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Abstract Inclusion systems have been introduced in algebraic spatidh theory as a cat-
egorical structure supporting the development of a geradysiract logic-independent ap-
proach to the algebra of specification (or programming) rexiiHere we extend the con-
cept of indexed categories and their Grothendieck flatggnto inclusion systems. An im-
portant practical significance of the resulting Grotheokli@clusion systems is that they al-
low the development of module algebras for multi-logic hegeneous specification frame-
works. At another level, we show that several inclusioneyst in use in some syntactic
(signatures, deductive theories) or semantic contextsléisp appear as Grothendieck in-
clusion systems too. We also study several general prepeofi Grothendieck inclusion
systems.

1 Introduction

Inclusion systems were introduced in [10] as a categorieslog supporting an abstract
general study of structuring of specification and prograngmodules that is independent
of any underlying logic. There they were defined in a stronggsion (corresponding to
the epic inclusion systems with unions in our paper); heraugeetheir weaker variant in-
troduced by [4] under the name of ‘weak inclusion systenmglusion systems provide the
underlying mathematical structure for module imports @hhconstitute the most funda-
mental structuring construct) in specification theory, aodsequently have been used in a
series of general module algebra studies such as [10, M@gover they have also been
used for developing axiomatizability [23,7,8] and defitio{1] results within the frame-
work of the so-called ‘institution-independent model thy2¢8].

Inclusion systems capture categorically the concept efteiretic inclusion in a way
reminiscent of how the rather notorious concept of factdiin system [3] captures cat-
egorically the set-theoretic injections; however in mappleations the former are more
convenient than the latter. In fact, the applications tacgpation module algebra can be
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done only with inclusion systems, since factorization syt lack the uniqueness feature of
inclusion systems.

Heterogeneous multi-logic specification has recentlyearias an important modern
specification paradigm [25,9,22,21]. This involves speatfon frameworks based upon
systems of logics rather than single logics. When the cparding logics are formalized
as ‘institutions’ in the sense of [12], one may homogenize giistem of institutions to a
single institution by a construction [6, 20] which extenls flattening of indexed categories
defined by Alexandre Grothendieck within the context of ig& geometry [15] to institu-
tions. The great benefit of this flattening constructioniliethe fact that the rather rich body
of institution theoretic concepts, methods, and resultsbesapplied directly to the resulting
‘Grothendieck institution’ instead of having to re-invehéem from individual institutions to
the significantly more sophisticated level of systems dfitimsons (as was done in [5]). In
the case of inclusion systems the following important pcatproblem arises:

Assuming that each ‘local’ institution (of an indexed systef institutions) comes
equipped with an inclusion system for its category of theaigres, do we have a
canonical inclusion system for signatures of the corregjpgglobal’ Grothendieck
institution?
In this paper we provide a definitive and complete answer iggioblem by considering
also an inclusion system for the indexation, i.e. for thegaty of the indices. In fact, this
problem is only about the signatures of institutions, whitkans that in this case we have
a problem only about categories equipped with inclusiorniesys, the concept of institu-
tion not being needed in this work. The canonicity of our Geutdieck inclusion system
construction (Thm. 1) is expressed as an universal progergp. 3). Moreover, this con-
struction applies also to contexts that are very differeoinfthe main motivation of our
work, namely that of the inclusion systems for the signatweGrothendieck institutions
underlying multi-logic heterogeneous specification. Ehesntexts are various examples of
‘strong’ inclusion systems in use in concrete specificaiameworks Example 9), or from
model theory (Example 10), or from abstract deductive tlesofExample 11). Although
each of these arise in a particular context, they have a confilar (hence they are known
in the literature as ‘strong’) which can be explained in tigeatl of our work as being in-
stances of a same general construction.

Our work also explores how some properties of inclusionesystwhich are important
for the semantics of specification languages lift to Grotleck inclusion systems.

The problem solved by our work has received preliminary amsvn [5] and [6], the
constructions proposed there can now be regarded as pzatiel of the construction of
Thm. 1.

The structure of the paper is as follows:

1. Inthe first section we recall the main concepts about gicfusystems. We also provide
several important examples that will be used in the paper.

2. The next section is devoted to the Grothendieck congbruch inclusion systems and to
some of its general properties, including a universal aaberation of this construction.

3. In the last technical section we sketch applications a@fti@ndieck inclusion systems
to heterogeneous specification.

2 Inclusion systems

In this section we review briefly some basic concepts ang fagiarding inclusion systems.
This is organized as follows:



1. We first recall some of the concepts and fix some notati@ms fategory theory needed
by this work.
. We recall the concept of inclusion system and presenti@ssefrexamples.
3. We discuss some special properties of inclusion systemwhvare relevant for the the-
ory of heterogeneous specification.
4. We organize inclusion systems as a 2-category and irteodwcorresponding enriched
concept of adjunction needed in this paper.

N

2.1 Categorical preliminaries
2.1.1 Categories

We assume the reader is familiar with basic notions and atandotations from category
theory; e.g., see [17] for an introduction to this subjeatrédwe recall very briefly some
of them. By way of notation|C| denotes the class of objects of a categ0ryC(A4, B) the
set of arrows with domaimt and codomainB, and composition is denoted by “;” and in
diagrammatic order. The category of sets (as objects) amiins (as arrows) is denoted
by Set, andCat is the category of all categoriésThe opposite of a categofy (obtained by
reversing the arrows df) is denotedC°P.

The application of functorgA) (to either objects or arrows) can be also written in a dia-
grammatic way agi/ rather than the more classic¢al /). Sometimes it is even convenient
to use subscripts or superscripts for the application oftfans to objects or arrows.

