t�; �hU 0 for all A$$ �h!Bi� k�; (s�; �hU 0)D = k�; (t�; �hU 0)Di� s; hU = t ; hU for all A h!BMi� BM j=U (8A)hs; tiA similar argument works for the case of queries. 2In the case when the sentences are quanti�ed by variables, rather than models, wehave the following corollary:Corollary 5.34 Let hM;Di be a morphism of category-based equational signatures(A U�! X)! (A0 U 0�! X0) such that F and F 0 are left adjoints to U and U 0, respectively.Then for any model B 2 jA0j and for any sentence (�x )hs; ti, with � 2 f8;9g and x adomain in X,B j=U 0 (�x $)hs�; t�i i� BM j=U (�x )hs; tiProof: By using the last equation Lemma 5.23, the existence of a left adjoint otM isno longer necessary. 2 84



The fact that EqSig comes naturally equipped with a 2-categorical structure reinforcesthe argument of Goguen and Burstall [32] that the signatures of any chartable institutionform a 2-category. The presentation of the sentence functor as a Kleisli translationprojects a new light on the duality between syntax and semantics in category basedequational logic: the sentence functor is a model functor when reversing the 1-cells inCat !5.3 Queries and Solutions versus ModularisationIn this section we give a categorical semantics for equational logic programming queriesand their solutions in the context of modularisation in the style of the programminglanguage Eqlog, and we discuss the crucial problem of the soundness and completenessfor module imports. We take here the point of view of [21] that modules are presentations(theories) and that module imports are morphisms of presentations (theories). In [39],Goguen and Meseguer give a denotational semantics for equational logic programmingbased on initial algebra semantics. Due to the presence of logical variables, the denotationof an equational logic programming module is given by an adjunction rather than aninitial model. This is in fact the adjunction determined by the forgetful functor fromthe category of models of the given module to the category of domains representing themathematical structure for the collections of logical variables. This idea exploits the factthat the notion of category-based equational signature is abstract enough to contain theconcept of equational logic programmingmodule in the manner described in Section 2.3.4.The principle underlying our category-based semantics for equational logic programmingqueries and their solutions is formulated asThe denotation of modules is abstracted to category-based equational signaturesthat have left adjoints.De�nition 5.35 Let P be an equational logic programming module. Its denotation[[P ]] is the forgetful functor [[P ]] : Mod(P) ! Dom(P) from the category of its models,Mod(P), to the category of its domains, Dom(P).The denotation of a module import P  �! P 0 is a morphism of category-based equa-tional signatures [[ ]] : [[P ]]! [[P 0]]. 2De�nition 5.36 A query for the equational logic programming module P is a [[P ]]-query. A solution for a query q = (9B)ht1; t2i in a P -model A is a morphism h : B ! Asuch that t1; h[[P ]] = t2; h[[P ]].Let P  �! P 0 be a module import. The translation of queries along  (i.e., from P -queries to P 0-queries) is given by the translation along the morphism of category-basedequational signatures [[ ]] accordingly to De�nition 5.20.67 2The interpretation of the Satisfaction Condition (Theorem 5.33) in this context isthat for any P -query q, any module import  : P ! P 0, and any P 0-model A, there is acanonical one-one correspondence between the solutions of q in A and the solutions ofq in AM, whereM is the model reduct component of [[ ]].67We denote this translation by  . 85



5.3.1 The institution of queries and substitutionsComputations in equational logic programming systems produce answers to queries inform of substitutions. As known, solutions for queries can be regarded as uni�ers. Thenext fact is consistent to Goguen's approach on uni�ers as co-cones in Kleisli categoriesas expressed in [27]:Fact 5.37 Let q = (9X )ht1; t2i be a query for the program P whose quanti�cation isgiven by variables, i.e., X 2 jDom(P)j. A solution form for q is a co-cone for theparallel pair ht [1; t [2i in Dom(P)TP , where TP is the monad determined by the [right-adjoint] forgetful functor [[P ]] : Mod(P)! Dom(P). 2The relationship between queries and substitutions can be formalised as a SatisfactionRelation in a particular institution in which queries play the rôle of models and substi-tutions play the rôle of sentences. The source of a certain substitution has to matchthe quanti�er of a certain query in the same way the sentences and models of logicalsystems have to be based within the same language (i.e., signature). This suggests thatthe signatures for the institution of queries as models and of substitutions as sentencesshould be given by collections of [logical] variables.De�nition 5.38 Assume a �xed module P . We de�ne an institution =P consisting ofthe following data:� Sign = Dom(P)opTP ,68 i.e., signatures are domains and signature morphisms aresubstitutions,� Mod(X ) = f(9X )ht1; t2i j t1; t2 in TP (X )g for each domain X in Dom(P), whereTP is the monad determined by the right adjoint forgetful functor [[P ]]. Each map f [in Dom(P)opTP (X ;X 0) = Dom(P)TP (X 0;X ) determines a reduct functor Mod(f ) :Mod(X 0)!Mod(X ) such thatMod(f )(q 0) = q 0; f ]for any query q 0 in Mod(X 0),69� Sen(X ) = fh ; si j P  ! P 0; s is a P 0-substitution of the logical variables X g.Each map f [ inDom(P)opTP (X ;X 0) determines a sentence translation Sen(f ) : Sen(X )!Sen(X 0) bySen(f )h ; si = h ; f  ; s]ifor any P 0-substitution s and any module import  , and� q j=X h ; si i� s is a solution form for the query q .268The opposite of the Kleisli category Dom(P)TP .69This translation corresponds to a translation of the logical variables of a query. This might alsoinclude identi�cations of variables. 86



