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Abstract Inclusion systems have been introduced in algebraic specification theory as a cat-
egorical structure supporting the development of a generalabstract logic-independent ap-
proach to the algebra of specification (or programming) modules. Here we extend the con-
cept of indexed categories and their Grothendieck flattenings to inclusion systems. An im-
portant practical significance of the resulting Grothendieck inclusion systems is that they al-
low the development of module algebras for multi-logic heterogeneous specification frame-
works. At another level, we show that several inclusion systems in use in some syntactic
(signatures, deductive theories) or semantic contexts (models) appear as Grothendieck in-
clusion systems too. We also study several general properties of Grothendieck inclusion
systems.

1 Introduction

Inclusion systems were introduced in [10] as a categorical device supporting an abstract
general study of structuring of specification and programming modules that is independent
of any underlying logic. There they were defined in a strongerversion (corresponding to
the epic inclusion systems with unions in our paper); here weuse their weaker variant in-
troduced by [4] under the name of ‘weak inclusion systems’. Inclusion systems provide the
underlying mathematical structure for module imports (which constitute the most funda-
mental structuring construct) in specification theory, andconsequently have been used in a
series of general module algebra studies such as [10,14,8].Moreover they have also been
used for developing axiomatizability [23,7,8] and definability [1] results within the frame-
work of the so-called ‘institution-independent model theory’ [8].

Inclusion systems capture categorically the concept of set-theoretic inclusion in a way
reminiscent of how the rather notorious concept of factorization system [3] captures cat-
egorically the set-theoretic injections; however in many applications the former are more
convenient than the latter. In fact, the applications to specification module algebra can be
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done only with inclusion systems, since factorization systems lack the uniqueness feature of
inclusion systems.

Heterogeneous multi-logic specification has recently arisen as an important modern
specification paradigm [25,9,22,21]. This involves specification frameworks based upon
systems of logics rather than single logics. When the corresponding logics are formalized
as ‘institutions’ in the sense of [12], one may homogenize the system of institutions to a
single institution by a construction [6,20] which extends the flattening of indexed categories
defined by Alexandre Grothendieck within the context of algebraic geometry [15] to institu-
tions. The great benefit of this flattening construction liesin the fact that the rather rich body
of institution theoretic concepts, methods, and results can be applied directly to the resulting
‘Grothendieck institution’ instead of having to re-inventthem from individual institutions to
the significantly more sophisticated level of systems of institutions (as was done in [5]). In
the case of inclusion systems the following important practical problem arises:

Assuming that each ‘local’ institution (of an indexed system of institutions) comes
equipped with an inclusion system for its category of the signatures, do we have a
canonical inclusion system for signatures of the corresponding ‘global’ Grothendieck
institution?

In this paper we provide a definitive and complete answer to this problem by considering
also an inclusion system for the indexation, i.e. for the category of the indices. In fact, this
problem is only about the signatures of institutions, whichmeans that in this case we have
a problem only about categories equipped with inclusion systems, the concept of institu-
tion not being needed in this work. The canonicity of our Grothendieck inclusion system
construction (Thm. 1) is expressed as an universal property(Prop. 3). Moreover, this con-
struction applies also to contexts that are very different from the main motivation of our
work, namely that of the inclusion systems for the signatures of Grothendieck institutions
underlying multi-logic heterogeneous specification. These contexts are various examples of
‘strong’ inclusion systems in use in concrete specificationframeworks Example 9), or from
model theory (Example 10), or from abstract deductive theories (Example 11). Although
each of these arise in a particular context, they have a common flavor (hence they are known
in the literature as ‘strong’) which can be explained in the light of our work as being in-
stances of a same general construction.

Our work also explores how some properties of inclusion systems which are important
for the semantics of specification languages lift to Grothendieck inclusion systems.

The problem solved by our work has received preliminary answers in [5] and [6], the
constructions proposed there can now be regarded as partialcases of the construction of
Thm. 1.

The structure of the paper is as follows:

1. In the first section we recall the main concepts about inclusion systems. We also provide
several important examples that will be used in the paper.

2. The next section is devoted to the Grothendieck construction on inclusion systems and to
some of its general properties, including a universal caharcterization of this construction.

3. In the last technical section we sketch applications of Grothendieck inclusion systems
to heterogeneous specification.

2 Inclusion systems

In this section we review briefly some basic concepts and facts regarding inclusion systems.
This is organized as follows:
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1. We first recall some of the concepts and fix some notations from category theory needed
by this work.

2. We recall the concept of inclusion system and present a series of examples.
3. We discuss some special properties of inclusion systems which are relevant for the the-

ory of heterogeneous specification.
4. We organize inclusion systems as a 2-category and introduce a corresponding enriched

concept of adjunction needed in this paper.

2.1 Categorical preliminaries

2.1.1 Categories

We assume the reader is familiar with basic notions and standard notations from category
theory; e.g., see [17] for an introduction to this subject. Here we recall very briefly some
of them. By way of notation,|C| denotes the class of objects of a categoryC, C(A,B) the
set of arrows with domainA and codomainB, and composition is denoted by “;” and in
diagrammatic order. The category of sets (as objects) and functions (as arrows) is denoted
by Set, andCat is the category of all categories.1 The opposite of a categoryC (obtained by
reversing the arrows ofC) is denotedCop.

The application of functors (U) (to either objects or arrows) can be also written in a dia-
grammatic way asfU rather than the more classicalU(f). Sometimes it is even convenient
to use subscripts or superscripts for the application of functors to objects or arrows.

2.1.2 Grothendieck categories

An indexed categoryis a functorB : Iop → Cat; sometimes we denoteB(i) asBi (or
Bi) for an indexi ∈ |I | andB(u) asBu for an index morphismu ∈ I. Given an indexed
categoryB : Iop → Cat, letB♯ be theGrothendieck categoryhaving〈i, Σ〉, with i ∈ |I | and
Σ ∈ |Bi|, as objects and〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉, with u ∈ I(i, i′) andϕ : Σ → Σ′Bu, as
arrows. The composition of arrows inB♯ is defined by〈u, ϕ〉; 〈u′, ϕ′〉 = 〈u; u′, ϕ; ϕ′Bu〉.

2.1.3 2- and lax natural transformations

Recall that a2-natural transformationτ : F ⇒ G between 2-functorsF, G : A → B maps
any objectA of |A| to a1-cell Aτ : F (A) → G(A) such that(Aτ )G(σ) = F (σ)(Bτ ) for
each2-cell σ : f ⇒ f ′ : A → B.

