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Abstract

For conventional logic institutions, when one extends the sentences to contain open sentences, their satisfaction is then parame-
terized. For instance, in the first-order logic, the satisfaction is parameterized by the valuation of unbound variables, while in modal
logics it is further by possible worlds. This paper proposes a uniform treatment of such parameterization of the satisfaction relation
within the abstract setting of logics as institutions, by defining the new notion of stratified institutions. In this new framework, the
notion of elementary model homomorphisms is defined independently of an internal stratification or elementary diagrams. At this
level of abstraction, a general Tarski style study of connectives is developed. This is an abstract unified approach to the usual
Boolean connectives, to quantifiers, and to modal connectives. A general theorem subsuming Tarski’s elementary chain theorem is
then proved for stratified institutions with this new notion of connectives.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

The theory of institutions [11] is a categorical ab-
stract model theory which formalizes the intuitive no-
tion of logical system, including syntax, semantics, and
the satisfaction between them. This emerged in comput-
ing science studies of software specification and seman-
tics, in the context of the population explosion of logics
there, with the ambition of doing as much as possible
at the level of abstraction independent of commitment
to any particular logic. Now institutions have become
a common tool in the area of algebraic specification, in
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fact its most fundamental mathematical structure. An in-
stitution (Sig,Sen,Mod, |=) consists of

(i) a category Sig, whose objects are called signatures,
(ii) a functor Sen : Sig → Set, giving for each signa-

ture a set whose elements are called sentences over
that signature,

(iii) a functor Mod : Sigop → Cat giving for each sig-
nature Σ a category whose objects are called Σ -
models, and whose arrows are called Σ -(model)
homomorphisms, and

(iv) a relation |=Σ ⊆ |Mod(Σ)|×Sen(Σ) for each Σ ∈
|Sig|, called Σ -satisfaction,

such that for each morphism ϕ :Σ → Σ ′ in Sig, the sat-
isfaction condition

M ′ |=Σ ′ Sen(ϕ)(e) iff Mod(ϕ)(M ′) |=Σ e
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holds for each M ′ ∈ |Mod(Σ ′)| and e ∈ Sen(Σ). When
M = Mod(ϕ)(M ′) we will say that M ′ is an expansion
of M along ϕ.

Example 1.1. Let FOL be the institution of many sorted
first-order logic with equality. Its signatures (S,F,P )

consist of a set of sort symbols S, a set F of function
symbols, and a set P of relation symbols. Each func-
tion or relation symbol comes with a string of argument
sorts, called arity, and for function symbols, a result
sort. Signature morphisms map the three components
in a compatible way. Models M are first-order struc-
tures interpreting each sort symbol s as a set Ms , each
function symbol σ as a function Mσ from the prod-
uct of the interpretations of the argument sorts to the
interpretation of the result sort, and each relation sym-
bol π as a subset Mπ of the product of the interpreta-
tions of the argument sorts. Notice that each term t of
(S,F,P ) can be interpreted in any model M as one of
its elements, denoted Mt . If t = σ(t1, . . . , tn) then Mt is
defined as Mσ (Mt1 , . . . ,Mtn). Sentences are the usual
first order sentences built from equational and relational
atoms by iterative application of Boolean connectives
(∧,¬,∨,⇒, etc.) and quantifiers. Sentence translations
rename the sorts, function, and relation symbols. For
each signature morphism ϕ, the reduct Mod(ϕ)(M ′) of a
model M ′ is defined by Mod(ϕ)(M ′)x = M ′

ϕ(x) for each
x sort, function, or relation symbol from the domain
signature of ϕ. The satisfaction of sentences by mod-
els is the usual Tarskian satisfaction defined inductively
on the structure of the sentences.

Example 1.2. Let MPL be the institution of proposi-
tional modal logic. The category of signatures is Set, the
category of sets and functions. For each set P , the P -
sentences are formed from the elements of P by closing
under Boolean connectives and unary modal connec-
tives � (necessity) and � (possibility). An MPL model
(I,W,R) for a signature P , called Kripke P -model con-
sists of

– an index set I ,
– a family W = {Wi}i∈I of ‘possible worlds’, which

are functions P → {0,1} (or equivalents subsets
of P ),

– an ‘accessibility’ relation R ⊆ I × I .

A model homomorphism h : (I,W,R) → (I ′,W ′,R′)
consists of a function h : I → I ′ which preserves the ac-
cessibility relation, i.e., 〈i, j 〉 ∈ R implies 〈h(i), h(j)〉 ∈
R′, and such that Wi ⊆ W ′h(i) for each i ∈ I .
The satisfaction of P -sentences by the Kripke P -
models, (I,W,R) |= ρ is defined by (I,W,R) |=i ρ

for each i ∈ I , where |=i is defined by induction on the
structure of the sentences as follows:

– (I,W,R) |=i ρ iff ρ ∈ Wi for each ρ ∈ P ,
– (I,W,R) |=i ρ1 ∧ ρ2 iff (I,W,R) |=i ρ1 and

(I,W,R) |=i ρ2; and similarly for the other Boolean
connectives,

– (I,W,R) |=i �ρ iff (I,W,R) |=j ρ for each j

such that 〈i, j 〉 ∈ R, and
– �ρ is the same as ¬�¬ρ.