2.1.2 Grothendieck categories

An indexed categorys a functorB: I°®? — Cat; sometimes we denotB(:) as B; (or

B") for an indexi € |I| and B(u) as B* for an index morphism: € I. Given an indexed
categoryB: I°P — Cat, let B be theGrothendieck categotyaving(i, X), withi € |7| and

¥ € |B'|,asobjects anth, ¢): (i, X) — (', £'),withu € I(i,7') andy: X — X'B%, as

arrows. The composition of arrows i8f is defined by(u, ¢); (u/, ') = (u;u’, @; ¢’ BY).

2.1.3 2- and lax natural transformations

Recall that &2-natural transformatiorr: F = G between 2-functorg’, G: A — B maps
any objectA of |[A| to al-cell At: F(A) — G(A) such that(AT)G(o) = F(o)(BT) for
each2-cello: f= f': A— B.

F(A) —2T o qA)
( (

B(f) F:g’))F(f') G(f) ‘g’))G(f’)

F(B) ——— G(B)
BT
Lax natural transformationeelax the commutativity of the natural transformation squa
above to the existence of 2-cells. Therefore a lax natuaakformation- between 2-functors
F andG maps any objectl € |A|to Ar: F(A) — G(A) and any 1-celu: A — Bto

1 strictly speaking, this is only a quasi-category living ihigher set-theoretic universe.



ur: A7;G(u) = F(u); Bt such that(F(o)(B7)); f'r = fr; ((A7)G(0)) for each 2-cell
o: f=f': A— Band

) 2 pe) 2% poy
AT

l%\%% .

GA) 53 G(B) = G(C)

(u;v)T = (ur)(G(v)); F(u)(vr) for eachu: A — Bandv: B — C.

2-categorical limits and co-limits are defined similarlyttee conventional limits and
co-limits as universal arrows from/to a diagonal functoowséver, in the 2-categorical
framework different concepts of natural transformatioesednine different concepts of
(co-)limits. Therefore, when we employ 2-natural transfations we get the concepts of
2-(co-)limitas a final (initial)2-(co-)cone and when we employ lax natural transformations
we get the concepts tdix (co-)limitas a final/initiallax cone/co-cone

2.2 Inclusion systems: definition and examples

Definition 1 (Inclusion systems)(Z, &) is ainclusion systenfor a categoryC if Z and&
are two sub-categories witi| = |£| = |C| such that

1. 7 is a partial order (with the ordering relation denoteddjy and
2. every arrowf in C can be factored uniquely gs= e;iy with ey € € andiy € 7.

The arrows ofZ are calledabstract inclusionsand the arrows of are calledabstract
surjections The domain of the inclusiofy in the factorization off is called theémage off
and is denoted dsn(f) or f(A) whenA is a domain off.

Note that there are no additional requirements such as thieaab surjections being epi
or the abstract inclusions being mono. In [4] it is shown tiegt classZ of the abstract
inclusions and the clagsof the abstract surjections determine each other. In thisesd4]
gives an explicit equivalent definition of inclusion systemhich uses only the clagsof
the abstract inclusions.

Example 1 (Sets)rhe standard example of inclusion system is given by thegoayeSet
(with sets as objects and functions as arrows) which admiisnatrivial inclusion system
where the abstract surjections are the surjective funetonl the abstract inclusions are just
the set inclusions.

Example 2 (Trivial inclusion systemgny category admits a trivial inclusion system with
any arrow being abstract surjection and the abstract ifeladeing the identities.

Example 3 (Functor categoriesfror any inclusion systent, £) and any category, the
functor categoryZ, £)?, i.e. the category that has the functors frdmo the underlying cat-
egory of(Z, &) as objects and the natural transformations between thastofsg as arrows,
admits an inclusion system such that a natural transfoomégiabstract inclusion or abstract
surjection, respectively, if and only if all its componebtdong toZ or &, respectively.

The proof that this gives an inclusion system @ £)? uses the notorious Diagonal
Fill-in Lemma (see [8]) and since it is rather straightfordiat is left as exercise to the
reader.



Example 4 (Many-sorted signatures) many-sorted (relational) signatuiis a pair(S, P)
consisting of

— aset of sort symbols, and
— afamilyP = {P, | w € S*} of sets of relation (predicate) symbols indexed by arities.

Signature morphismsap the two components in a compatible way. This means thgt a s
nature morphisnyp: (S, P) — (S’, P") consists of

— afunctiony®*: S — §’, and
— afamily of functionsp™ = {@%} . : Py — P;St(w) |we S seSh

The concept of many-sorted signature presented above caxtdreded also with function
symbols, arriving thus at the definition of many-sorted atgre that is rather common in the
practice of logic and specification. In fact, the existentatoms and of (first-order) quan-
tifications requires at least the presence of some congiantgero arity function symbols)
in the signatures. However since our work does not involmesees of many-sorted signa-
tures, for the simplicity of our presentation, here we doawsisider any function symbols.
All results and concepts of this paper involving many-stbrsgynatures can be extended
without any problem to the more refined concept of signatunechivconsiders functions
symbols.

The category of many-sorted signatures admits the follgwion-trivial inclusion sys-
tems:

inclusion system| abstract surjections abstract inclusions
@:(S,P)—>(S/7P/) (S7P)(_)(S/7P/)
closed o' § — 5’ surjective scs
Py, =P forse S
strong ot S — 97 surjective scs
Pl = Ugot (w)—ur o (Py) | PuCPlLforses

A signature morphisnp: (S, P) — (S’, P') preserves ad-hoc overloadihgvhen for
eachs € P, N P, with w andw’ having the same length, we have that(c) = @, (o).
One may consider both the strong and the closed inclusideregsfor the sub-category of
the many-sorted signature morphisms preserving ad-hatoagéng.