Proposition 5.39 Given any module P , the previous construction =P de�nes an insti-tution.Proof: All we have to prove is the Satisfaction Condition for the institution =P . Con-sider a domain map X 0 f! TP (X ), an arbitrary P -query q 0 = (9X 0)ht1; t2i, and anarbitrary sentence h ; si 2 Sen(X ). Thenq 0 j=X 0 h ; f  ; s]i i� t1 ; (f  ; s])] = t2 ; (f  ; s])] (by De�nition 5.38)i� t1 ; f ] ; s] = t2 ; f ] ; s]i� (t1; f ]) ; s] = (t2; f ]) ; s] (by Corollary 5.32)i� q 0; f ] j=X h ; si (by De�nition 5.38)25.3.2 Soundness and completeness for module importsDe�nition 5.40 Let  : P ! P 0 be a module import.  is sound i� for any P -queryq and any solution form s for q, s is a solution form for q . is complete i� for any P -query q and any solution form s 0 for q there exists asolution form s for q such that s 0 = s . 2A sound and complete module import P ! P 0 protects the solution forms, i.e., anyP -query has the same solutions in P 0 as in P .Fact 5.41 The composition of sound/complete module imports is sound/complete. 2There is a strong 
avour of conceptual similarity between the soundness and com-pleteness for module imports and the soundness and completeness for logical systems. Infact, both of them are instantiations of the category-based formulation of the conceptsof soundness and at the level of institutions, as shown by the following result:Proposition 5.42 In the institution =P introduced by De�nition 5.38, consider theentailment relation `X (parameterised by signatures, i.e., P -domains)70 de�ned by thefollowing inference rule encoding the translation of solution forms along imports of P :P  �! P 0 : h1P ; sih ; s iConsider an arbitrary P -query q = (9X )ht1; t2i. Let q� denote the set of all consequencesof q of the form h1P ; si, i.e., the set of all solution forms for q. Then1. q� `X h ; si implies q j=X h ; si for all s i�  is sound, and2. q j=X h ; si implies q� `X h ; si for all s i�  is complete.Proof: The correctness of the de�nition of the entailment relation can be easily veri�edby checking all conditions from the de�nition of an entailment system (see [21] or [72]).The proof of this proposition is essentially based on the observation that q� `X h ; simeans that there exists s0 a P -substitution that is a solution form for q and such thats = s0 . The rest is given by De�nition 5.40. 270See [21, 72] for the de�nition of entailment relations in institutions.87



De�nition 5.43 A morphism of category-based equational signatures hM;Di : (A U�!X) ! (A0 U 0�! X0) is essentially persistent i� it is liberal and the adjunctions corre-sponding to bothM and D are persistent.A module import  is essentially persistent i� its denotation [[ ]] is an essentiallypersistent morphism of category-based equational signatures. 2When domains are many sorted sets, the persistency of the adjunction on domainscorresponds exactly to the injectivity on sorts of the module import; this relates toGoguen-Meseguer use of persistency in the context of protecting extensions for built-insin Eqlog [39].Lemma 5.44 Let hM;Di : (A U�! X) ! (A0 U 0�! X0) be an essentially persistentmorphism of category-based equational signatures. Consider q a U -query. Then:� $ embeds X as a full subcategory of X0, and� q̂ has exactly the same solution forms in X as q,where q̂ denotes the U 0-query obtained by translating q along hM;Di.Proof: For any query q and model A denote its solutions in the model A by Sol(q;A).The image of $ in X0 is a full subcategory as a consequence of the persistency of theadjunction determined by D. Since $ is also injective on objects, it embeds X as a fullsubcategory of X0. For the rest of the proof we identify X with the image of $.Let F and F 0 be left adjoints to U and U 0, respectively. For any y 2 jXj, we have:Sol(q; yF) = Sol(q; (yF)$$M) (persistency)= Sol(q̂ ; (yF)$$) (Theorem 5.33, Satisfaction Condition for queries)= Sol(q̂ ; yF 0) (composition of adjoints)The conclusion of the lemma follows now by applying Corollary 5.34. 2Theorem 5.45 Completeness Let P  �! P 0 be a module import. Then1.  is sound, and2.  is complete whenever it is essentially persistent.Proof: Let q be a query in P .1. Assume s is a solution form for q. Then s[ coequalises q[, where q[ is the parallelpair of arrows in the Kleisli category Dom(P)TP corresponding to the P -query q, and s[is the arrow in Dom(P)TP corresponding to the substitution s.By Corollary 5.32, [[ ]] determines a functor K : Dom(P)TP ! Dom(P 0)TP 0 . Thismeans that (s )[ = s[K coequalises (q )[ = q[K, which means that s is an solutionform for q .2. By applying the previous lemma to the case of the essentially persistent morphismof category-based equational signatures [[ ]] : [[P ]]! [[P 0]]. 2Example 5.46 Consider the generic module LIST* from Example 5.10. Notice thatMON ,! LIST� is an essentially persistent module import. The query88