F (A)
Aτ //

F (f ′)

		
F (f) F (σ)

⇒
��

G(A)

G(f ′)

		
G(f) G(σ)

⇒
��

F (B)
Bτ

// G(B)

Lax natural transformationsrelax the commutativity of the natural transformation square
above to the existence of 2-cells. Therefore a lax natural transformationτ between 2-functors
F andG maps any objectA ∈ |A| to Aτ : F (A) → G(A) and any 1-cellu : A → B to

1 Strictly speaking, this is only a quasi-category living in ahigher set-theoretic universe.
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uτ : Aτ ;G(u) ⇒ F (u);Bτ such that(F (σ)(Bτ ));f ′τ = fτ ; ((Aτ )G(σ)) for each 2-cell
σ : f ⇒ f ′ : A → B and

F (A)

''
��

F (u) //

Aτ

��

F (B)

''
��

Bτ

��

F (v) // F (C)

Cτ

��
G(A)

G(u)
// G(B)

����
?Guτ

G(v)
// G(C)

����
?Gvτ

(u; v)τ = (uτ )(G(v));F (u)(vτ ) for eachu : A → B andv : B → C.
2-categorical limits and co-limits are defined similarly tothe conventional limits and

co-limits as universal arrows from/to a diagonal functor. However, in the 2-categorical
framework different concepts of natural transformations determine different concepts of
(co-)limits. Therefore, when we employ 2-natural transformations we get the concepts of
2-(co-)limit as a final (initial)2-(co-)cone, and when we employ lax natural transformations
we get the concepts oflax (co-)limit as a final/initiallax cone/co-cone.

2.2 Inclusion systems: definition and examples

Definition 1 (Inclusion systems)〈I, E〉 is a inclusion systemfor a categoryC if I andE
are two sub-categories with|I| = |E| = |C| such that

1. I is a partial order (with the ordering relation denoted by⊆), and
2. every arrowf in C can be factored uniquely asf = ef ; if with ef ∈ E andif ∈ I.

The arrows ofI are calledabstract inclusions, and the arrows ofE are calledabstract
surjections. The domain of the inclusionif in the factorization off is called theimage off
and is denoted asIm(f) or f(A) whenA is a domain off .

Note that there are no additional requirements such as the abstract surjections being epi
or the abstract inclusions being mono. In [4] it is shown thatthe classI of the abstract
inclusions and the classE of the abstract surjections determine each other. In this sense, [4]
gives an explicit equivalent definition of inclusion systems which uses only the classI of
the abstract inclusions.

Example 1 (Sets)The standard example of inclusion system is given by the category Set

(with sets as objects and functions as arrows) which admits anon-trivial inclusion system
where the abstract surjections are the surjective functions and the abstract inclusions are just
the set inclusions.

Example 2 (Trivial inclusion systems)Any category admits a trivial inclusion system with
any arrow being abstract surjection and the abstract inclusions being the identities.

Example 3 (Functor categories)For any inclusion system〈I, E〉 and any categoryJ, the
functor category〈I, E〉J, i.e. the category that has the functors fromJ to the underlying cat-
egory of〈I, E〉 as objects and the natural transformations between these functors as arrows,
admits an inclusion system such that a natural transformation is abstract inclusion or abstract
surjection, respectively, if and only if all its componentsbelong toI or E , respectively.

The proof that this gives an inclusion system on〈I, E〉J uses the notorious Diagonal
Fill-in Lemma (see [8]) and since it is rather straightforward it is left as exercise to the
reader.
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Example 4 (Many-sorted signatures)A many-sorted (relational) signatureis a pair(S, P )

consisting of

– a set of sort symbolsS, and
– a familyP = {Pw | w ∈ S∗} of sets of relation (predicate) symbols indexed by arities.

Signature morphismsmap the two components in a compatible way. This means that a sig-
nature morphismϕ : (S, P ) → (S′, P ′) consists of

– a functionϕst : S → S′, and
– a family of functionsϕrl = {ϕrl

w→s : Pw → P ′
ϕst(w) | w ∈ S∗, s ∈ S}.

The concept of many-sorted signature presented above can beextended also with function
symbols, arriving thus at the definition of many-sorted signature that is rather common in the
practice of logic and specification. In fact, the existence of atoms and of (first-order) quan-
tifications requires at least the presence of some constants(i.e. zero arity function symbols)
in the signatures. However since our work does not involve sentences of many-sorted signa-
tures, for the simplicity of our presentation, here we do notconsider any function symbols.
All results and concepts of this paper involving many-sorted signatures can be extended
without any problem to the more refined concept of signature which considers functions
symbols.

The category of many-sorted signatures admits the following non-trivial inclusion sys-
tems:

inclusion system abstract surjections abstract inclusions
ϕ : (S, P ) → (S′, P ′) (S, P ) →֒ (S′, P ′)

closed ϕst : S → S′ surjective S ⊆ S′

Pw = P ′
w for s ∈ S

strong ϕst : S → S′ surjective S ⊆ S′

P ′
w′ =

⋃
ϕst(w)=w′ ϕrl(Pw) Pw ⊆ P ′

w for s ∈ S

A signature morphismϕ : (S, P ) → (S′, P ′) preserves ad-hoc overloading2 when for
eachσ ∈ Pw ∩ Pw′ with w andw′ having the same length, we have thatϕw(σ) = ϕw′(σ).
One may consider both the strong and the closed inclusion systems for the sub-category of
the many-sorted signature morphisms preserving ad-hoc overloading.

Example 5 (Models) ModelsM for a signature(S,P ) are structures interpreting each sort
symbols as a setMs, and each relation symbolπ as a subsetMπ of Mw, the product of the
interpretations of the argument sorts. A model homomorphism h : M → M ′ is an indexed
family of functions{hs : Ms → M ′

s}s∈S such that

– hw(m) ∈ M ′
π if m ∈ Mπ (i.e. hw(Mπ) ⊆ M ′

π) for each relationπ ∈ Pw and each
m ∈ Mw.

wherehw : Mw → M ′
w is the canonical component-wise extension ofh, i.e.hw(m1 . . . mn) =

hs1(m1) . . . hsn(mn) for w = s1 . . . sn andmi ∈ Msi .
A model homomorphismh : M → N

– isclosedwhenMπ = h−1
w (Nπ) for each relation symbolπ ∈ Pw, and

– isstrongwhenhw(Mπ) = Nπ for each relation symbolπ ∈ Pw.