Example 5 (Models) Model® for a signature S, P) are structures interpreting each sort
symbols as a sef\/s, and each relation symbelas a subset/ of M,,, the product of the
interpretations of the argument sorts. A model homomorphis M — M’ is an indexed
family of functions{hs: Ms — M/}scg such that

— hw(m) € M} if m € My (i.e. hw(Mz) C Mj}) for each relationr € P, and each
m e Mu}.

whereh,, : M,, — My, isthe canonical component-wise extensioh dfe.hy(my ... my) =
hs,(m1) ... hs, (mn) forw=sy...s, andm; € Ms,.
A model homomorphismi: M — N

— isclosedwhen M, = hy'(Ny) for each relation symbet € P, and
— isstrongwhenh., (Mz) = N for each relation symbat € P,,.

2 Terminology due to Till Mossakowski.



For each model homomorphisid — N which is a set inclusion for each sare S let us
say thatM is asubmodebf N.

For any signatur¢s, P), the category ofS, P)-models admits the following two inclu-
sion systems:

inclusion system | abstract surjections abstract inclusions
closed surjective homomorphisms closed sub-models
strong strong surjective homomorphisms sub-models

Example 6 (TheoriesFollowing the work of Fiadeiro and Sernadas [11], logicateyns
based on deduction can be formalizedrastitutions, which have for each signaturea
set of J-sentences, but no given models. To compensate for thisdaznsequence relation
is given on sentences. We will use the definition of Fiademd 8ernadas [11] as modified
by Meseguer [19], rather than that of Maibaum and Fiadeif);[Harper, Sannella and
Tarlecki [16] have given a definition similar to Meseguelisit restricted to finite sets of
sentences. Thusrinstitutionconsists of

1. acategorpig, whose objects are calleignatures

2. afunctorSen: Sig — Set, giving for each signature a set whose elements are called
sentencesver that signature, and

3. arelatiort5, C P(Sen(X)) x Sen(X) for eachy € [Sig|, called £-consequence

such that the following conditions hold:

reflexivity {e} -5 e for eache € Sen(X);

monotonicity ifE -y eandE C E' thenE' Fx; ¢;

transitivity if E 5 ¢ foreache’ ¢ E' andif(EUE') k5 e, thenE -5 ¢;
translation ifE Fx eandifp: X — X’ in Sig, thenSen(y)(E) 5 Sen(p)(e).

In general we prefer to write(e) instead ofSen(y)(e).

The ‘institutions’ of Goguen and Burstall [12] appear cainally as ar-institutions by
considering the semantic consequence relatiepsn the role of the consequence relations
k. Thus one can say-institutions are more abstract than institutions. Howegachr-
institution can be given a rather artificial model theory bgyoanma category construction
on theories [19].

Theories represent one of the two major ways to provide @¢ioos for software mod-
ules or structured specifications, which has been explaiteerks such as [2,10,14]. The
other more subtle semantic way, which requires the framewfdnstitutions, is that of [24],
employed also by [8], in which denotations of specificatians classes of models. In any
m-institution, atheory (X, ), also called¥-theory, consists of a signatur® and a set”
of X-sentences closed under consequence, iB.Hfy; e thene € E. A theory (X, E) is
presentedy a setF of sentences whehy C E andE, 5 E (meaning thaE - e for
eache € E). This is denoted by = Eg. A theory morphisnp: (X, E) — (X', E’) is just
a signature morphism: ¥ — X’ such thatp(E) C E’. Note that theory morphisms form
a category under the composition given by the compositiah@fsignature morphisms. A
theory morphismp: (X, E) — (X', E)

— isclosedwhenE = ¢~ 1(E’), and
— isstrongwhenE’ = o(E)°.

3 HereP denotes the power set function.



Any inclusion systemZ, &) for the categoryig of the signatures determines two inclusion
systems for the category of theories as follows:

inclusion system| abstract surjectiong abstract inclusiong
closed peé ¢ € Z andy closed theory morphism
strong o € £ andy strong theory morphism| ¢ € 7

2.3 Special properties of inclusion systems

The abstract surjections of some inclusion systems needevessarily be surjective in the
ordinary set-theoretic sense. However some results imgnclusion systems requires the
epi property for the abstract surjections.

Definition 2 (Epic inclusion systems)An inclusion system i€pic when all abstract sur-
jections are epis.

Example 7The standard inclusion system &t is epic, while the trivial one for the same
categorySet is not. The strong inclusion systems for the many sortedasigas is epic
(for signature morphisms preserving ad-hoc overloadirgC. 4 below) while the closed
one is not. Both the strong and the closed inclusion systemsnbdels of many-sorted
signatures are epic (for the strong one see also Cor. 5). Betlstrong and the closed
inclusion systems for theories are epic when the underliiolwsion system of signatures
is epic (for the strong one see also Cor. 6 below).

The concept below is critical for the semantics of (softyanedule imports and is one
of the important features that distinguishes inclusioriesyis from factorization systems in
the sense that the latter can not support such concept irpampnay.

Definition 3 (Unions)An inclusion system{Z, £) has unionsvhenZ has finite least upper
bounds (denoted).