select LIST* .find X Y : Mon such that X * Y = Y * X .has exactly the same solution forms in MON as in LIST*. 2The lack of persistency might destroy the completeness of module imports as in thefollowing:Example 5.47 Consider the following theories:th SOURCE issorts S1 S2 .op a : -> S1 .op b : -> S2 .op f : S1 -> S2 .endthth TARGET issort S .op a' : -> S .op b' : -> S .op f : S -> S .eq f(b') = b' .endthand the following view:view V from SOURCE to TARGET issort S1 to S . sort S2 to S .op a to a' .op b to b' .op f to f .endvThe TARGET-queryfind X : S such that f(X) = b' .has a solution form (i.e., X:S->b') although the SOURCE-queryselect SOURCE .find X : S1 such that f(X) = b .does not have any solution form. 2 89



5.4 Theorem of ConstantsTheorem of Constants supports the treatment of universally quanti�ed variables as tem-porary constants [30]. Although such treatments are used on a large scale in the contextof term rewriting, the importance of a mathematical result providing foundations toequational theorem proving using ground rewriting was emphasised for the �rst time inthe context of the OBJ system [30]. A similar application appeared in Chapter 4 (seeCorollary 4.27) when dealing with the lifting of the completeness of paramodulation fromthe case of ground terms to the case of terms with variables.The classical formulation of the Theorem of Constants establishes an equivalencebetween (8X )hs; ti being a consequence of a theory � in a signature �, and (8;)hs; tibeing a consequence of � in the larger signature �X which is obtained by adjoining thevariables X to � as new constants.5.4.1 The level of institutionsThe Theorem of Constants admits a category-based version at the level of the theory ofinstitutions which captures the essence of the model theoretic phenomenon underlyingit. This is based on the internalisation of the notion of universal sentence (i.e., univer-sal quanti�ed formula) in any institution by following a category-based formulation ofuniversal quanti�cation.71De�nition 5.48 Let = = (Sign;Mod;Sen; j=) be any institution. (8�)� is a =-universal�-sentence if� � ��!�0 is any signature morphism, and� � is a �0-sentence.A �-model M satis�es (8�)� i� all its expansions to a �0-model satisfy �, i.e.,M 0 j=�0 �for all M 0 with M 0�� = M . 2The main idea here is that the symbols from �0 that are not in � play the rôle ofthe variables. The previous de�nition includes also the case of second order universalquanti�cation corresponding to the situation when some symbols from �0�� are functionor relation symbols. The classical situation of �rst order universal quanti�cation occurswhen all symbols from �0 � � are constants.The Theorem of Constants admits the following generic institutional version:Theorem 5.49 For any set � of �-sentences,� j=� (8�)� i� �(�) j=�0 �Proof:Mod(�) j=� (8�)� i� fN j N �� 2 jMod(�)jg j=�0 �i� Mod(��) j=�0 � (by the Sat. Cond. in =):271This was �rst introduced by Barwise and later used by Tarlecki in the context of \abstract algebraicinstitutions" [91]. 90



Apart of applications to second order logic and category-based equational logic (nextsection), this abstract version of Theorem of Constants can be applied to hidden sortedlogics, thus giving support to proofs for the object paradigm [35] based on ground rewrit-ing.5.4.2 The level of category-based equational logicThe previous generic version of the Theorem of Constants can be instantiated to theinstitution of category-based equational logics. When (8A)hs; ti is an equation havinga model as a quanti�er, the expanded signature �A is obtained by adjoining the wholemodel A to �. This is reminiscent of the so-called method of diagrams in classical modeltheory [14], and is naturally encoded at the categorical level by using comma categories[89, 91].If A is a category of models and A is any model, a morphism A ! B interprets theelements of A as new constants in B . The evaluation of the model operations on theseconstants respects the model structure of A. The inclusion of signatures � ,! �A isde�ned at the level of category-based equational signatures as follows:Lemma 5.50 Let U : A ! X be a category-based equational signature such that Ahas binary coproducts. For any model A in A, hAA; 1Xi : U ! UA = AA;U is a liberalmorphism of category-based equational signatures.A (A#A)X XU �� AAoo UA��________________Proof: All we have to prove is that AA has a left adjoint. This is in fact (A` ) : A!(A#A) mapping any model B to A jA�! A`B (j are the co-cone arrows of the coproductof B and A). The unit of this adjunction at B is jB . 2The following corollary shows that the translation of sentences along the \inclusion"U ! UA corresponds in fact simply to the addition of the quanti�ers to the signature. Forthis reason, and in the spirit of the tradition, we regard any U -equation as a UA-equationwithout any further new notations.Corollary 5.51 Let U : A! X be a category-based equational signature such that thecategory of models A has binary coproducts and let A be any model in A. Then the trans-lation of a U -equation (8B)hs; ti along hAA; 1Xi is the UA-equation (8jA)hs; jBU ; t ; jBUi,where j are the co-cone arrows of the coproduct of B and A.k kBU 7! BU(B `A)U = (A jA�!B `A)UAt �� t�� jBU��2 91