2 Terminology due to Till Mossakowski.
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For each model homomorphismM → N which is a set inclusion for each sorts ∈ S let us
say thatM is asubmodelof N .

For any signature(S, P ), the category of(S, P )-models admits the following two inclu-
sion systems:

inclusion system abstract surjections abstract inclusions
closed surjective homomorphisms closed sub-models
strong strong surjective homomorphisms sub-models

Example 6 (Theories)Following the work of Fiadeiro and Sernadas [11], logical systems
based on deduction can be formalized asπ-institutions, which have for each signatureΣ a
set ofΣ-sentences, but no given models. To compensate for this lack, a consequence relation
is given on sentences. We will use the definition of Fiadeiro and Sernadas [11] as modified
by Meseguer [19], rather than that of Maibaum and Fiadeiro [18]; Harper, Sannella and
Tarlecki [16] have given a definition similar to Meseguer’s,but restricted to finite sets of
sentences. Thus aπ-institutionconsists of

1. a categorySig, whose objects are calledsignatures,
2. a functorSen : Sig → Set, giving for each signature a set whose elements are called

sentencesover that signature, and
3. a relation⊢Σ ⊆ P(Sen(Σ)) × Sen(Σ) for eachΣ ∈ |Sig|, calledΣ-consequence,3

such that the following conditions hold:

reflexivity {e} ⊢Σ e for eache ∈ Sen(Σ);
monotonicity ifE ⊢Σ e andE ⊆ E′ thenE′ ⊢Σ e;
transitivity if E ⊢Σ e′ for eache′ ∈ E′ and if (E ∪ E′) ⊢Σ e, thenE ⊢Σ e;
translation ifE ⊢Σ e and ifϕ : Σ → Σ′ in Sig, thenSen(ϕ)(E) ⊢Σ′ Sen(ϕ)(e).

In general we prefer to writeϕ(e) instead ofSen(ϕ)(e).
The ‘institutions’ of Goguen and Burstall [12] appear canonically as aπ-institutions by

considering the semantic consequence relations|=Σ in the role of the consequence relations
⊢Σ . Thus one can sayπ-institutions are more abstract than institutions. However, eachπ-
institution can be given a rather artificial model theory by acomma category construction
on theories [19].

Theories represent one of the two major ways to provide denotations for software mod-
ules or structured specifications, which has been exploitedin works such as [2,10,14]. The
other more subtle semantic way, which requires the framework of institutions, is that of [24],
employed also by [8], in which denotations of specificationsare classes of models. In any
π-institution, atheory(Σ, E), also calledΣ-theory, consists of a signatureΣ and a setE
of Σ-sentences closed under consequence, i.e. ifE ⊢Σ e thene ∈ E. A theory (Σ, E) is
presentedby a setE0 of sentences whenE0 ⊆ E andE0 ⊢Σ E (meaning thatE0 ⊢Σ e for
eache ∈ E). This is denoted byE = E•

0 . A theory morphismϕ : (Σ, E) → (Σ′, E′) is just
a signature morphismϕ : Σ → Σ′ such thatϕ(E) ⊆ E′. Note that theory morphisms form
a category under the composition given by the composition ofthe signature morphisms. A
theory morphismϕ : (Σ, E) → (Σ′, E′)

– isclosedwhenE = ϕ−1(E′), and
– isstrongwhenE′ = ϕ(E)•.

3 HereP denotes the power set function.
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Any inclusion system〈I, E〉 for the categorySig of the signatures determines two inclusion
systems for the category of theories as follows:

inclusion system abstract surjectionsϕ abstract inclusionsϕ
closed ϕ ∈ E ϕ ∈ I andϕ closed theory morphism
strong ϕ ∈ E andϕ strong theory morphism ϕ ∈ I

2.3 Special properties of inclusion systems

The abstract surjections of some inclusion systems need notnecessarily be surjective in the
ordinary set-theoretic sense. However some results involving inclusion systems requires the
epi property for the abstract surjections.

Definition 2 (Epic inclusion systems)An inclusion system isepic when all abstract sur-
jections are epis.

Example 7The standard inclusion system ofSet is epic, while the trivial one for the same
categorySet is not. The strong inclusion systems for the many sorted signatures is epic
(for signature morphisms preserving ad-hoc overloading see Cor. 4 below) while the closed
one is not. Both the strong and the closed inclusion systems for models of many-sorted
signatures are epic (for the strong one see also Cor. 5). Boththe strong and the closed
inclusion systems for theories are epic when the underlyinginclusion system of signatures
is epic (for the strong one see also Cor. 6 below).

The concept below is critical for the semantics of (software) module imports and is one
of the important features that distinguishes inclusion systems from factorization systems in
the sense that the latter can not support such concept in a proper way.

Definition 3 (Unions)An inclusion system〈I, E〉 has unionswhenI has finite least upper
bounds (denoted∪).

Example 8The standard inclusion system ofSet has unions which are exactly the usual
unions of sets, while the trivial inclusion system ofSet evidently does not have unions. The
strong inclusion systems for many-sorted signatures and for the models have unions (for
signature morphisms preserving ad-hoc overloading see Cor. 1 and for models see Cor. 2,
respectively), while the closed ones for the same categories do not have unions. The strong
inclusion system for theories has unions when the underlying inclusion systems for the sig-
natures has unions (see Cor. 3 below). In general the closed inclusion system for theories
does not have unions.

2.4 The category of inclusion systems

The definition below gives the concept of (homo)morphism of inclusion systems.

Definition 4 (Inclusive functors) A functorU : 〈I, E〉 → 〈I′, E ′〉 (between the underlying
categories of the inclusion systems) isinclusivewhen it preserves the inclusions, i.e.U(I) ⊆

I′.
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One may wonder whether inclusive functors is the right concept of morphism of inclu-
sion systems since it does not consider directly the abstract surjections. The answer to this
is given by the fact, already mentioned above, that the classof the abstract inclusions and
the class of the abstract surjections of an inclusion systemdetermine each other [4], and
consequently it is possible to have an equivalent definition, even if not as intuitive as the
current one, of inclusion systems only in terms of the class of the abstract inclusions.

Fact 21 Inclusion systems and inclusive functors form a category denoted IS. Moreover,
IS can be endowed with a 2-categorical structure with the 2-cells being defined as natural
transformations between inclusive functors such that all their components are inclusions.