Example 8 The standard inclusion system ®ft has unions which are exactly the usual
unions of sets, while the trivial inclusion systemSef evidently does not have unions. The
strong inclusion systems for many-sorted signatures anth&® models have unions (for

signature morphisms preserving ad-hoc overloading seelCard for models see Cor. 2,

respectively), while the closed ones for the same categdoenot have unions. The strong
inclusion system for theories has unions when the undeylyiolusion systems for the sig-

natures has unions (see Cor. 3 below). In general the closhasion system for theories

does not have unions.

2.4 The category of inclusion systems
The definition below gives the concept of (homo)morphisnmofusion systems.
Definition 4 (Inclusive functors) A functori/: (Z, £) — (', £’) (between the underlying

categories of the inclusion systemsirislusivewhen it preserves the inclusions, i8Z) C
7.



One may wonder whether inclusive functors is the right cphoé morphism of inclu-
sion systems since it does not consider directly the alisttajections. The answer to this
is given by the fact, already mentioned above, that the @&dise abstract inclusions and
the class of the abstract surjections of an inclusion systetarmine each other [4], and
consequently it is possible to have an equivalent definitemen if not as intuitive as the
current one, of inclusion systems only in terms of the cld¢keabstract inclusions.

Fact 21 Inclusion systems and inclusive functors form a categonotéal IS. Moreover,
IS can be endowed with a 2-categorical structure with the 2sde¢ing defined as natural
transformations between inclusive functors such thatreditcomponents are inclusions.

The equational definition of the concept of adjunction bygbecalled ‘triangular laws’
(see [17]) permits the well known generalization of the @piof adjunction fronCat to
abstract 2-categories. Let us call adjunctions definéd msIS-adjunctions

Fact 22 AnIS-adjunction between inclusion systems consists of an atipmbetween the
underlying categories such that both the left and the rigfjpets are inclusive functors
and such that all components of the unit and the co-unit ackigions.

3 Grothendieck inclusion systems

This is the main technical part of the paper. It is organizetbdows:

1. We develop the general Grothendieck construction omgh systems.

2. We show how the examples of strong inclusion systems ptedén the Sect. 2.2 arise
as instances of the general Grothendieck inclusion systems

3. We develop a general result on existence of unions for@ratieck inclusion systems
and apply this to our benchmark examples.

4. We develop a general result on Grothendieck inclusiotegys being epic, and apply
this to our benchmark examples.

5. We characterize Grothendieck inclusion systems by tliersal property of an en-
riched colimit.

6. The examples of closed inclusion systems presented inS2are captured by a gen-
eral inclusion system construction on the Grothendieckgmies resulting from cate-
gories indexed by inclusion systems. However this con8tmiés rather gross since it
does not consider any inclusion system structure on thalleategories, hence it is
inappropriate for the semantics of structured heterogenepecifications.

3.1 The basic construction

The following definition extends the concept of indexed gatg, first by considering in-
clusion systems instead of categories, and second by evimgjda structure of inclusion
system on the category of the indices.

Definition 5 An enriched indexed inclusion systésna functorB: (Z, &) — IS°P from
the underlying category of an inclusion system ‘of indicesthe opposite of the category
of inclusions systems and inclusive functors.



Definition 6 An enriched indexed inclusion systel: (Z, £) — IS°P is invertible when
for each index morphism, the corresponding inclusive functé" has aniS-left-adjoint
denoted[—]“. It is E-invertible when thelS-left-adjoint to B* exists foru € £ (and not
necessarily for all index morphismsg.

The following is the main result of this paper.

Theorem 1 For any &-invertible enriched indexed inclusion systém (Z, £) — IS°P
the Grothendieck categor® of B°P; (IS — Cat) (from the opposite of the underlying
category of(Z, £) to Cat) can be endowed with an inclusion systém, £%) such that
(w, 9): (4, Z) = (7', &) is

— anabstract inclusioiiff both . and ¢ are abstract inclusions, and

— anabstract surjectioiff « is an abstract surjection an&’ = [p(2)]*.

Proof For each indexj, let B/ = (77, £7) be the inclusion system corresponding to the
index j. For each index morphism: j — ;' letn* and<", respectively, be the unit and
the co-unit, respectively, of the corresponding adjumcfieith B* theIS-right-adjoint and
[-]* theIS-left-adjoint).

First we show thaf! is a sub-category oB?. Let (u, ¢) and (', ¢') be composable
abstract inclusions. Then «’ is an abstract inclusions of indices. Becaye 77" andB"
is inclusive, we have that’ B* ¢ Z7. Sincey € Z7 we have thatp; o' B* € Z7. Hence
(u, )i (', @) = (w; o, p39'BY) € TV,

For showing that? is a poset letu, 1), (u2, w2): (j, ¥) — (j’, &') be a abstract
inclusions. Because,us: j — j' are abstract inclusions, we have that= us. Thus
©1,p2: X — X BY are abstract inclusions, henge = .

In order to show thag* is a sub-category, consider abstract surjectiens) : (j, ) —

(4", Xy and (', ¢'): (', X'y — (5", X"). Obviouslyu; v is an abstract surjection of in-
dices and we have to show thet’ = [(ip; ¢’ B*)(Z)]“*.

Let us factory = egg,up such thate, € £/ andi, € 77 andy’ = ey ipr Such that
ey € &r' andi, € 77" Becaus€u, ) and (v, ¢’) are abstract surjections we have that

= [p(2)]* and X" = [¢/(¥))* and thati, and i,r, respectively, are precisely the
universal arrows;:;( ) andng;( ) respectively.

/

//Bu Bu

\ %ﬂ) R %7] /(2/
o'(
\ /772?