A brief random list of examples of institutions in use
in computing science include higher-order [3], polymor-
phic [19], temporal [9], process [9], behavioral [2], coal-
gebraic [5], object-oriented [12], and multi-algebraic
(non-determinism) [17] logics.

In the case of conventional logic institutions, such as
FOL, when one extends the sentences to contain open
sentences also, the satisfaction of an open sentence is
then parameterized by the valuations of the unbound
variables. This is in fact how classical approaches intro-
duce the semantic concept of satisfaction. On the other
hand, a similar situation arises from the direction of
Kripke semantics. In MPL the satisfaction relation is al-
ready parameterized by the possible worlds.

This work constitutes an institutional general unified
study of such parameterization of the satisfaction re-
lation (between models and sentences) by introducing
the concept of ‘stratified’ institution. These are insti-
tutions for which the satisfaction relation is ‘stratified’
(or parameterized in other words) by ‘states of mod-
els’. These ‘states of models’ may be explicit valuations
of variables (like in FOL), or implicit possible worlds
(like in MPL), or combination of both (like in first
order modal logic), or behavioral context (like in hid-
den algebra [8,12,13,16]), or something else. We show
how we can extract canonically an institution out of a
‘stratified’ institution. At this level we also develop a
general Tarski style study of connectives which is an
abstract unified approach to the usual Boolean connec-
tives, to quantifiers, and to modal connectives, and we
show that this determines canonically a stratified insti-
tution (and hence an institution). This way to explicitly
structure the satisfaction relation opens the possibility to
an institution-independent framework in which various
modal and non-modal logics can be treated uniformly.
We illustrate this by developing a general concept of
elementary (model) homomorphism and by proving a
general version of Tarski Elementary Chain Theorem
[4,22].
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Let us now recall some basic institution-independent
concepts which will be used in our paper.

Model amalgamation. This is one of the central proper-
ties in institution theory intensely used in application to
specification and to model theory. A commuting square
of signature morphisms

Σ
ϕ1

ϕ2

Σ1

θ1

Σ2 θ2
Σ ′

is an amalgamation square if and only if for each Σ1-
model M1 and a Σ2-model M2 such that Mod(ϕ1)(M1)

= Mod(ϕ2)(M2), there exists an unique Σ ′-model M ′,
denoted M1 ⊗ M2, such that Mod(θ1)(M

′) = M1 and
Mod(θ2)(M

′) = M2. When dropping the uniqueness
condition, we say this is a weak amalgamation square.

It is common in actual institutions that all pushout
squares of signature morphisms are weak amalgama-
tion squares, in fact most often they are amalgamation
squares.

Internal logic. An institution has conjunctions [7,21]
when for each signature Σ and any Σ -sentences ρ1
and ρ2 there exists a Σ -sentence (possibly denoted)
ρ1 ∧ ρ2 such that for each Σ -model M , M |= ρ1 ∧ ρ2
if and only if M |= ρ1 and M |= ρ2. That an institu-
tion ‘has’ other Boolean connectives may be defined in
a similar manner. Notice that while FOL has all Boolean
connectives, MPL has only conjunctions.

An institution has universal D-quantification [7,21]
for a class D of signature morphisms when for each
(χ :Σ → Σ ′) ∈D and each Σ ′-sentence ρ′ there exists
a Σ -sentence (possibly denoted (∀χ)ρ′) such that for
each Σ -model M , M |=Σ (∀χ)ρ′ if and only if M ′ |=Σ ′
ρ′ for each Σ ′-model M ′ such that Mod(χ)(M ′) =
M . Existential quantification can be defined similarly.
For example, FOL has universal and existential D-
quantification for D the class of signature extensions
with a finite number of constants.

First order quantifications are captured at the institu-
tion-independent level by the following weakening of
the concept of representable signature morphism in-
troduced in [7]. A signature morphism χ :Σ → Σ ′ is
quasi-representable [6,15] if and only if each model
homomorphism h : Mod(χ)(M ′) → N has an unique
χ -expansion h′ :M ′ → N ′. An institution has quasi-
representable D-signature morphisms for a class D
of signature morphisms when each (χ :Σ → Σ ′) ∈ D
is quasi-representable. Note, for example, that FOL
has quasi-representable D-signature morphisms for the
class D of signature extensions with constants.