The equational definition of the concept of adjunction by theso-called ‘triangular laws’
(see [17]) permits the well known generalization of the concept of adjunction fromCat to
abstract 2-categories. Let us call adjunctions defined inIS asIS-adjunctions.

Fact 22 An IS-adjunction between inclusion systems consists of an adjunction between the
underlying categories such that both the left and the right adjoints are inclusive functors
and such that all components of the unit and the co-unit are inclusions.

3 Grothendieck inclusion systems

This is the main technical part of the paper. It is organized as follows:

1. We develop the general Grothendieck construction on inclusion systems.
2. We show how the examples of strong inclusion systems presented in the Sect. 2.2 arise

as instances of the general Grothendieck inclusion systems.
3. We develop a general result on existence of unions for Grothendieck inclusion systems

and apply this to our benchmark examples.
4. We develop a general result on Grothendieck inclusion systems being epic, and apply

this to our benchmark examples.
5. We characterize Grothendieck inclusion systems by the universal property of an en-

riched colimit.
6. The examples of closed inclusion systems presented in Sect. 2.2 are captured by a gen-

eral inclusion system construction on the Grothendieck categories resulting from cate-
gories indexed by inclusion systems. However this construction is rather gross since it
does not consider any inclusion system structure on the ‘local’ categories, hence it is
inappropriate for the semantics of structured heterogeneous specifications.

3.1 The basic construction

The following definition extends the concept of indexed category, first by considering in-
clusion systems instead of categories, and second by considering a structure of inclusion
system on the category of the indices.

Definition 5 An enriched indexed inclusion systemis a functorB : 〈I, E〉 → IS
op from

the underlying category of an inclusion system ‘of indices’to the opposite of the category
of inclusions systems and inclusive functors.



9

Definition 6 An enriched indexed inclusion systemB : 〈I, E〉 → IS
op is invertiblewhen

for each index morphismu, the corresponding inclusive functorBu has anIS-left-adjoint
denoted[−]u. It is E-invertible when theIS-left-adjoint toBu exists foru ∈ E (and not
necessarily for all index morphismsu).

The following is the main result of this paper.

Theorem 1 For any E-invertible enriched indexed inclusion systemB : 〈I, E〉 → IS
op

the Grothendieck categoryB♯ of Bop; (IS → Cat) (from the opposite of the underlying
category of〈I, E〉 to Cat) can be endowed with an inclusion system〈I♯, E♯〉 such that
〈u, ϕ〉 : 〈j, Σ〉 → 〈j′, Σ′〉 is

– anabstract inclusioniff both u andϕ are abstract inclusions, and
– anabstract surjectioniff u is an abstract surjection andΣ′ = [ϕ(Σ)]u.

Proof For each indexj, let Bj = 〈Ij , Ej〉 be the inclusion system corresponding to the
index j. For each index morphismu : j → j′ let ηu andεu, respectively, be the unit and
the co-unit, respectively, of the corresponding adjunction (with Bu theIS-right-adjoint and
[−]u theIS-left-adjoint).

First we show thatI♯ is a sub-category ofB♯. Let 〈u, ϕ〉 and〈u′, ϕ′〉 be composable
abstract inclusions. Thenu; u′ is an abstract inclusions of indices. Becauseϕ′ ∈ Ij′ andBu

is inclusive, we have thatϕ′Bu ∈ Ij . Sinceϕ ∈ Ij we have thatϕ; ϕ′Bu ∈ Ij . Hence
〈u, ϕ〉; 〈u′, ϕ′〉 = 〈u; u′, ϕ; ϕ′Bu〉 ∈ I♯.

For showing thatI♯ is a poset let〈u1, ϕ1〉, 〈u2, ϕ2〉 : 〈j, Σ〉 → 〈j′, Σ′〉 be a abstract
inclusions. Becauseu1, u2 : j → j′ are abstract inclusions, we have thatu1 = u2. Thus
ϕ1, ϕ2 : Σ → ΣBui are abstract inclusions, henceϕ1 = ϕ2.

In order to show thatE♯ is a sub-category, consider abstract surjections〈u, ϕ〉 : 〈j, Σ〉 →

〈j′, Σ′〉 and〈u′, ϕ′〉 : 〈j′, Σ′〉 → 〈j′′, Σ′′〉. Obviouslyu; u′ is an abstract surjection of in-
dices and we have to show thatΣ′′ = [(ϕ; ϕ′Bu)(Σ)]u;u′

.
Let us factorϕ = eϕ; iϕ such thateϕ ∈ Ej andiϕ ∈ Ij andϕ′ = eϕ′ ; iϕ′ such that

eϕ′ ∈ Ej′ andiϕ′ ∈ Ij′ . Because〈u, ϕ〉 and〈u′, ϕ′〉 are abstract surjections we have that

Σ′ = [ϕ(Σ)]u andΣ′′ = [ϕ′(Σ′)]u
′

and thatiϕ and iϕ′ , respectively, are precisely the

universal arrowsηu
ϕ(Σ) andηu′

ϕ′(Σ′), respectively.

Σ
ϕ //

eϕ

��8
88

88
88

Σ′Bu
ϕ′Bu

//

eϕ′B
u

''NNNNNNNNNNN Σ′′Bu′

Bu

ϕ(Σ)

e1 %%LLLLLLLLLL

iϕ=ηu
ϕ(Σ)

99rrrrrrrrrr
ϕ′(Σ′)Bu

iϕ′B
u=ηu′

ϕ′(Σ′)
Bu

::uuuuuuuuu

Σ1 = (ϕ; ϕ′Bu)(Σ)

i1=ηu
Σ1

77ppppppppppp

Let us also factorηu
ϕ(Σ); eϕ′Bu = e1; i1 such that(e1 : ϕ(Σ) → Σ1) ∈ Ej and(i1 : Σ1 →

ϕ′(Σ′)Bu) ∈ Ij . SinceBu is inclusive, we have thatηu′

ϕ′(Σ′)B
u ∈ Ij , henceΣ1 is the

image ofϕ; ϕ′Bu. Because(i1 : Σ1 → ϕ′(Σ′)Bu) ∈ Ij and because[−]u is inclusive we
have that([i1]u : [Σ1]

u → [ϕ′(Σ′)Bu]u) ∈ Ij′ . Since the co-unit componentεu
ϕ′(Σ′) ∈

Ij′ we have that([i1]u; εu
ϕ′(Σ′) : [Σ1]

u → ϕ′(Σ′)) ∈ Ij′ . From this we now obtain the
following:
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[e1]
u; ([i1]u; εu

ϕ′(Σ′)) = [ηu
ϕ(Σ)]

u; [eϕ′Bu]u; εu
ϕ′(Σ′)

= [ηu
ϕ(Σ)]

u; εu
Σ′ ; eϕ′ by the naturality ofεu

= eϕ′ by the triangular laws.