(03¢ B*)(
Let us also factor;g(z); ew B" = eq;i1 such that(e; : ¢(X) — ¥1) € &7 and(iy : £y —
¢'(£")B") € /. SinceB" is inclusive, we have thaj., ., B" € I, hences is the
image ofyp; o' B“. Becauséi; : ¥, — ¢’ (X')B%) € 77 and becausg-]* is inclusive we
have that([iy]*: [X1]* — [¢/(X')B“*) € Z7'. Since the co-unit componeat, v €

77" we have tha{[i;]"; e L (2" — /(X)) € 777, From this we now obtain the

o/ (2)
following: ’
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lea]™; ([ia] s 5y) = [0 )] e BY] % €% 551 |
= [ng(z)]“; €5r; ey by the naturality o£"
= ey by the triangular laws.

By the uniqueness of the factorization we deducetht; sg,(z/) is identity, hencéX;|“ =

¢'(X') and thusi; is the unit componenjy; . We may finish this argument by noticing that

ngl;ng'(z,)B“ being both universal arrow and inclusion, it should be irt fae unit com-
ponent;yi* , henceX” = [(¢; Lo/ BYY(D)]
We now consider an arrofu, ¢): (j, £) — (5, ') in the Grothendieck categoy?

and prove that it factors uniquely as a composition betweesraw frome* and an arrow
from Z*. We factor

— u = ey; iy SUCh thak, € £ andz’u €T, a_nd
— ¢ = ey;ip SUch thak, € &7 andiy, € 77.

i EEEEE——— 5 Btu geu
x / \ / T‘P Bev
u(j) )] B

¢(2)

Becausep(X) C X' B B, by an argument similar to the proof pf;]* C &' (X'), we
have thatjo(X)]° C X'Bi. Let us denote this inclusion by’. Then (u, o) factors as
(eu, ey; ¢(2)> (i, ¢'). Obviously (i, ¢’) is an abstract inclusion. In order to establish
that the arrow(ey, ey; 773{29 2 (4, XY = (u(y), [¢(X2)]°) is an abstract surjection we need
to check the equalityip ()] = [(ep;n w(z))(z)]e“. This holds becausken(e; nj;zz)) =
»(X) (sincee,, is abstract surjection ang{;“ ) is abstract inclusion as a unit component).

The uniqueness of this factorization follows stepwise friv@ uniqueness of the fac-
torization of the index morphism, then from the uniquendst®factorization through the
inclusion systemz’, £7), and finally from the uniqueness of £)°- as a free object. Let
us omit here the details of this proof. u

3.2 Examples

Example 9 (Many-sorted signaturekgt

— (Z, &) be the standard inclusion systemSui, the category of sets (cf. Example 1).
— B: (Z, &) — IS°P be the functor such that
— B maps each set to the categoryB(S) whose objects are families of seis =
{Py | w € S*}. Arrows betweenP and P’ are families of functiong f, : Py —
P;, | w € S*}. The abstract inclusions and the abstract surjectiongectisely, are
point-wise inclusions and surjections, respectivelyfoeeachw € S* the function
fw is inclusion or surjection, respectively.
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— B maps each function: S — S’ to the functorB*: B(S’) — B(S) defined by
(B"(P"))w = P, for eachP’ € B(S") and eachv € S*. EachB" has a left-
adjoint[~]* such tha{P]y;, = 4,,(,y)—, Pw forany P € |B(s)| and anyw’ € 5"
(wherew denotes the disjoint union).

Unfortunately in generdlk]* is notanIS-left-adjoint, hence the strong inclusion system for
many-sorted signatures does not arise as an example of Tiowkever this situation can
be saved if we considered only the signature morphisms tiesepve ad-hoc overloading,
in that caséP];., beingUu(w _ . Pw. Therefore if inB(S) we allow only arrowsP — P’
that preserves ad-hoc over%oading (see Ex. 4), the Groibandhclusion system arising
from the application of Thm. 1 is precisely the strong in@uassystem for the signature
morphisms preserving ad-hoc overloading.

Example 10 (Modelsiven a signaturés, P), the strong inclusion system for its category
of models is the Grothendieck inclusion systém, £%) of Thm. 1 whereB: (Z, &) —
IS°P is the invertible enriched indexed inclusion system defaeébllows:

— (T, &) is the standard inclusion system of the (functor) categery of S-sorted sets,
where for eacls-sorted sets\/ and N, h = {hs: Ms — Ns | s € S} is an abstract
inclusion if and only ifhs is an inclusionMs C Ns for eachs € S, and is an abstract
surjection if and only ifhs is surjective function for eache S.

— B maps eacl-sorted sef\/ the poset3(X) of the (S, P)-modelsM’ such thatV, =
M; for eachs € S. ThenM’ < M"” whenM. C M} for eachr € P. B(Y) is consid-
ered with the standard inclusion system for posets (in wthiehabstract surjections are
the identities).

— B maps eacts-sorted functiom,: M — N to the monotonic functioB” : B(N) —
B(M) defined for eactN’ € B(N) by (B"(N"))» = hy' (NL) for eachr € Py,.

For eachS-sorted function: M — N, the functorB" has a left adjoinf—]" such that
for eachM’ € B(M), (IM'|")r = hw (ML) for eachr € Py,. The resulting adjunction is
trivially an IS-adjunction since all arrows d$(M)’s are inclusions.