2. Stratified institutions

In any institution I which has quasi-representable
D-signature morphisms, we can define an internal sat-
isfaction of “open sentences” parameterized by abstract
“valuations” of internal variables in D as follows:

Proposition 2.1 (Internal stratification). Let I =
(Sig,Sen,Mod, |=) be an institution which has quasi-
representable D-signature morphisms. Define St(I) =
(Sig′,Sen′,Mod′, [[_]]) as follows:

– Sig′ is the category, objects and morphisms of
which are every quasi-representable internal vari-
ables (i.e. quasi-representable signature morphisms)
χ :Σ → Σ ′ ∈ D, and pairs of base institution
signature morphisms 〈ϕ :Σ → Σ1, ϕ

′ :Σ ′ → Σ ′
1〉 :

(χ :Σ → Σ ′) → (χ1 :Σ1 → Σ ′
1) such that:

Σ
χ

ϕ

Σ ′

ϕ′

Σ1 χ1
Σ ′

1

is a weak amalgamation square,
– Sen′ : Sig′ → Set is the functor that maps every

χ :Σ → Σ ′ to Sen(Σ ′),
– Mod′ : Sig′op → Cat is the functor that maps χ :

Σ → Σ ′ to Mod(Σ), and
– [[_]] is a |Sig′|-indexed family of functors [[_]]χ :

Mod′(χ) → Set that maps every χ -model M to
its set of states [[M]]χ = {M ′ ∈ |Mod(Σ ′)| |
Mod(χ)(M ′) = M}.

Given χ :Σ → Σ ′ and a χ -model M , for each state
M ′ ∈ [[M]]χ , we define the satisfaction of ρ ∈ Sen′(χ)

by M at M ′, denoted M |=M ′
χ ρ, by:

M |=M ′
χ ρ iff M ′ |=Σ ′ ρ.

Finally, a χ -model M satisfies ρ, denoted M |=χ ρ if
and only if M |=M ′

χ ρ for every M ′ ∈ [[M]]χ .
Then, (Sig′,Sen′,Mod′, (|=χ )χ∈|Sig′|) is an institu-

tion.

Proof. Consider 〈ϕ,ϕ′〉 : (χ :Σ → Σ ′) → (χ1 :Σ1 →
Σ ′

1) a signature morphism in the internal stratification
of I , M1 a χ1-model and ρ′ a χ -sentence. Then M1 |=χ1

Sen′(〈ϕ,ϕ′〉)(ρ′) means that M1 |=M ′
1

χ Sen(ϕ′)(ρ′) for
1
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each M ′
1 ∈ [[M1]] which means M ′

1 |=Σ ′
1

Sen(ϕ′)(ρ′)
for each M ′

1 ∈ [[M1]], which is equivalent to Mod(ϕ′)(M ′
1)|=Σ ′ ρ′ for each M ′

1 ∈ [[M1]].
On the other hand, Mod′(ϕ,ϕ′)(M1) |=χ ρ′ means

Mod(ϕ)(M1) |=M ′
χ ρ′ for each M ′ ∈ [[Mod(ϕ)(M1)]]

which means M ′ |=Σ ′ ρ′ for each M ′ ∈ [[Mod(ϕ)(M1)]].
Now, by the weak amalgamation each M ′ ∈

[[Mod(ϕ)(M1)]] determines a M ′
1 ∈ [[M1]]. Conversely,

each M ′
1 ∈ [[M1]] determines an M ′ ∈ [[Mod(ϕ)(M1)]]

just by reduction M ′ = Mod(χ1)(M
′
1). This shows

that M1 |=χ1 Sen′(ϕ,ϕ′)(ρ′) iff Mod′(ϕ,ϕ′)(M1) |=χ

ρ′. �
St(I) is called the internal stratification of I.
Hence, internal stratification is a generalization of

valuations of unbounded variables.

Example 2.2. In FOL, when we restrict ourselves to
the class D of signature extensions with constants in
the role of internal variables χ , we get St(FOL), where
signatures are pairs ((S,F,P ),X) consisting of a FOL-
signature and a set of (S-sorted) variables X, and sen-
tences are just “open” (S,F,P )-sentences with un-
bound (free) variables in X, states of a (S,F,P )-mod-
el M are just any valuation ν :X → M (hence [[M]]χ
= MX), and M |=ν

(S,F,P ),X ρ means that M satisfies ρ

for ν. This is very often how classical logic text books
introduce quantifiers in FOL.

St(I) is then the stratification of any institution by
explicitly parameterizing the satisfaction condition by
valuations of “abstract” variables. However, this is too
restrictive when dealing with institutions like modal
logics because in this case, St(I) does not take into ac-
count parameterization by possible worlds whence the
notion of stratified institutions.