By the uniqueness of the factorization we deduce that[i1]u; εu
ϕ′(Σ′) is identity, hence[Σ1]

u =

ϕ′(Σ′) and thusi1 is the unit componentηu
Σ1

. We may finish this argument by noticing that

ηu
Σ1

; ηu′

ϕ′(Σ′)B
u being both universal arrow and inclusion, it should be in fact the unit com-

ponentηu;u′

Σ1
, henceΣ′′ = [(ϕ; ϕ′Bu)(Σ)]u;u′

.

We now consider an arrow〈u, ϕ〉 : 〈j, Σ〉 → 〈j′, Σ′〉 in the Grothendieck categoryB♯

and prove that it factors uniquely as a composition between an arrow fromE♯ and an arrow
from I♯. We factor

– u = eu; iu such thateu ∈ E andiu ∈ I, and
– ϕ = eϕ; iϕ such thateϕ ∈ Ej andiϕ ∈ Ij .

j
u //

eu   @
@@

@@
@@

@ j′ Σ
ϕ //

eϕ !!C
CC

CC
CC

C Σ′BiuBeu

u(j)

iu

>>}}}}}}}}
ϕ(Σ)

iϕ

88rrrrrrrrrr

η
eu
ϕ(Σ)

// [ϕ(Σ)]euBeu

ϕ′Beu

OO

Becauseϕ(Σ) ⊆ Σ′BiuBeu , by an argument similar to the proof of[Σ1]u ⊆ ϕ′(Σ′), we
have that[ϕ(Σ)]eu ⊆ Σ′Biu . Let us denote this inclusion byϕ′. Then〈u, ϕ〉 factors as
〈eu, eϕ; ηeu

ϕ(Σ)
〉; 〈iu, ϕ′〉. Obviously〈iu, ϕ′〉 is an abstract inclusion. In order to establish

that the arrow〈eu, eϕ; ηeu

ϕ(Σ)
〉 : 〈j, Σ〉 → 〈u(j), [ϕ(Σ)]eu 〉 is an abstract surjection we need

to check the equality[ϕ(Σ)]eu = [(eϕ; ηeu

ϕ(Σ)
)(Σ)]eu . This holds becauseIm(eϕ; ηeu

ϕ(Σ)
) =

ϕ(Σ) (sinceeϕ is abstract surjection andηeu

ϕ(Σ)
is abstract inclusion as a unit component).

The uniqueness of this factorization follows stepwise fromthe uniqueness of the fac-
torization of the index morphism, then from the uniqueness of the factorization through the
inclusion system〈Ij , Ej〉, and finally from the uniqueness ofϕ(Σ)eu as a free object. Let
us omit here the details of this proof.

3.2 Examples

Example 9 (Many-sorted signatures)Let

– 〈I, E〉 be the standard inclusion system onSet, the category of sets (cf. Example 1).
– B : 〈I, E〉 → IS

op be the functor such that
– B maps each setS to the categoryB(S) whose objects are families of setsP =

{Pw | w ∈ S∗}. Arrows betweenP andP ′ are families of functions{fw : Pw →

P ′
w | w ∈ S∗}. The abstract inclusions and the abstract surjections, respectively, are

point-wise inclusions and surjections, respectively, i.e. for eachw ∈ S∗ the function
fw is inclusion or surjection, respectively.
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– B maps each functionu : S → S′ to the functorBu : B(S′) → B(S) defined by
(Bu(P ′))w = P ′

u(w) for eachP ′ ∈ B(S′) and eachw ∈ S∗. EachBu has a left-

adjoint [−]u such that[P ]uw′ =
⊎

u(w)=w′ Pw for anyP ∈ |B(S)| and anyw′ ∈ S′∗

(where⊎ denotes the disjoint union).

Unfortunately in general[−]u is notanIS-left-adjoint, hence the strong inclusion system for
many-sorted signatures does not arise as an example of Thm. 1! However this situation can
be saved if we considered only the signature morphisms that preserve ad-hoc overloading,
in that case[P ]uw′ being

⋃
u(w)=w′ Pw. Therefore if inB(S) we allow only arrowsP → P ′

that preserves ad-hoc overloading (see Ex. 4), the Grothendieck inclusion system arising
from the application of Thm. 1 is precisely the strong inclusion system for the signature
morphisms preserving ad-hoc overloading.

Example 10 (Models)Given a signature(S, P ), the strong inclusion system for its category
of models is the Grothendieck inclusion system〈I♯, E♯〉 of Thm. 1 whereB : 〈I, E〉 →

IS
op is the invertible enriched indexed inclusion system definedas follows:

– 〈I, E〉 is the standard inclusion system of the (functor) categorySetS of S-sorted sets,
where for eachS-sorted setsM andN , h = {hs : Ms → Ns | s ∈ S} is an abstract
inclusion if and only ifhs is an inclusionMs ⊆ Ns for eachs ∈ S, and is an abstract
surjection if and only ifhs is surjective function for eachs ∈ S.

– B maps eachS-sorted setM the posetB(Σ) of the(S, P )-modelsM ′ such thatM ′
s =

Ms for eachs ∈ S. ThenM ′ ≤ M ′′ whenM ′
π ⊆ M ′′

π for eachπ ∈ P . B(Σ) is consid-
ered with the standard inclusion system for posets (in whichthe abstract surjections are
the identities).

– B maps eachS-sorted functionh : M → N to the monotonic functionBh : B(N) →

B(M) defined for eachN ′ ∈ B(N) by (Bh(N ′))π = h−1
w (N ′

π) for eachπ ∈ Pw.

For eachS-sorted functionh : M → N , the functorBh has a left adjoint[−]h such that
for eachM ′ ∈ B(M), ([M ′]h)π = hw(M ′

π) for eachπ ∈ Pw. The resulting adjunction is
trivially an IS-adjunction since all arrows ofB(M)’s are inclusions.