Corollary 5.52 Theorem of Constants Let � be a collection of conditional U -equations.Then,� j=U (8A)hs; ti i� � j=UA (81A)hs; tiProof: We have to show only that the satisfaction relation betweenmodels and universalsentences de�ned internally (De�nition 5.48 applied to the morphism of category-basedequational signatures, hAA; 1Xi is the same as the satisfaction relation between modelsand abstract equations fromDe�nition 3.6, i.e., for any k hs;ti�! AU and any modelM 2 jAj,M j=U (8hAA; 1Xi)� i� M j=U (8A)hs; ti; where � = (81A)hs; tiThis reduces to show that h j=UA (81A)hs; ti for all A h!M 2 j(A#A)j i�M j=U (8A)hs; ti.This holds since for any A h!M , h j=UA (81A)hs; ti i� s; hU = t ; hU . 2Note that 1A is the initial object of (A#A). In the traditional MSA version of theTheorem of Constants, the interpretation of the variables as new temporary constantsempties the quanti�er. In a more model-theoretic setup this would correspond to aquanti�cation by a model of ground terms, categorically characterised by their initialityproperty.
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6 Extensible Constraint Logic ProgrammingConstraint programming has been recently emerging as a powerful programming paradigmand it has attracted much research interest over the past decade. Mathematical Program-ming, Symbolic Computation, Arti�cial Intelligence, Program Veri�cation and Compu-tational Geometry are examples of application areas for constraint programming. Ingeneral, constraint logic programming replaces uni�cation with constraint solving overcomputational domains. Constraint solving techniques have been incorporated in manyprogramming systems; CLP [58], PrologIII [15], and Mathematica are the best knownexamples. The computational domains include linear arithmetic, boolean algebra, lists,�nite sets. Conventional logic programming (i.e., Prolog) can be regarded as constraintprogramming over term models (i.e., Herbrand universes). In general, the actual con-straint programming systems allow constraint solving for a �xed collection of data typesor computational domains.72 As already mentioned in the Introduction, constraint pro-gramming allowing constraints over any data type will be called extensible.In [58], Ja�ar and Lassez propose a scheme for constraint logic programming basedon embedding constraint systems into Horn clause logic by axiomatising computationaldomains by Horn clauses. In [87], Smolka propose a completely di�erent framework forconstraint logic programming by regarding programs as collections of de�nitions of newconstraints extending the underlying constraint system.This chapter deals only with the model theoretic semantics of constraint logic pro-gramming, we don't address any issues directly related to the computation level of con-straint solving. Our approach to constraint programming departs fundamentally fromthe previous ones; our semantics for extensible constraint logic programming follows theprinciples underlying the model theory for constraint logic programming proposed byGoguen and Meseguer in the context of the language Eqlog [39] and is essentially basedon a version of Herbrand's Theorem for constraint logic, i.e., the logic underlying exten-sible constraint logic programming. Similarly to the approach proposed by Ja�ar andLassez, both constraint relations and programs are [collections of] sentences within thesame logical system (in the sense of institutions rather than of deduction systems). How-ever, constraint logics are much more general than Horn clause logic. In fact, the com-putation domain is a primitive in our approach and plays a central rôle in the de�nitionof constraint logic, rather than being axiomatised in an already de�ned logic (i.e., Hornclause logic) like in CLP. When regarded as a model in constraint logic, the computationdomain appears as the initial model. This is mathematically linked to the semantics ofOBJ-like module systems, the fundamental idea being to regard the models of extensibleconstraint logic programming as expansions of an appropriate built-in model A along asignature inclusion � : � ,! �0, where � is the signature of built-in sorts, operations andrelation symbols, and �0 adds new \logical" symbols. In practice, the constraint rela-tions (i.e., logical relations that one wishes to impose on a set of potential solutions) arelimited to sets of atomic sentences involving both �-symbols and elements of the built-inmodel A. However, at the theory level there is no reason to restrict the shape of con-straint relations only to atomic formulae. The models for constraint logic programming72A computational domain can be regarded as a model (not necessarily the standard one) for a certaindata type speci�cation. 93