Definition 2.3 (Stratified institution). A stratified insti-
tution consists of:

– a category Sig of signatures,
– a sentence functor Sen : Sig → Set,
– a model functor Mod : Sigop → Cat,
– a “stratification” [[_]] which consists of a functor

[[_]]Σ : Mod(Σ) → Set for each signature Σ ∈ |Sig|
(states of models), and a natural transformation
[[_]]ϕ : [[_]]Σ ′ ⇒ [[_]]Σ ◦ Mod(ϕ) for each signature
morphism ϕ :Σ → Σ ′ such that [[M ′]]ϕ is surjec-
tive for each M ′ ∈ |Mod(Σ ′)|, and

– a satisfaction relation between models and sen-
tences which is parameterized by model states,
M |=η
Σ ρ where η ∈ [[M]]Σ such that the two fol-

lowing properties are equivalent:

(i) Mod(ϕ)(M) |=[[M]]ϕ(η)

Σ ρ,
(ii) M |=η

Σ ′ Sen(ϕ)(ρ).

Then, we can define for every Σ ∈ |Sig|, the satisfaction
relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) as follows: for all
η ∈ [[M]]Σ
M |=Σ ρ if and only if M |=η

Σ ρ.

Example 2.4. Given an institution I , St(I) is a strat-
ified institution. Indeed, for each signature morphism
〈ϕ,ϕ′〉 : (χ :Σ → Σ ′) → (χ1 :Σ1 → Σ ′

1), the natural
transformation [[_]]〈ϕ,ϕ′〉 is defined by [[M]]〈ϕ,ϕ′〉(M ′) =
Mod(ϕ′)(M ′) for each state M ′ ∈ [[M]]χ ′ . The def-
inition of [[_]]χ on model homomorphisms uses the
quasi-representable property of χ . The surjectivity of
[[_]]〈ϕ,ϕ′〉 is assured by the weak amalgamation property
of the square defining 〈ϕ,ϕ′〉. Notice for St(FOL), the
weak amalgamation property corresponding to 〈ϕ,ϕ′〉
is equivalent to the fact that the mapping X → X′ is in-
jective.

The following is a rather different example of strat-
ified institution where the states of the models are im-
plicit rather than explicit as in the case of the internal
stratifications.

Example 2.5. MPL is a stratified institution where
[[(I,W,R)]] = I for each set P of propositional vari-
ables and each P -model (I,W,R) and for each signa-
ture morphism ϕ :P → P ′, [[(I ′,W ′,R′)]]ϕ is just the
identity function on I ′.

The following shows that any stratified institution is
indeed an institution.

Proposition 2.6. For each signature morphism ϕ :Σ →
Σ ′, each Σ ′-model M ′ and each Σ -sentence ρ, we
have: M ′ |=Σ ′ Sen(ϕ)(ρ) if and only if Mod(ϕ)(M ′)
|=Σ ρ.

Proof. M ′ |=Σ ′ Sen(ρ) iff M ′ |=η′
Σ ′ ρ for all states

η′ ∈ [[M ′]]Σ ′ iff Mod(ϕ)(M ′) |=[[M ′]]ϕ(η′)
Σ ρ for all states

η′ ∈ [[M ′]]Σ ′ . By the surjectivity of [[M ′]]ϕ , this is
equivalent to Mod(ϕ)(M ′) |=η

Σ ρ for all states η ∈
[[Mod(ϕ)(M ′)]]Σ , which means Mod(ϕ)(M ′) |=Σ ρ. �

Notice that the same consequence relation may be
parameterized in several ways. For instance, in modal
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first order logic, one can isolate a pair formed by a pos-
sible world and a variable assignment, but also interme-
diately, just a world, or just an assignment. To compare
and relate different stratifications of a same institution,
the notions of stratified institution morphisms and co-
morphisms have been introduced [1]. For lack of space,
this will not be presented in this paper.

3. Closed sentences

In FOL a formula without free (unbound) variables
has the property that its satisfaction does not depend
on valuations of variables. In the literature, such for-
mulæ are called closed formulæ. At the level of abstract
stratified institutions this concept can be defined in two
different ways.

Definition 3.1 (Semantically closed). Let Σ ∈ |Sig| be
a signature in a stratified institution. A Σ -sentence ρ is
semantically closed when for each Σ -model M , the set
of states {η ∈ [[M]]Σ ] | M |=η

Σ ρ} is either [[M]]Σ or ∅.
(Closed) A signature morphism ϕ is an institu-

tion is vertical when Mod(ϕ) is an identity functor.
A Σ -sentence ρ in a stratified institution is closed
when for each vertical signature morphism ϕ :Σ ′ →
Σ , there exists a Σ ′-sentence ρ′ ∈ Sen(Σ ′) such that
Sen(ϕ)(ρ′) = ρ.

Proposition 3.2. In any internal stratification, each
closed sentence is semantically closed. Moreover, if
the base institution has all Boolean connectives, quasi-
representable D-quantifications, and Mod reflects iden-
tities then any semantically closed sentence is equiva-
lent to a closed sentence.

Proof. Let ρ′ be a closed (χ :Σ → Σ ′)-sentence.
Suppose ρ′ is not semantically closed. Then there
exists a χ -model M for which there are two states
M ′,M ′′ ∈ [[M]]χ such that M |=M ′

χ ρ′ but M �|=M ′′
χ ρ′.