Example 11 (Theories)Given aπ-institution(Sig,Sen,⊢) with an inclusion system〈I, E〉

for the categorySig of the signatures, the strong inclusion system for its category of theories
is the Grothendieck inclusion system〈I♯, E♯〉 of Thm. 1 whereB : 〈I, E〉 → IS

op is the
invertible enriched indexed inclusion system defined as follows:

– B maps each signatureΣ to the poset (under set inclusion)B(Σ) of the Σ-theories,
which is considered with its standard inclusion system (in which the abstract surjections
are the identities) and

– B maps each signature morphismϕ : Σ → Σ′ to the monotonic functionBϕ : B(Σ′) →

B(Σ) defined byBϕ(Σ′, E′) = (Σ, ϕ−1(E′)) for eachE′ ⊆ Sen(Σ′) such that(Σ′, E′)

is theory. (Note that in this case(Σ, ϕ−1(E′)) is a theory too.)

For each signature morphismϕ : Σ → Σ′ the functorBϕ has a left adjoint[−]ϕ such that
[E]ϕ = ϕ(E)•. The resulting adjunction is trivially anIS-adjunction since all arrows of
B(Σ)’s are inclusions.

3.3 Unions

The following result develops sufficient conditions for unions for Grothendieck inclusion
systems and requires invertible enriched indexed inclusion systems which is stronger than
theE-invertible condition of Thm. 1.
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Proposition 1 For any invertible enriched indexed inclusion systemB : 〈I, E〉 → IS
op, the

Grothendieck inclusion system〈I♯, E♯〉 has unions if

– the inclusion system of indices〈I, E〉 has unions, and
– for each indexj the ‘local’ inclusion systemBj = 〈Ij , Ej〉 has unions.

Proof We prove that〈j1, Σ1〉 ∪ 〈j2, Σ2〉 = 〈j1 ∪ j2, [Σ1]u1 ∪ [Σ2]u2〉 whereu1 : j1 →

j1 ∪ j2 andu2 : j2 → j1 ∪ j2 are the inclusions to the union.
Assume〈j1, Σ1〉 ⊆ 〈j, Σ〉 and〈j2, Σ2〉 ⊆ 〈j, Σ〉. We have thatj1 ∪ j2 ⊆ j, we denote

this inclusion byu. BecauseΣ1 ⊆ ΣBu1;u = ΣBuBu1 we have that[Σ1]u1 ⊆ ΣBu.
Similarly [Σ2]u2 ⊆ ΣBu. This shows that〈j1 ∪ j2, [Σ1]

u1 ∪ [Σ2]
u2〉 ⊆ 〈j, Σ〉.

Corollary 1 The strong inclusion system of many-sorted signature morphisms preserving
ad-hoc overloading has unions.

Proof We check the conditions of Prop. 1.

– The corresponding enriched inclusion systemB is invertible since foreach function
f : S → S′, Bf has anIS-left-adjoint (cf. Example 9).

– The standard inclusion system ofSet has unions, which are the usual set unions.
– For each setS, B(S) has point-wise unions defined by

(P ∪ P
′)w = Pw ∪ P

′
w.

The inclusion system of all many-sorted signatures also hasunions, but this result cannot be
obtained by means of Prop. 1.

Corollary 2 For each many-sorted signature(S, P ), the strong inclusion system of(S, P )-
models has unions.

Proof We check the conditions of Prop. 1.

– The corresponding enriched inclusion systemB is invertible since foreachS-sorted
functionh : M → N , Bh has anIS-left-adjoint (cf. Example 10).

– The standard inclusion system ofSetS, the category ofS-sorted sets, has ‘point-wise’
unions.

– For eachS-sorted setM , B(M) has unions defined by

(M ′ ∪ M
′′)π = M

′
π ∪ M

′′
π .

Corollary 3 For anyπ-institution(Sig,Sen,⊢), the strong inclusion system of theories has
unions when the underlying inclusion system forSig has unions.

Proof We check the other two conditions of Prop. 1 besides that mentioned in the statement
of the corollary.

– The corresponding enriched inclusion systemB is invertible, cf. Example 11.
– For each signatureΣ, B(Σ) has unions defined by

(Σ, E) ∪ (Σ, E
′) = (Σ, (E ∪ E

′)•).
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3.4 Epic

The following result develops sufficient conditions for theGrothendieck inclusion systems
to be epic.

Proposition 2 In addition to the conditions of Thm. 1 if the inclusion system of the indices
〈I, E〉 is epic,Bj = 〈Ij , Ej〉 is epic for each indexj, andBu are faithful foru ∈ E , then
the inclusion system〈I♯, E♯〉 defined in Thm. 1 is epic too.

Proof Consider〈u, ϕ〉 : 〈j, Σ〉 → 〈j′, Σ′〉 and〈u1, ϕ1〉, 〈u2, ϕ2〉 : 〈j′, Σ′〉 → 〈j′′, Σ′′〉

such that

〈u, ϕ〉; 〈u1, ϕ1〉 = 〈u, ϕ〉; 〈u2, ϕ2〉

This meansu; u1 = u; u2 andϕ; ϕ1Bu = ϕ; ϕ2Bu. Becauseu is epi we obtainu1 = u2.
Becauseϕ is epi we obtainϕ1Bu = ϕ2Bu. BecauseBu is faithful we obtainϕ1 = ϕ2.
Hence〈u1, ϕ1〉 = 〈u2, ϕ2〉.

Corollary 4 The strong inclusion system for many-sorted signature morphisms preserving
ad-hoc overloading is epic.

Proof We apply Prop. 2 to the case of Example 9. The standard inclusion system for the
categorySet is epic since surjective functions are epis. The inclusion systems of the cate-
goriesB(S) are also epic for all setsS because the abstract surjections inB(S) are precisely
families of surjective functions. The last condition of Prop. 2 to be checked is thatBu are
faithful for all surjective functionsu.

For any surjective functionu : S → S′ let us consider(f ′, g′ : P ′ → P ′
1) ∈ B(S′)

such thatBu(f ′) = Bu(g′). We have to show thatf ′ = g′. For eachw′ ∈ S′∗, sinceu

is surjective there existsw ∈ S∗ such thatu(w) = w′. Thenf ′
w′ = f ′

u(w) = Bu(f ′)w =

Bu(g′)w = g′u(w) = g′w′ .