Example 11 (Theoriesiiven ar-institution (Sig, Sen, ) with an inclusion systen(z, &)

for the categonpig of the signatures, the strong inclusion system for its aategf theories
is the Grothendieck inclusion systefd®, £%) of Thm. 1 whereB: (Z, &) — IS°P is the
invertible enriched indexed inclusion system defined devd:

— B maps each signatur® to the poset (under set inclusio®)(Y) of the X-theories,
which is considered with its standard inclusion system (icl the abstract surjections
are the identities) and

— B maps each signature morphigm X~ — X’ to the monotonic functio®? : B(X') —
B(%) defined byB? (X', E') = (¥, ¢ 1 (E")) for eachE’ C Sen(X’) suchthatx’, E)
is theory. (Note that in this cager, o~ (E")) is a theory t00.)

For each signature morphism ¥ — ¥’ the functorB¥ has a left adjoinf—]# such that
[E]¥ = ¢(E)®. The resulting adjunction is trivially afS-adjunction since all arrows of
B(X)’s are inclusions.

3.3 Unions

The following result develops sufficient conditions for amé for Grothendieck inclusion
systems and requires invertible enriched indexed inatusistems which is stronger than
the E-invertible condition of Thm. 1.
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Proposition 1 For any invertible enriched indexed inclusion systBm(Z, &) — IS°P, the
Grothendieck inclusion systetn®, £¢) has unions if

— the inclusion system of indicég, £) has unions, and
— for each index the ‘local’ inclusion systeni3’ = (Z7, £7) has unions.

Proof We prove that(j;, 1) U (j2, X2) = (j1 Uja, [Z1]"* U [Z2]“?) whereu; : j; —
j1 Ujg andus : jo — 71 U jo are the inclusions to the union.

Assume(ji, 1) C (j, X) and(jz, X2) C (j, X). We have thaj; U j» C j, we denote
this inclusion byu. Becausey; C YB"'* = YB"B" we have tha{¥;]"* C XB".
Similarly [25]*? C ¥ B*. This shows thatj; U jo, [Z1]** U [X2]“?) C (5, X). [ |

Corollary 1 The strong inclusion system of many-sorted signature niemmhpreserving
ad-hoc overloading has unions.

Proof We check the conditions of Prop. 1.

— The corresponding enriched inclusion syst8nis invertible since foreachfunction
f: S — &, Bf has aris-left-adjoint (cf. Example 9).

— The standard inclusion systemSft has unions, which are the usual set unions.

— For each set, B(S) has point-wise unions defined by

(PUP")y = Py U P,
|

The inclusion system of all many-sorted signatures alsahams, but this result cannot be
obtained by means of Prop. 1.

Corollary 2 For each many-sorted signatu(é, P), the strong inclusion system @, P)-
models has unions.
Proof We check the conditions of Prop. 1.

— The corresponding enriched inclusion syst&nis invertible since foreach S-sorted
functionh: M — N, B" has arlS-left-adjoint (cf. Example 10).
— The standard inclusion system®ft®, the category ofs-sorted sets, has ‘point-wise’
unions.
— For eachS-sorted sef\/, B(M) has unions defined by
(M ' UM" )z = ML U M.

Corollary 3 For anyr-institution (Sig, Sen, ), the strong inclusion system of theories has
unions when the underlying inclusion systemSar has unions.

Proof We check the other two conditions of Prop. 1 besides thatiomesd in the statement
of the corollary.

— The corresponding enriched inclusion systBris invertible, cf. Example 11.
— For each signatur®, B(X) has unions defined by

(2,E)U(X,E')=(2,(EUE"®).
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3.4 Epic

The following result develops sufficient conditions for Beothendieck inclusion systems
to be epic.

Proposition 2 In addition to the conditions of Thm. 1 if the inclusion systef the indices
(Z, &) is epic,B? = (77, &7) is epic for each indey, and B* are faithful foru € &, then
the inclusion systerZ?, £%) defined in Thm. 1 is epic too.

Proof Consider(u, ¢): (j, X) — (j', ') and(u1, 1), (uz, w2): (', 2 — (4", £
such that

(u, p); (ur, p1) = (u, @); (uz, p2)

This meansu; u1 = w;us andy; o1 BY = ¢; 0o BY. Because is epi we obtainu; = us.
Becausep is epi we obtainp; BY = oo B". BecauseB" is faithful we obtaing; = .
Hence(u, p1) = (u2, @2). [

Corollary 4 The strong inclusion system for many-sorted signature hisnps preserving
ad-hoc overloading is epic.

Proof We apply Prop. 2 to the case of Example 9. The standard inciusistem for the
categorySet is epic since surjective functions are epis. The inclusisiesns of the cate-
goriesB(S) are also epic for all set$ because the abstract surjection®ift) are precisely
families of surjective functions. The last condition of Pr@ to be checked is tha@" are
faithful for all surjective functions..

For any surjective functiom: S — S’ let us conside(f’,g’: P’ — P{) € B(S')
such thatB*(f") = B“(g'). We have to show that’ = ¢'. For eachw’ € S’*, sinceu
is surjective there exists € S* such thatu(w) = w’. Thenf,, = f;(w) = BY(fw =

B¢ )w = 9;(111) = G- [}

Corollary 5 For each many-sorted signatu¢s, P), the strong inclusion system f§, P)-
models is epic.

Proof The standard inclusion system for the categmy’ of S-sorted sets is epic since each
component of an abstract surjectionSiet® is a surjective function. Sincg’ = (77, £7)
are posets, they are trivially epic (as inclusion systemd)it* are trivially faithful for each

u index morphism. -

Corollary 6 For any w-institution (Sig, Sen, ), if the inclusion system &fig is epic, then
the corresponding strong inclusion system for theoriepis ®o.