Hence, we have that M ′ |=Σ ′ ρ′ and M ′′ �|=Σ ′ ρ′. Con-
sider the vertical signature morphism 〈1Σ, χ〉 : 1Σ →
χ . Therefore, there exists a χ -sentence ρ such that
Sen′(〈1Σ, χ〉)(ρ) = Sen(χ)(ρ) = ρ′. Hence, we have
M ′ |=Σ ′ Sen(χ)(ρ) and M ′′ �|=Σ ′ Sen(χ)(ρ). But, by
definition, M = Mod(χ)(M ′) = Mod(χ)(M ′′), and then
by the satisfaction condition, we have both M |=Σ ρ

and M �|=Σ ρ what is a contradiction. This shows that ρ′
is semantically closed.

For the second part, we first notice that for any in-
ternal variable χ :Σ → Σ ′ ∈ D and any Σ -sentence
ρ, Sen(χ)(ρ) is closed because Mod reflects identities.
Then any semantically closed χ -sentence ρ is equiva-
lent to Sen(χ)((∀χ)ρ′ ∨ ¬(∃χ)ρ′). �

While the distinction between closed and semanti-
cally closed sentences is not meaningful for FOL, note
that in MPL defined as the stratified institution of Ex-
ample 2.5, each sentence is closed but only proposi-
tional logic tautologies or their negations are semanti-
cally closed.

From any stratified institution we can “extract” an in-
stitution of closed sentences in a canonical way which in
the case of actual internal stratifications gives back the
base institution. For example, FOL be recovered from
its stratification St(FOL) by the following steps:

– St(FOL)-signatures ((S,F,P ),X) and ((S,F,P, ),

X′) are declared equivalent; their equivalence class
corresponds to the FOL-signature (S,F,P ),

– the closed ((S,F,P ),X)-sentences are, in fact, just
(S,F,P )-sentences in FOL; however, under the
above quotienting of signatures, (S,F,P )-senten-
ces in FOL correspond to equivalence classes of
closed sentences which are invariant under transla-
tions of variables.

The above “extraction” of FOL from St(FOL) has
been abstractly defined in [1,6] for any stratified institu-
tion, but for lack of space, will not be presented in this
paper. Interested readers can refer to [6].

4. Elementary homomorphisms

Stratified institutions accommodate a concept of el-
ementary model homomorphisms independently of the
existence of an internal stratification or of elementary
diagrams (like in [14]). While this captures the usual
elementary homomorphisms, it also provides a natural
concept of elementary homomorphism for modal log-
ics.

Definition 4.1 (Elementary homomorphism). Let Σ be
a signature in a stratified institution. A Σ -homomor-
phism h :M → M ′ is elementary when for every ρ and
every η:

M |=η
Σ ρ if and only if M ′ |=[[h]]Σ(η)

Σ ρ.

Proposition 4.2. For every stratified institution SI , the
three following properties hold:
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(i) if SI has negation,1 then for every elementary
Σ -homomorphism h :M → M ′, M and M ′ are
elementary equivalent (denoted M ≡Σ M ′), that
is for every semantically closed Σ -sentence ρ,
M |=Σ ρ if and only if M ′ |=Σ ρ;

(ii) for every elementary Σ -homomorphism h :M →
M ′ such that [[h]]Σ is surjective, M and M ′ are
elementary equivalent;

(iii) for every signature Σ , elementary Σ -homomor-
phisms form a subcategory Elem(Σ) of Mod(Σ);

(iv) Mod(ϕ) preserves elementary homomorphisms.

Proof. (1), (2), and (3) are straightforward. Let us
therefore focus on (4). Let ϕ :Σ → Σ ′ be a signa-
ture morphism and let h :M → M ′ be an elemen-
tary Σ ′-homomorphism. Let η ∈ [[Mod(ϕ)(M)]]Σ and
ρ ∈ Sen(Σ). As [[M]]ϕ is surjective, there exists η′ ∈
[[M]]Σ ′ such that [[M]]ϕ(η′) = η. Therefore, the five fol-
lowing properties are successively equivalent:

– Mod(ϕ)(M) |=η
Σ ρ.

– M |=η′
Σ ′ Sen(ϕ)(ρ).

– M ′ |=[[h]]Σ ′ (η′)
Σ ′ Sen(ϕ)(ρ).

– Mod(ϕ)(M ′) |=[[M]]ϕ([[h]]Σ ′ (η′))
Σ ρ.

– Mod(ϕ)(M ′) |=[[Mod(ϕ)(h)]]Σ(η)
Σ ρ.

We then may conclude that Mod(ϕ)(h) : Mod(ϕ)(M) →
Mod(ϕ)(M ′) is elementary. �
5. Abstract connectives

The definition below provides an abstract notion of
connective which generalizes standard Boolean connec-
tives, quantifiers and modalities.

Definition 5.1 (Connective signature). A connective
signature C is a family (Cn)n∈N of sets indexed by nat-
ural numbers. c ∈ Cn is called a connective of arity n.
A morphism between connective signatures is any N-
structure function that preserves arity. By LogSig we
denote the category of connective signatures.