appear as expansions of the built-in model to the larger signature �0 and any morphismof constraint models has to preserve the built-ins. Therefore, the constraint models forma category which can be formally de�ned as the comma category (A#Mod(�)).Example 6.1 Consider the example of a speci�cation of the Euclidean plane as a vectorspace over the real numbers.obj R2 ispr FLOAT * (sort Float to Real) .sort Vect .op 0 : -> Vect .op <_,_> : Real Real -> Vect .op _+_ : Vect Vect -> Vect .op -_ : Vect -> Vect .op _*_ : Real Vect -> Vect .vars a b a' b' k : Real .eq 0 = < 0 , 0 > .eq < a , b > + < a' , b' > = < a + a' , b + b' > .eq k * < a , b > = < k * a , k * b > .eq - < a , b > = < - a , - b > .endoThe signature � of built-in sorts, operation and relation symbols contains one sort Realfor the real numbers together with the usual ring operation symbols and a relation symbol<. The built-in model is just the usual ring of real numbers (denoted as R) with <interpreted as the usual `strictly less than' predicate. The signature �0 of the module R2introduces a new operation symbol < , > for representing the points of the Euclideanplane as tuples of real numbers, and overloads the ring operations by organising theEuclidean plane as a vector space over the real numbers. The axioms express the basicfact that the evaluation of the ring operations on vectors is done component-wise.A standard model for this speci�cation, denoted by R2 is given by the cartesianrepresentation of the points of the Euclidean plane, i.e., any point is represented as thetuple of its coordinates. Another model for R2 interprets the sort Vect as the set of realnumbers, the ring operations on Vect as ordinary operations on numbers, and < , > asaddition of numbers. Let's denote this model by R+. 26.1 Generalised Polynomials and Constraint SatisfactionIt is important to have a formal de�nition for constraint sentences, constraint models,and a satisfaction relation between them. This would de�ne a logic underlying constraintlogic programming; we call this constraint logic. A fundamental principle in this logicis the preservation of the built-ins.Consistently to our previous notations, let A$$ denote the free expansion of the built-in model A along the inclusion [of the signature of the built-ins] � : �! �0. Also, let F 0be a left adjoint to the forgetful functor U 0 : Mod(�0) ! Dom(�0).73 The rôle played73From the category of the models of the signature �0 to the category of the domains of �0.94



by the terms in ordinary logic is played by generalised polynomials74 in constraint logic.Generalised polynomials are term-like structures involving both operator symbols andelements of the built-in model. Generalised polynomials can be regarded as elements ofmodels in the same way as ordinary terms are regarded as elements of [free] models as abasis for a semantical aproach to the concept of sentence and satisfaction in equationallogic.Given a domain x (i.e., a collection of variables in practice), the �0-model of thepolynomials over x is usualy denoted as A[x ]. This is in fact the coproduct A$$` xF 0between A$$ and the free �0-model xF 0. When � = �0 are unsorted algebraic signatures,this is a well known construction in universal algebra [48]. However, the best knownexample still comes from linear algebra:Example 6.2 Let X be a set of variables. R[X ] is the ring of polynomials over X andwith real numbers as coe�cients. In this example, the signature � of built-ins is a ringsignature, and �0 doesn't add any new symbols, thus � = �0. The model of the built-insis R, the usual ring of real numbers. 2The universal property of the models of generalised polynomials allow a more generalde�nition that extends the concept of generalised polynomial to the semantic case whenmodels play the rôle of the collections of variables and model morphisms paly the rôle ofthe valuation maps.De�nition 6.3 Let B be any �0-model. The model of generalised polynomialsover B is the coproduct A$$`B , and it is denoted as A[B ]. 26.1.1 Internal constraint logicConstraint logic can be de�ned internally to category-based equational logic. This meansthat the signature of buit-ins � is abstracted to a category-based equational signatureU , �0 to U 0, and the inclusion � : � ! �0 to a morphism of category-based equationalsignatures U ! U 0. In this way, the extensible constraint programming paradigm isaccomodated by any logical system that is a category-based equational logic.De�nition 6.4 Let hM;Di : (A U�!X)! (A0 U 0�!X0) be any liberal morphism of category-based equational signatures. Fix any model A 2 jAj (playing the rôle of the model of thebuilt-ins).A constraint model is a model in A0 whose reduct to the signature of built-inscontains an image of A, i.e., a map c : A ! CM with C 2 jA0j. A model morphismh : c ! c 0 is a map C ! C 0 in A0 such thatA CMC 0Mc //c0FFFFFFF"" hM��commutes.A constraint identity in B 2 jA0j is a binary relation k hs;ti�!(A[B ])U 0. An identityhs; ti in B is satis�ed in a model A c�!CM with respect to a model morphism f : B ! C74The ordinary polynomials from linear algebra are an instantiation of this notion. The word gener-alised plays here the same rôle as the word general plays in the so-called \general algebra."95