Corollary 5 For each many-sorted signature(S, P ), the strong inclusion system for(S, P )-
models is epic.

Proof The standard inclusion system for the categorySetS of S-sorted sets is epic since each
component of an abstract surjection inSetS is a surjective function. SinceBj = 〈Ij , Ej〉

are posets, they are trivially epic (as inclusion systems) andBu are trivially faithful for each
u index morphism.

Corollary 6 For anyπ-institution (Sig,Sen,⊢), if the inclusion system ofSig is epic, then
the corresponding strong inclusion system for theories is epic too.

Proof This follows from the hypothesis that the inclusion system of Sig is epic, and from
the fact that for eachj index morphismBj = 〈Ij , Ej〉 is trivially epic since it is a poset and
consequently for each index morphismu, Bu are trivially faithful.
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3.5 The universal property of Grothendieck inclusion systems

In this section we characterize the Grothendieck inclusionsystem〈I♯, E♯〉 defined by Thm. 1
as a lax colimit enriched byIS. This refines the characterization of Grothendieck categories
as lax colimits [6] and is also consonant to the characterization of Grothendieck institutions
as a lax colimit in the 2-category of institutions [6].

Definition 7 (IS-lax colimits) For any pair of functorsF, G : 〈I, E〉 → IS
op (from the

underlying category of an inclusion system〈I, E〉), aIS-lax natural transformationµ : F ⇒

G is a lax natural transformation such that

– for any objectj of 〈I, E〉, the functorµj : F (j) → G(j) is inclusive, and
– for any u ∈ I, the natural transformationµu is abstract inclusion (for the inclusion

system of the corresponding functor category; see Example 3).

IS-lax co-coneandIS-lax colimits, respectively, are just lax co-cone and lax colimits,
respectively, which areIS-lax as natural transformations.

Proposition 3 For any E-invertible IS-enriched indexed inclusion systemB : 〈I, E〉 →

IS
op, the Grothendieck inclusion system〈I♯, E♯〉 defined by Thm. 1 is theIS-lax co-limit of

B.

Proof For each indexj let the inclusion systemB(j) be denoted by〈Ij , Ej〉. We define

– For each indexj, the functorµj : 〈Ij , Ej〉 → 〈I♯, E♯〉 such that
– µj(Σ) = 〈j, Σ〉 for each objectΣ of 〈Ij , Ej〉, and
– µj(ϕ) = 〈1j , ϕ〉 for each arrowϕ of 〈Ij , Ej〉.

Note thatµj is an inclusive functor since ifϕ ∈ Ij then of course〈1j , ϕ〉 ∈ I♯.

– For each index morphismu : j → j′, the natural transformationµu : Bu; µj ⇒ µj′

such that
– µu

Σ′ = 〈u, 1Σ′Bu〉 for each objectΣ′ of 〈Ij′ , Ej′〉.

Note thatµu is an abstract inclusion of the functor category〈I♯, E♯〉〈I
j′ , Ej′ 〉 if and only

if u ∈ I.

We have thus definedµ as aIS-lax co-cone overB, with 〈I♯, E♯〉 as its vertex.

〈Ij , Ej〉

µj

&&

νj

��

〈Ij′ , Ej′〉
Bu

oo

µj′vv��

νj′

��

〈I♯, E♯〉

7777
��

µu

P

��
〈I′, E ′〉

For showing thatµ is a IS-lax co-limit, we considerν anotherIS-lax co-cone overB with
an inclusion system〈I′, E ′〉 as vertex and prove that there exists an unique inclusive functor
P : 〈I♯, E♯〉 → 〈I′, E ′〉 such that

– µj ; P = νj for each indexj, and
– µuP = νu for each index morphismu.
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These two conditions determine the definition ofP as follows:

– for each object〈j, Σ〉 of 〈I♯, E♯〉, we have thatP (〈j, Σ〉) = P (µj(Σ)) = νj(Σ), and
– for each arrow〈u, ϕ〉 : 〈j, Σ〉 → 〈j′, Σ′〉 of 〈I♯, E♯〉, we have thatP (〈u, ϕ〉) =

P (〈1j , ϕ〉; 〈u, 1Σ′Bu〉) = P (〈1j , ϕ〉); P (〈u, 1Σ′Bu〉) = P (µj(ϕ)); P (µu(Σ′)) = νj(ϕ); νu
Σ′ .

We leave to the reader the task to calculate thatP is a functor.
When〈u, ϕ〉 is an abstract inclusion we have that bothu andϕ are abstract inclusions,

consequently becauseν is IS-lax natural transformation bothνj(ϕ) andνu
Σ′ are abstract

inclusions, henceP (〈u, ϕ〉) = νj(ϕ); νu
Σ′ is an abstract inclusion. This shows thatP is

inclusive, which completes the proof of this result.

3.6 Closed inclusion systems on Grothendieck categories

The inclusion system construction of Prop. 4 below is much grosser than the Grothendieck
inclusion systems of Thm. 1 because it considers a proper inclusion system only for the
indices, and not for the fibers. This is the principal reason why this construction is not
relevant for multi-logic heterogeneous specifications.

Proposition 4 For any indexed categoryB : 〈I, E〉 → Catop (functor from the underlying
category of an inclusion system〈I, E〉 to the opposite ofCat), its Grothendieck categoryB♯

admits an inclusion system such that〈u, ϕ〉 : 〈j, Σ〉 → 〈j′, Σ′〉

– is an abstract inclusion if and only ifu ∈ I andϕ is an identity, and
– is an abstract surjection if and only ifu ∈ E .

Proof The facts that abstract inclusions form a poset and that abstract surjections form a
sub-category are rather straightforward. Let us now check the unique factorization prop-
erty. Given any〈u, ϕ〉 : 〈j, Σ〉 → 〈j′, Σ′〉 let u = eu; iu whereeu ∈ E and iu ∈ I.
Then〈u, ϕ〉 = 〈eu, ϕ〉; 〈iu, 1Σ′Biu 〉 is the unique factorization of〈u, ϕ〉 as a composition
between an abstract surjection and an abstract inclusion.

Example 12The closed inclusion systems for many-sorted signatures, models, and theories,
respectively, arise as instances of the construction of Prop. 4 for the indexed categoriesB
described in Examples 9, 10, and 11, respectively. Note thatin the case of the many-sorted
signatures this argument applies to all signature morphisms, including those dthat donot
preserve ad-hoc overloading.