Notation 5.2. For any connective signature C, let TC
denote the set of all C-terms.

Definition 5.3 (Connective algebra). Let C be a con-
nective signature. A C-algebra A consists of a set [[A]],

1
SI has negation when for any sentence ρ there exists a sentence

¬ρ such that M |= ρ iff M �|= ¬ρ.
called carrier or set of states, and a mapping A :TC →
2[[A]]. A C-morphism h :A → B is a mapping h : [[A]] →
[[B]] such that the diagram below commutes:

TC
A

B

2[[A]]

2h

2[[B]]

Let LogMod(C) denote the category of C-algebras and
let LogMod : LogSig → Catop be the corresponding
functor.

Proposition 5.4. (LogSig, T ,LogMod, [[_]], |=) is a
stratified institution, where T : LogSig → Set is the
functor mapping each connective signature C to TC , and
A |=η

C ρ if and only if η ∈ A(ρ).

Definition 5.5 (Connectives). A stratified institution
(Sig,Sen,Mod, [[_]], |=) has connectives if and only if
there exists a functor C : Sig → LogSig and for each
Σ ∈ |Sig| a function

βΣ :
∣∣Mod(Σ)

∣∣ → ∣∣LogMod
(
C(Σ)

)∣∣,

natural in Σ , such that

– Sen = T_ ◦ C,
– [[M]]Σ = [[βΣ(M)]]C(Σ) for each Σ -model M , and
– M |=η

Σ ρ if and only if βΣ(M) |=η

C(Σ) ρ.

Example 5.6 (FOL). St(FOL) is a stratified institution
with connectives in the following manner:

– C((S,F,P ),X)0 = {π(t) atom | π ∈ P },2
– C((S,F,P ),X)1 = {¬} ∪ {(∀x) | x ∈ X},
– C((S,F,P ),X)2 = {∧}, and
– C((S,F,P ),X)n = ∅ for n > 2,
– [[M]](S,F,P ),X = MX = {v | v :X → M},
– β(M)(π(t)) = {v ∈ MX | v(t) ∈ Mπ } for each

atom π(t),
– β(M)(¬ρ) = MX − β(M)(ρ),
– β(M)(ρ ∧ ρ′) = β(M)(ρ) ∩ β(M)(ρ′),
– v ∈ β(M)((∀x)ρ) iff v′ ∈ β(M)(ρ) for all v′ such

that v′(y) = v(y) for all y �= x.

Example 5.7 (MPL). Modal propositional logic is a
stratified institution with connectives in the following
manner:

– C(P )0 = P , C(P )1 = {¬,�}, C(P )2 = {∧,∨,

⇒}, and C(P )n = ∅ for n > 2,

2 Here, t is a string of terms corresponding to the arity of π .
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– [[(I,W,R)]] = I ,
– β(I,W,R)(π) = {i | π ∈ Wi} for each π ∈ P ,
– for ¬ and ∧ the definition is similar to that for

St(FOL), and we leave the definitions for ∨ and ⇒
as exercise to the reader,

– β(I,W,R)(�ρ) = R−1(β(I,W,R)(ρ)).

Notice that internal Boolean connectives such as de-
fined in Section 1 only work for semantically closed
sentences. On the contrary, connectives as defined in
Definition 5.5 also deal with open sentences.

Proposition 5.8. For any signature Σ of a stratified
institution with connectives, a Σ -homomorphism h :
M → M ′ is elementary if and only if [[h]]Σ : [[M]]Σ →
[[M ′]]Σ is a connective algebra morphism βΣ(M) →
βΣ(M ′).

Proof. This follows by the following successive equiv-
alences:

– h :M → M ′ elementary,
– M |=η

Σ ρ iff M ′ |=[[h]]Σ(η)
Σ ρ for all η, ρ,

– βΣ(M) |=η

C(Σ) ρ iff βΣ(M ′) |=[[h]]Σ(η)

C(Σ) ρ for all
η, ρ,

– η ∈ βΣ(M)(ρ) if and only if [[h]]Σ(η) ∈ βΣ(M ′)(ρ)

for all η, ρ,
– βΣ(M)(ρ) = 2[[h]]Σ (βΣ(M ′)(ρ)). �
Notice that Proposition 5.8 makes β a natural trans-

formation Elem ⇒ LogMod ◦ C.

6. Elementary colimit theorem

This section is devoted to the stratified-institution in-
dependent generalization of Tarski’s elementary chain
theorem. Here we provide a general method for proving
that colimits of directed diagrams of elementary homo-
morphisms are still elementary.

Proposition 6.1. For each connective signature C,
LogMod(C) has all small colimits.

Proof. Let D :J → LogMod(C) be a diagram (func-
tor) of C-algebras. Consider the colimit μ of [[−]]C ◦
D :J → Set.