Proof This follows from the hypothesis that the inclusion systeénig is epic, and from
the fact that for eacliindex morphismB’ = (Z7, £7) is trivially epic since it is a poset and
consequently for each index morphismB™ are trivially faithful. -
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3.5 The universal property of Grothendieck inclusion syste

In this section we characterize the Grothendieck inclusimtem(Z*, £¥) defined by Thm. 1

as a lax colimit enriched b§s. This refines the characterization of Grothendieck categor
as lax colimits [6] and is also consonant to the characteoizaf Grothendieck institutions
as a lax colimit in the 2-category of institutions [6].

Definition 7 (IS-lax colimits) For any pair of functors,G: (Z, £) — IS°P (from the
underlying category of an inclusion systém £)), alS-lax natural transformation.: F =
G is a lax natural transformation such that

— for any objectj of (Z, &), the functory’ : F(j) — G(j) is inclusive, and
— for anyu € Z, the natural transformatiop* is abstract inclusion (for the inclusion
system of the corresponding functor category; see Example 3

IS-lax co-coneandIS-lax colimits respectively, are just lax co-cone and lax colimits,
respectively, which aréS-lax as natural transformations.

Proposition 3 For any &-invertible IS-enriched indexed inclusion systebr: (Z, £) —
IS°P, the Grothendieck inclusion systeft, £%) defined by Thm. 1 is tHS-lax co-limit of
B.

Proof For each indey let the inclusion system(;) be denoted byZ’, £7). We define

— For each indey, the functory’ : (77, £7) — (7*, £%) such that
- (X) = (j, X) for each object of (77, £7), and
— 17 (p) = (1, ) for each arrowp of (77, £7).
Note thaty’ is an inclusive functor since i € Z7 then of cours€l;, ¢) € Tt
— For each index morphism: j — j’, the natural transformation” : B%;u/ = uj/
such that
— p% = (u, 1y ) for each object’ of (27, £7').
Note thatu* is an abstract inclusion of the functor categéry, €ﬁ><
ifuel.

7".€") if and only

We have thus defined as allS-lax co-cone oveB, with (Z#, £%) as its vertex.

(779, &%)

T, &

(', ¢

For showing thaj: is alS-lax co-limit, we consider anotherlS-lax co-cone ove3 with
an inclusion systeniz’, £’) as vertex and prove that there exists an unique inclusivetdun
P: (TF, &% — (7', &) such that

— 17 P =17 for each indexj, and
— p"*P = v" for each index morphism.
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These two conditions determine the definitionfoés follows:

— for each objectj, %) of (Z*, £*), we have thaP((j, X)) = P(x/ (X)) = v/ (¥), and
— for each arrow(u, ¢): (j, X) — (j', ') of (Z, &%), we have thatP((u, ¢)) =

P((15, ¢); (u, 1srpu)) = P((15, ¢)); P((u, 1srpu)) = P(1? (9)); P(u"(Z')) = v ()5 5.
We leave to the reader the task to calculate tha a functor.

When(u, ¢) is an abstract inclusion we have that batand¢ are abstract inclusions,
consequently becauseis IS-lax natural transformation both () andv%, are abstract
inclusions, hence((u, ¢)) = v/ (p); %, is an abstract inclusion. This shows thatis
inclusive, which completes the proof of this result. u

3.6 Closed inclusion systems on Grothendieck categories

The inclusion system construction of Prop. 4 below is mudsggr than the Grothendieck
inclusion systems of Thm. 1 because it considers a propéusion system only for the
indices, and not for the fibers. This is the principal reasdty whis construction is not
relevant for multi-logic heterogeneous specifications.

Proposition 4 For any indexed categorg : (Z, £) — Cat°? (functor from the underlying
category of an inclusion systefn, &) to the opposite ofat), its Grothendieck categor®
admits an inclusion system such thiat ) : (5, X) — (j', X’)

— is an abstract inclusion if and onlyif € Z and is an identity, and
— is an abstract surjection if and onlyqif € £.

Proof The facts that abstract inclusions form a poset and thataatsturjections form a
sub-category are rather straightforward. Let us now chbekunique factorization prop-
erty. Given any(u, ¢): (j, &) — (j', ') letu = ey;iy, Wheree, € £ andi, € T.
Then(u, ¢) = (eu, ¢); (iu, 15 pi.) IS the unique factorization dfu, ») as a composition
between an abstract surjection and an abstract inclusion. u

Example 12The closed inclusion systems for many-sorted signaturedetfs, and theories,
respectively, arise as instances of the construction gb.R¥dor the indexed categorigs
described in Examples 9, 10, and 11, respectively. Noteinththe case of the many-sorted
signatures this argument applies to all signature morphisncluding those dthat doot
preserve ad-hoc overloading.

Remark 11n general, the inclusion systems constructed by Prop. 4adchave unions.
This is another reason why the above mentioned construigiorelevant for multi-logic
heterogeneous specifications.

In order to see this failure of unions, let us assume uniongZo¢&) and consider
(1, Z1), {ja, Z2) € |B. Let (j, Z) = (j1, £1) U (j2, Ta). Letuy: jp — j denote
the corresponding inclusions farc {1, 2}. Due to the nature of the abstract inclusions for
the Grothendieck category, as defined by Prop. 4, we havethat X B“* for k € {1, 2}.