Remark 1In general, the inclusion systems constructed by Prop. 4 do not have unions.
This is another reason why the above mentioned constructionis irrelevant for multi-logic
heterogeneous specifications.

In order to see this failure of unions, let us assume unions for 〈I, E〉 and consider
〈j1, Σ1〉, 〈j2, Σ2〉 ∈ |B♯|. Let 〈j, Σ〉 = 〈j1, Σ1〉 ∪ 〈j2, Σ2〉. Let uk : jk → j denote
the corresponding inclusions fork ∈ {1, 2}. Due to the nature of the abstract inclusions for
the Grothendieck category, as defined by Prop. 4, we have thatΣk = ΣBuk for k ∈ {1, 2}.

Let us assumev1 andv2 arrows in the index category such thatv1; u1 = v2; u2. Al-
thoughv1 and v2 may not exist in general, they do exist in categories which have weak
pullbacks, a property which holds in most of the examples of interest, including all exam-
ples given in this paper. Then we have thatΣ1Bv1 = Σ2Bv2 . SinceΣ1 andΣ2 can be
chosen arbitrarily, for reaching a contradiction it is thusenough to chose them in such a way
thatΣ1Bv1 6= Σ2Bv2 .
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4 Applications to multi-logic heterogeneous specification

The heterogeneous specification paradigm involves a systemof logics rather than a sin-
gle underlying logic for a corresponding specification formalism. This is mathematically
achieved within the theory of the so-called ‘institutions’of Goguen and Burstall [12] by a
Grothendieck (flattening) construction which extends the usual Grothendieck construction
for categories [15] to institutions [6,20]. A typical example is given by the specification lan-
guageCafeOBJ whose semantics and design is based upon the Grothendieck construction
on the following ‘cube’ of institutions, with edges representing the sub-logic relationships,
formalized by the concept of ‘comorphism’ between institutions (see [13,8]).

HA

MSA POA

HPOA

OSPOA

OSHPOAOSHA

OSA

Details on the Grothendieck institution theoretic semantics ofCafeOBJ can be found in [9].
Another rather notorious heterogeneous specification framework based upon Grothendieck

institutions is that of heterogeneous CASL [22].
The importance of the Grothendieck institution construction on systems of institutions

is that by providing asingle institution as the underlying mathematical structure for het-
erogeneous specification frameworks, it is possible to liftimportant specification theoretic
concepts from uniform to heterogeneous frameworks (see [6]). One of these concepts is
that of module algebra based upon inclusion systems. This module algebra, or the study of
structured specifications, can be done in two variants: a theory oriented one (like in [10]
for example), or a more semantic one (like in [24] or [8]). Both of these approaches need a
concept of inclusion system for the signatures.

Thus given system of institutions, in fact anindexed institutionin the sense of [6],

– such that each institution has an inclusion system for the signatures,
– the signature inclusions being preserved by the comorphisms between the institutions,

and
– such that the indexation of the system of institutions comes as a category with an inclu-

sion system〈I, E〉,

the construction of Thm. 1 applied to the resulting enrichedindexed inclusion systemB : 〈I, E〉 →

IS
op gives the inclusion system for the signatures of the corresponding Grothendieck institu-

tion. Because for module algebra the existence of unions is crucial, there is no alternative to
this construction since as we have seen above the other possible Grothendieck construction
on inclusion systems, that of Prop. 4, does not support unions. Moreover, the construction
of Prop. 4 is too gross since it does not consider the ‘local’ inclusion systems of the fibers.

Often between any two institutions of the system only at mostone comorphism is
considered, usually representing a ‘sub-logic’ relationship. As we have already mentioned
above, this is also the case ofCafeOBJ. This means that〈I, E〉 is a poset (i.e.E consists
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only of the identities). On the other hand, the inclusion systems of the categories of signa-
tures of the ‘local’ institutions involved are not posets ingeneral. This is just the opposite
of the situations we have encountered when obtaining the strong inclusion systems for the
models and for the theories as Grothendieck inclusion systems (see Examples 10 and 11,
respectively).

For such general setup let us look into how the conditions of the general construction
of Thm. 1, which gives the construction of the inclusion system for the signatures of the
Grothendieck institution, and of Prop. 1, which gives the unions for the above mentioned
inclusion system, are satisfied.

1. That the resulting enriched inclusion systemB : 〈I, E〉 → IS
op is E-invertible (as

required by Thm. 1) is trivial becauseE consists only of identities.
2. However, the existence of unions (Prop. 1) requires thatB is invertible. This condition

should be checked in each case. Since often the abstract inclusions ofI represent sub-
logic relationships, in practice this condition is rather easy. In the case ofCafeOBJ, for
example, the embedding of many-sorted algebra (MSA) into preordered algebra (POA)
is an identity on the signatures, while the embedding of MSA into hidden algebra (HA)
just forgets the hidden part of the signatures (the left adjoint to this considers MSA
signatures as HA signatures with the hidden parts empty).

3. Finally, the existence of unions also requires ‘local’ unions (which is a property of each
institution of the system) and unions at the level of indices. The latter condition means
that any two institutions in the system have a least upper bound. When the system of
institutions consists only of sub-logic relationships (asin the case ofCafeOBJ for ex-
ample), this means that each two logics of the system should have a common least
‘super-logic’ in the system.

Acknowledgements The author is grateful to the anonymous referee for careful and competent study of
the originally submitted manuscript. His reading has lead to several appropriate suggestions for the paper,
including the finding of an error in one of the examples.

5 Conclusions

We have extended the Grothendieck flattening from indexed categories to indexed inclusion
systems for which the category of the indices comes equippedwith an inclusion system too.
We have shown that our construction is universal. Besides providing a definitive and com-
plete answer to the problem of inclusion systems for Grothendieck institutions, our general
construction subsumes several important ‘strong’ inclusion systems in use algebraic speci-
fication theory and model theory. We have also studied a couple of properties for abstract
Grothendieck inclusion systems with special significance for the semantics of heterogeneous
multi-logic specification.

It is interesting to note that the inclusion systems of heterogeneous specification for-
malisms may involve our Grothendieck inclusion system construction at three different lev-
els:

1. at the bottom, the (strong) inclusion systems for many-sorted signatures (for each of the
logics/institutions involved),

2. at the mid level, the inclusion system for the signatures of the Grothendieck institution,
and

3. at the upper level, the (strong) inclusion system for the theories of the Grothendieck
institution.
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