i� s; [f ; c]]U 0 = t ; [f ; c]]U 0, where c] is the unique `extension' of c to a model morphismA$$! C . A$$M A$$ A$$`B BA CM Cc]MIIIIIIII$$ jA$$//c]IIIIIIII $$ [f ;c]]�� jBoo f{{vvvvvvvvOO c //This de�nition extends to constraint equations, queries and their satisfactionby constraint models in the same manner as De�nition 3.6. 2Example 6.5 An example of a constraint equation in the context of Example 6.1 isopen .vars X Y : Real .eq < 3.14 * X , Y > + - < Y , 3.14 * X > = 0 .closeNotice that although this equation is not satis�ed by the standard model R2, the con-straint model R+ does satisfy it. 2Example 6.6 Another example of a constraint sentence in the same context is that ofa query:find X Y Z : Real such that3 * < X , Y > = < Y , Z > ;2.79 * X + Y < Z = true .Finding a solution to this query in the standard model R2 reduces by the application ofa rewrite step followed by a simpli�cation step to �nding a solution for the system oflinear inequalities:find X Y Z : Real such that3 * X = Y ;3 * Y = Z ;2.79 * X + Y < Z = true .2 The crucial technical idea of our approach on the semantics of constraint logic pro-gramming is to �t constraint logic into category-based equational logic. While this simplycannot be achieved within the usual concrete algebraic or model theoretic approaches (nonotion of algebraic signature being abstract enough for this purpose), it works at our levelof abstraction. We consider this as a good example of the bene�ts the use of abstractmodel theoretic methodology75 could bring to Computing Science. This idea is resumedby the following slogan and formally formulated by the next de�nition:Constraint logic = equational logic in a special category-based equational signa-ture.75In the sense of category-based equational logic.96



De�nition 6.7 Let hM;Di : (A U�!X)! (A0 U 0�!X0) be a liberal morphism of category-based equational signatures. Then any model A 2 jAj determines a forgetful functorU 0A : (A#M)! X0, such that U 0A =MA;U 0, whereMA is the forgetful functor (A#M)!A0. A A0 (A#M)X X0 X0U�� Moo U 0�� MAoo U 0A��Doo ________________2 In this way the constraint logic introduced by De�nition 6.4 is the category-basedequational logic determined by the forgetful functor U 0A. The correctness of this de�nitionrelies on the following fact:Fact 6.8 If U 0 is faithful and preserves pullbacks, then U 0A is faithful preserves pullbacks.Proof: M preserves pullbacks as a right adjoint. By using this fact, it is straighforwardto show that the forgetful functorMA : (A#M)! A0 creates pullbacks, thus it preservesthem too. U 0A preserves pullbacks as a composite of two pullback preserving functors.U 0A is faithful as a composite of two faithful functors, since the forgetful functorMA : (A#M)! A0 is faithful. 2Proposition 6.9 Let hM;Di : (A U�!X)! (A0 U 0�!X0) be a liberal morphismof category-based equational signatures. Then for any model A 2 jAj1. there is an isomorphism of categories (A#M) �= (A$$#A0);2. if A0 has binary coproducts, thenMA has a left adjoint; and3. the forgetful functorMA creates �ltered colimits.Proof: 1. Because $$ is a left adjoint toM.2. Because the forgetful functor (C#A0) ! A0 has a left adjoint for any C 2 jA0j(since A0 has binary coproducts, see also the proof of Lemma 5.50) and by 1.3. We �rst show that for any model C 2 jA0j, the forgetful functor (C#A0) ! A0creates �ltered colimits. Then we consider C = A$$ and apply 1.Let faigi2I be a �ltered diagram in (C#A0). The forgetful functor (C#A0)! A0 mapsthis diagram into a �ltered diagram fAigi2I in A0. Consider � : A! D a colimit of thisdiagram in A0. We de�ne g : C ! D as ai ;�i for i 2 jI j; the correctness of this de�nitionis ensured by the fact that ai ;�i = aj ;�j for all i ; j 2 jI j because of the �lteredness of I .C AiDEai //g@@@@@@��k0000000000000 �� �i~~}}}}}}
i ���������������� ��Now, we show that � is a colimiting co-cone a ! g in (C#A0). Consider anotherco-cone 
 : a ! k in (C#A0), where k : C ! E . 
 is also a co-cone A ! E in A0. By97