Let us assume; andwvy arrows in the index category such that u; = wvo;us. Al-
thoughwv; andwvy may not exist in general, they do exist in categories whickehaeak
pullbacks, a property which holds in most of the examplestdrest, including all exam-
ples given in this paper. Then we have thatB** = 3, B"2. SinceX; and X5 can be
chosen arbitrarily, for reaching a contradiction it is tem®ugh to chose them in such a way
that X, Bt £ S5 BY2,
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4 Applications to multi-logic heterogeneous specification

The heterogeneous specification paradigm involves a sysfdogics rather than a sin-
gle underlying logic for a corresponding specification fatism. This is mathematically
achieved within the theory of the so-called ‘institutiom$’Goguen and Burstall [12] by a
Grothendieck (flattening) construction which extends tieall Grothendieck construction
for categories [15] to institutions [6, 20]. A typical exalefs given by the specification lan-
guageCafeOBJ whose semantics and design is based upon the Grothendieskuion
on the following ‘cube’ of institutions, with edges repratiag the sub-logic relationships,
formalized by the concept of ‘comorphism’ between insiing (see [13, 8]).

OSHA OSHPOA
/ /
HA «T» HPOA
OSA OSPOA
/ /
MSA —— XX X  POA

Details on the Grothendieck institution theoretic senmif CafeOBJ can be found in [9].

Another rather notorious heterogeneous specificationdvaork based upon Grothendieck
institutions is that of heterogeneous CASL [22].

The importance of the Grothendieck institution constaution systems of institutions
is that by providing asingle institution as the underlying mathematical structure fet-h
erogeneous specification frameworks, it is possible tarifiortant specification theoretic
concepts from uniform to heterogeneous frameworks (s€e (Bje of these concepts is
that of module algebra based upon inclusion systems. Thikilea@lgebra, or the study of
structured specifications, can be done in two variants: aryheriented one (like in [10]
for example), or a more semantic one (like in [24] or [8]). Bof these approaches need a
concept of inclusion system for the signatures.

Thus given system of institutions, in fact amdexed institutiorin the sense of [6],

— such that each institution has an inclusion system foritireatures,

— the signature inclusions being preserved by the comarghizetween the institutions,
and

— such that the indexation of the system of institutions coa®ea category with an inclu-
sion systemZz, &),

the construction of Thm. 1 applied to the resulting enricineléxed inclusion systefa: (Z, £) —

IS°P gives the inclusion system for the signatures of the comeding Grothendieck institu-

tion. Because for module algebra the existence of unionsi@at, there is no alternative to

this construction since as we have seen above the othebf&siothendieck construction

on inclusion systems, that of Prop. 4, does not support snisloreover, the construction

of Prop. 4 is too gross since it does not consider the ‘localusion systems of the fibers.
Often between any two institutions of the system only at nuys# comorphism is

considered, usually representing a ‘sub-logic’ relatimpsAs we have already mentioned

above, this is also the case G&feOBJ. This means thatZ, &) is a poset (i.e£ consists
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only of the identities). On the other hand, the inclusioneys of the categories of signa-
tures of the ‘local’ institutions involved are not posetggeneral. This is just the opposite
of the situations we have encountered when obtaining tlegtinclusion systems for the
models and for the theories as Grothendieck inclusion sysi{see Examples 10 and 11,
respectively).

For such general setup let us look into how the conditionefgeneral construction
of Thm. 1, which gives the construction of the inclusion systfor the signatures of the
Grothendieck institution, and of Prop. 1, which gives théuos for the above mentioned
inclusion system, are satisfied.

1. That the resulting enriched inclusion systém (Z, &) — IS°P is E-invertible (as
required by Thm. 1) is trivial becaugeconsists only of identities.

2. However, the existence of unions (Prop. 1) requires Ehatinvertible. This condition
should be checked in each case. Since often the abstraassios ofZ represent sub-
logic relationships, in practice this condition is rathasy In the case atafeOBJ, for
example, the embedding of many-sorted algebra (MSA) intongered algebra (POA)
is an identity on the signatures, while the embedding of M&& hidden algebra (HA)
just forgets the hidden part of the signatures (the leftiatljm this considers MSA
signatures as HA signatures with the hidden parts empty).

3. Finally, the existence of unions also requires ‘localoms (which is a property of each
institution of the system) and unions at the level of indiClse latter condition means
that any two institutions in the system have a least uppendtoWhen the system of
institutions consists only of sub-logic relationships ifathe case ofCafeOBJ for ex-
ample), this means that each two logics of the system shaald B common least
‘super-logic’ in the system.

Acknowledgements The author is grateful to the anonymous referee for carefdl @mpetent study of
the originally submitted manuscript. His reading has leadeveral appropriate suggestions for the paper,
including the finding of an error in one of the examples.

5 Conclusions

We have extended the Grothendieck flattening from indexezhoses to indexed inclusion
systems for which the category of the indices comes equipiican inclusion system too.
We have shown that our construction is universal. Besidegging a definitive and com-
plete answer to the problem of inclusion systems for Gradlemk institutions, our general
construction subsumes several important ‘strong’ inclusystems in use algebraic speci-
fication theory and model theory. We have also studied a eoofpproperties for abstract
Grothendieck inclusion systems with special significacé¢tfe semantics of heterogeneous
multi-logic specification.

It is interesting to note that the inclusion systems of fwgeneous specification for-
malisms may involve our Grothendieck inclusion system tra§ion at three different lev-
els:

1. at the bottom, the (strong) inclusion systems for mamyesiesignatures (for each of the
logics/institutions involved),

2. at the mid level, the inclusion system for the signatufel@® Grothendieck institution,
and

3. at the upper level, the (strong) inclusion system for tieoties of the Grothendieck
institution.
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