[[D(i)]] D(u)

μi

[[D(j)]]
μj

[[A]]
This yields a limit cone

2[[D(i)]] 2D(u)

2[[D(j)]]

2[[A]]
2μj2μi

By using the limit property we define A :TC → 2[[A]] to
be the unique function such that 2μi ◦ A = D(i) :TC →
2[[D(i)]] for each i ∈ |J |. It is easy to check that (D(i)

μi→
A)i∈|J | is the colimit of D. �
Definition 6.2 (Elementary colimit property). A strat-
ified institution with connectives has the elementary
colimit property when for each signature Σ , any colimit

(Mi
hi→ M)i∈|J | of a directed diagram of elementary

homomorphisms (Mi

hi,j−→ Mj)i<j∈J in Mod(Σ) gets

mapped by [[−]]Σ to a colimit (β(Mi)
[[hi ]]→ β(M))i∈|J |

of (β(Mi)
[[hi,j ]]−−−−→ β(Mj ))i<j∈(J,�) in LogMod(C(Σ)).

Corollary 6.3. In any stratified institution with con-
nectives which has the elementary colimit property, the
colimit of any directed diagram of elementary homo-
morphisms consists of elementary homomorphisms too.

Proof. Immediate from Proposition 5.8. �
Thus in the applications, in order to obtain the con-

clusion of Corollary 6.3 it is enough to check the ele-
mentary colimit property. We resume this section with a
couple of examples.

Example 6.4 (MPL). Let P be a set and consider a di-
rected colimit of P -models as below (where (k < j) ∈
(J,�)):

(Ik,Wk,Rk)
hk,j

hk

(Ij ,Wj ,Rj )

hj

(I,W,R)

such that all hk,j are elementary. Note that

Ik

hk,j

hk

Ij

hj

I

is a colimit in Set and that W is the unique function
I → 2P such that W ◦ hk = Wk for each k ∈ J . This
definition works because (Wk)k∈J is a co-cone over
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(Ik

hk,j−−−−→ Ij )(k�j)∈(J,�) which is due the fact that each
hk,j is elementary. Moreover R = ⋃

k∈J (hk × hk)(Rk).
Now let Bk = β(Ik,Wk,Rk) for each k ∈ J (thus

[[Bk]] = Ik) and consider the corresponding colimit of
connective algebras, cf. Proposition 6.1.

Bk

hk,j

hk

Bj

hj

B

Note that [[B]] = I and that by Proposition 6.1 we have
that

Bk(ρ) = h−1
k

(
B(ρ)

)
for each k ∈ J.

In order to establish the elementary colimit property we
have to show that B = β(I,W,R) :TC(P ) → 2[[B]] = 2I .
We do this by induction on the structure of ρ ∈ TC(P ).
For this we will make use repeatedly of the fact that for
each X,Y ⊆ I , X = Y if and only if h−1

k (X) = h−1
k (Y )

for each k ∈ J , which is justified by the fact that (hk)k∈J

is a colimit in Set.
For any π ∈ P , let us show that B(π) = β(I,W,

R)(π). For each k ∈ J , h−1
k (β(I,W,R)(π)) = h−1

k {i ∈
I | π ∈ Wi} = {ik ∈ Ik | π ∈ Whk(ik) = W

ik
k } = Bk(π) =

h−1
k (B(π)).

For any ρ,ρ′ ∈ TC(P ), let us show that B(ρ ∧ ρ′) =
B(ρ)∩B(ρ′). For each k ∈ J , h−1

k (B(ρ∧ρ′)) = Bk(ρ∧
ρ′) = Bk(ρ) ∩ Bk(ρ

′) = h−1
k (B(ρ)) ∩ h−1

k (B(ρ′)) =
h−1

k (B(ρ) ∩ B(ρ′)). The other Boolean connectives can
be handled similarly.

Finally, for any ρ ∈ TC(P ) we show that B(�ρ) =
R−1(B(ρ)). For each k ∈ J , h−1

k (B(�ρ)) = Bk(�ρ) =
R−1

k (Bk(ρ)) = R−1
k (h−1

k (B(ρ))). This should be equal
to h−1

k (R−1(B(ρ))). That

R−1
k

(
h−1

k

(
B(ρ)

)) ⊆ h−1
k

(
R−1(B(ρ)

))

is immediate. Because (J,�) is directed, the opposite
inclusion also holds for some k′ > k. Hence

h−1
k

(
B(�ρ)

) = h−1
k,k′

(
h−1

k′ B(�ρ)
)

= h−1
k,k′

(
h−1

k′
(
R−1(B(ρ))

))

= h−1
k

(
R−1(B(ρ)

))
.