the universal property of � as a colimiting co-cone in A0, there exists a unique arrow� : D ! E such that �; � = 
 in A0. All it remains to be shown is that � is a map g ! k .But g; � = ai ;�i ; � for some i 2 jI j. Since �i ; � = 
i we deduce that g; � = k . 26.2 Herbrand's Theorem for Extensible Constraint Logic Pro-grammingHerbrand's Theorem for constraint logic provides mathematical foundations for the con-cept of constraint solving. Our approach is to instantiate the category-based version ofHerbrand's Theorem 3.21 to the particular case of constraint logic viewed as category-based equational logic determined by the forgetful functor U 0A of De�nition 6.4.Theorem 6.10 Let hM;Di : (A U�!X)! (A0 U 0�!X0) be a liberal morphism of category-based equational signatures. Fix any model A 2 jAj. Assume DomainRegularity andDeductionFramework for U 0, and that U 0 has a left-adjoint F 0 and preserves �lteredcolimits.Consider a collection � of conditional constraint equations with �nite hypotheses andwith coequaliser projective quanti�ers, and a U 0-constraint query (9B)q with B is acoequaliser projective model. Then1. there exists the initial �-constraint model 0�;2. � j= (9B)q i� 0� j= (9B)q; and3. if A0 has non-empty sorts, then � j= (9B)q i� � j= (8y)q; [h; jA$$] for some domainy 2 jX0j and some model morphism h : B ! A[y].Proof: The basis of this proof is to regard the constraint sentences (either equationsor queries) as ordinary U 0A-sentences (in the sense of De�nition 3.6). Any quanti�er Bof a constraint sentence appears as A�; jA$$M in the rôle of the quanti�er for the corre-sponding U 0A-sentence. The category of constraint models is (A#M) and the satisfactionrelation between constraint models and constraint sentences reduces to category-basedequational satisfaction. A A$$M (B `A$$)MA� // jA$$//Notice that� U 0A has a left-adjoint which is the composite of two left adjoints X0 F 0�! A0 �!(A#M) (see 2. of Proposition 6.9),� U 0A preserves �ltered colimits as a composite of two �ltered preserving functors (see3. of Proposition 6.9), and� (A#M) has initial models, i.e., A A��! (A$$#A0) (see 1. of Proposition 6.9) and sincethe forgetful functor (A$$#A0)! A0 creates limits.The last general remark is that if B is a coequaliser projective model in A0, thenA�; jA$$M is coequaliser projective in (A#M). This holds because A�; jA$M is free overB with respect to the forgetful functor MA and because left adjoints to coequaliserpreserving functors preserve the coequaliser projectivity (see Lemma 5.21).98



1.-2. The congruence closures exist in (A#M) by Proposition 3.28 because U 0A has aleft-adjoint. U 0A is �nitary by Proposition 3.31 and because it preserves �ltered colimits.By applying Corollary 3.21 to � viewed as a collection of conditional U 0A-equations, weobtain the existence of the initial �-model in the category of constraint models and that� j= (9B)q i� 0� j= (9B)q.3. Since A0 has non-empty sorts, for any domain y 2 jX0j, there exists at least onearrow y ! 0A0U 0, where 0A0 is the initial model in A0. Therefore, there exists at leastone arrow y ! A$$U 0 = (A�)U 0A. This means that (A#M) has non-empty sorts. Now,Herbrand's Theorem for non-empty sorts 3.34 applies for � viewed as a collection ofconditional U 0A-equations. 2In practice, it rarely happens that the sentences in � involve the built-in modelA. Usually, the sentences in � don't involve any elements of the built-in model (i.e., �contains only �0-sentences, if using the notations from the discussion opening this section)and only the queries appear as full constraint sentences involving elements from the built-in model. In this case, the initial constraint model 0� has a simpler representation as aquotient of the free expansion of the built-in model.In our category-based framework, the U 0-sentences play the rôle of the �0-sentences,and they can be canonically viewed as constraint sentences (i.e., U 0A-sentences) via thetranslation along the morphism of category-based equational signatures hMA; 1X0i : U 0!U 0A (see De�nition 5.20).Proposition 6.11 Assuming the hypotheses of the previous theorem, suppose that �contains only U 0-equations. Then the initial constraint model 0� is isomorphic to thecanonical map !� = A A��! A$$M eM�! (A$$=��)M, where �� is the least congruence onA$$ closed under �-substitutivity.Proof: We will show that !� satis�es the initiality property in the full subcategory of(A#M) of all models satisfying �̂, where �̂ is the translation of � along hMA; 1X0i.Let f : A! CM be any constraint model satisfying �̂. By the Satisfaction Condition(Theorem 5.33), this is equivalent to C j= �. All we have to prove is that there exists aunique arrow f ] : A$$=�� ! C such that !�; f ]M = f .A A$$M (A$$=��)MCMA� //fEEEEEEE"" eM//f 0M�� f ]MwwppppppppppBy the universal property of the free extension A� along M, there exists a uniquemap f 0 : A$$ ! C such that A�; f 0M = f . By the universal property of e (Theorem3.17), there exists a unique map f ] : A$$=�� ! C such that e; f ] = f 0. 2In the case of order sorted Horn clause logic with equality, Goguen and Meseguerhave proved in [39] the existence of initial constraint models for the particular case of �containing only �0-sentences. This result crucial for the semantics of extensible contraintlogic programming in Eqlog can obtained as an instantiation of our previous results.As pointed out by Goguen and Meseguer in [39], the notion of protecting expansiongives the right semantic condition for built-ins. This means that 0� must protect thebuilt-in model A, i.e., that 0� is an isomorphism A �= (A$$=��)M, where �� is the99