Example 6.5 (FOL). We apply the same method as in
Example 6.4. Let (S,F,P ) be a FOL-signature and X

be an S-sorted set of variables. Consider a directed col-
imit of (S,F,P )-models as below (where (k < j) ∈
(J,�)):
Mk
hk,j

hk

Mj

hj

M

such that all hk,j are elementary.
At the level of carrier sets, M is the set of equivalence

classes of the equivalence relation ∼ on the disjoint
union

∐
k∈J Mk defined by mk ∼ mk′ (for mk ∈ Mk and

mk′ ∈ Mk′ ) if and only if there exists k, k′ < j such that
hk,j (mk) = hk′,j (mk′). Because each hk,j is elementary,
it is injective. From this it follows that each hk is injec-
tive too. Note also that for each π ∈ P , Mπ = {mk/∼ |
mk ∈ (Mk)π , k ∈ J }.

Now let Bk = β(Mk) for each k ∈ J (thus [[Bk]] =
MX

k ) and consider the corresponding colimit of connec-
tive algebras, cf. Proposition 6.1.

Bk
hk,j

hk

Bj

hj

B

Note that [[B]] = MX . (Here by hX
k :MX

k → MX we
mean the function which maps each vk ∈ MX

k to hk ◦
vk .) By Proposition 6.1 we also have that

Bk(ρ) = (
hX

k

)−1(
B(ρ)

)
for each k ∈ J.

We have to show that B = β(M) :TC((S,F,P ),X) →
2[[B]] = 2(MX). We do this by induction on the structure
of ρ ∈ TC((S,F,P ),X).

For any atom π(t), let us show that B(π(t)) =
β(M)(π(t)). For each k ∈ J , (hX

k )−1(β(M)(π(t))) =
(hX

k )−1{v ∈ MX | v(t) ∈ Mπ } = {vk ∈ MX
k | hk(vk(t)) ∈

Mπ } = {vk ∈ MX
k | vk(t) ∈ (Mk)π } = Bk(π(t)) =

(hX
k )−1(B(π(t))).
The Boolean connectives are handled exactly like in

Example 6.4.
Finally, for any ρ ∈ TC((S,F,P ),X) and any k ∈ J ,

(hX
k )−1(B((∀x)ρ)) = Bk((∀x)ρ) = {vk ∈ MX

k | v′
k(y)

= vk(y) for all y �= x implies v′
k ∈ Bk(ρ)} and

(hX
k )−1β(M)((∀x)ρ) = (hX

k )−1{v ∈ MX | v′(y) = v(y)

for all y �= x implies v′ ∈ β(M)(ρ) = B(ρ)} = {vk ∈
MX

k | v′(y) = hk(vk(y)) for all y �= x implies v′ ∈
B(ρ)}.

For each vk ∈ (hX
k )−1β(M)((∀x)ρ), each v′

k such
that v′

k(y) = vk(y) for all y �= x determines v′ = hk ◦ v′
k

with v′(y) = hk(vk(y)) for all y �= x. Hence v′ ∈ B(ρ)

and thus v′
k ∈ Bk(ρ) = (hX

k )−1(B(ρ)). This means vk ∈
(hX

k )−1(B((∀x)ρ)).
For each vk ∈ (hX

k )−1B((∀x)ρ), let v′ ∈ MX such
that v′(y) = hk(vk(y)) for all y �= x. We have to
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prove that v′ ∈ B(ρ). Because M is a directed co-
limit there exists k′ > k such that v′(x) ∈ hk′(Mk′).
Thus there exists v′

k′ ∈ MX
k′ such that v′ = hk′ ◦ v′

k′ .
Let vk′ = hk,k′ ◦ vk . For each y �= x, hk′(vk′(y)) =
hk′(hk,k′(vk(y))) = hk(vk(y)) = v′(y) = hk′(V ′

k′(y)).
Then vk′(y) = v′

k′(y) since hk′ is injective. Because
vk′ ∈ Bk′((∀x)ρ) we deduce that v′

k′ ∈ Bk′(ρ) and fur-
ther that v′ = hk′ ◦ v′

k′ ∈ B(ρ).

7. Conclusions

We have introduced stratified institutions and a gen-
eral theory of connectives for capturing models with
‘states’ in an uniform institution-independent manner.
This unifies the model theory of logics with explicit
states of models (e.g., variables valuations in FOL),
with implicit states (e.g., modal logics), or with both
kinds (e.g., modal first order logic, hidden algebra, etc.).
As an application we have studied elementary (model)
homomorphisms in this setting. The main result here,
given by Corollary 6.3, should be regarded as a method
to establish the elementary colimit theorem in institu-
tions, which functions at a meta-level with respect to the
institution-independent method proposed in [14]. The
latter generalizes proofs corresponding to the level of
Example 6.5.

Several issues can be pursued with stratified insti-
tutions. First of all, many more results of model the-
ory will have to be developed. Finally, since pioneer
works of D. Gabbay [10] and Fiblog group [20], con-
sidering abstract forms of connectives have shown their
importance for another problem in computing science,
namely combining logics. Parchments and its exten-
sions brought a first rather unsatisfactory answer [18].
Stratified institutions promise to bring a more abstract
and satisfactory answer to this problem.
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