least congruence on A$$ closed under �-substitutivity. In the context of order sortedHorn clause logic with equality, Goguen and Meseguer [39] give a set of conditions thatguarantee protection but impose some restrictions on the sentences in �. However, theserestrictions are almost always met in practice. We mention their result:Proposition 6.12 Let (S ;�;�;�) ,! (S 0;�;�0;�0) be an inclusion of order sorted �rstorder signatures and � be an order sorted Horn clause logic with equality speci�cationin (S ;�;�;�) such that:(1) s 2 S 0 � S for any operator symbol � 2 �0w 0;s 0 � �w 0;s 0,(2) if s 2 S and s 0 2 S 0 and s 0 � s, then s 0 2 S and s 0 � s in S ,(3) for � predicate symbol, if � 2 �w and � 2 �0w 0, then � 2 �w 0, and(4) � doesn't involve operation symbols from �0 � � and contains only clauses whoseheads are all predicate symbols from �0 ��.Then for any (S ;�;�;�)-model A, its free extension to a �-model is an isomorphism. 2
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7 Conclusions and Future WorkThis thesis developed a category-based semantics for equational and constraint logicprogramming that is based on the concept of category-based equational logic. We showedhow this general framework can be successfully applied to topics like equational prooftheory, paramodulation-based operational semantics, modularisation in equational logicprogramming, and extensible constraint logic programming.An abstract version of Herbrand's Theorem was derived as a consequence of thecompleteness result for the category-based equational deduction. This not only pro-vides mathematical foundations for the equational logic programming paradigm, butalso constitutes a basis for the full integration of constraint logic programming into thisprogramming paradigm.We developed a model theoretic approach to the completeness of the operationalsemantics of equational logic programming languages based on the analysis of the rela-tionship between the congruence and the paramodulation relation induced by a programon a given model. We showed that this approach covers the case of computations moduloa set of axioms naturally, in the sense that no special treatment is necessary anymorefor this case. However, the full implications of this approach to the case of computationsmodulo a set of axioms still remain to be discovered. One particular way would be to liftthe treatment of narrowing and its re�nement at the same level of abstraction to that ofparamodulation.The concept of category-based equational signature morphism has been successfullyused for setting up the mathematical structures underlying the fundamental modularisa-tion problems speci�c to equational logic programming. Also, category-based equationalsignature morphisms, proved to be central for the category-based semantics of extensibleconstraint logic programming. Based on this semantics, further work can be done todevelop theories and technologies for extensible modular constraint programming. Theprinciples underlying Eqlog module system should provide a good basis for developinga technology for combinig decision procedures. A concrete operational semantics willde�ne a control strategy for combining various e�cient decision procedures for speci�cproblems, with narrowing and resolution as a general inference mechanism. This will in-volve backtracking, the introduction of symbolic variables (i.e., deferred constants), thecomputation of symbolic solutions, and symbolic simpli�cation (e.g., see [68, 59] for thecase of linear arithmetic constraints). A promising approach is given by the category-based approach to the paramodulation-based operational semantics for equational logicprogramming developed in Chapter 4. Since constraint logic can be regarded as a par-ticular case of category-based equational logic, we expect to obtain some relevant resultsby applying that theory.One of the most important further research directions is to apply the category-basedresults of this work for developing equational logic programming over non-conventionalstructures. This might provide the right framework for integrating equational and con-straint logic programming with other programming paradigms, especially higher-orderprogramming, object-orientation, or concurrency.On the implementation side, much work has to be done for building an e�cient Eqlogcompiler that will support extensible modular constraint solving. The actual Eqlog pro-totype implementation is an extension of the OBJ3 system that implements leftmostinnermost order sorted basic narrowing with constructor discipline, and it can be suc-101



cessfully used for experimentations with the operational semantics.Finally, we can conclude that the framework of category-based equational logic canbe regarded as a mathematical structure that is fundamental to the equational logicprogramming paradigm. We have seen how a wide spectrum of problems in this area canbe successfully solved within this framework, and I hope that the theory developed herecan be used for solving many other problems raised by such a dynamic �eld as equationallogic programming is today.
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A Running EqlogThis appendix gives a brief presentation of all necessary information for running theOxford implementation of Eqlog. It is assumed the reader has some familiarity with theuser manual for the OBJ3 system [46].The way to input Eqlog �les is similar to that of the OBJ3 system. The name ofEqlog �les must end in .eql. OBJ �les can be also loaded, but only by using their fullname (i.e., including .obj). Each time an Eqlog module is loaded or selected, the systemcomputes a couple of hash tables used by the order sorted uni�cation function.76Eqlog syntax (in BNF notation) for solving queries is as follows:hSolve i ::= find hLogicVarsDeclar i such that hqueries i .hLogicVarsDeclar i ::= hVarId i... : hSort i [, hVarId i... : hSort i]...hqueries i ::= hTerm i = hTerm i [; hTerm i = hTerm i ]...Eqlog modules are the same as the OBJ modules except that the shape of the hy-potheses part of an clause is restricted tohTerm i == hTerm i [ and hTerm i == hTerm i ]...hVarId i and hSort i stand for the OBJ syntactical entities of variable identi�ers andsorts, while hTerm i stands for the OBJ terms. The BNF de�nition for all OBJ syntac-tical entities can be found in the OBJ manual [46].Operator declarations in Eqlog admit cons as an attribute meaning that the corre-sponding operator is regarded as a constructor.
76In the case of big modules, the computation of these hash tables could be quite time consuming!103
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