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Grothendieck Institutions

Razvan Diaconescudiacon@imar.ro )
Institute of Mathematics “Simion Stoilow”, Romania

Abstract. We extend indexed categories, fibred categories, and Grothendieck constructions to institutions. We show that
the 2-category of institutions admits Grothendieck constructions (in a general 2-categorical sense) and that any split fibred
institution is equivalent to a Grothendieck institution of an indexed institution.

We use Grothendieck institutions as the underlying mathematical structure for the semantics of multi-paradigm (het-
erogenous) algebraic specification. We recuperate the so-called ‘extra theory morphisms’ as ordinary theory morphisms in
a Grothendieck institution. We investigate the basic mathematical properties of Grothendieck institutions, such as theory
colimits, liberality (free constructions), exactness (model amalgamation), and inclusion systems by ‘globalisation’ from
the ‘local’ level of the indexed institution to the level of the Grothendieck institution.

1. Introduction

Multi-paradigm (heterogenous) logical specification or programming languages admit institution
semantics in which each paradigm has an underlying institution and paradigm embedding for-
mally corresponds to institution morphism. This leads to a conceptdafxed institutionwhich
generalises indexed categories of @and Schumacher, 1978; Tarlecki et al., 1991). Semantics
of multi-paradigm specification languages requires the extension of the institution concepts across
indexed institutions; this can be naturally achieved by an extension of the Grothendieck construc-
tion for indexed categories to indexed institutions, which this leads to the conc&poitfendieck
institution We prove that the 2-category of institutions admits internal Grothendieck constructions
abstractly expressed as special lax colimits. In a fibration framework, Grothendieck institutions can
be formalised afibred institutionswe develop here this concept rather briefly, and show that Gro-
thendieck institutions are categorically equivalent to split fibred institutions by extending a classical
result by Benabou.

The new algebraic specification languadiafe OBJ (Diaconescu and Futatsugi, 1998) provides a
good practical example for the use of Grothendieck or fibred institutions (Diaconescu and Futatsugi,
2002). In fact, the research on Grothendieck institutions is part of the research project on the logical
foundations ofCafeOBJ. The semantics dfafeOBJ is based on the indexed institution resulting
from the various combinations of the ba€iafeOBJ paradigms. This is illustrated by the following
so-called CafeOBJ cube’ (consider only the full arrows):

where the nodes represent institutions and the arrows represent institution morphisms. The institu-
tion underlyingCafeOBJ is obtained as the Grothendieck institution of @&feOBJ cube, which
is a lax colimit of theCafeOBJ cube in the 2-category of institutions.

The work of this paper can be regarded as a step forward from (Diaconescu, 1998), Grothendieck
institutions providing a higher conceptual framework for the so-called ‘extra theory morphisms’.

(© 2005Razvan Diaconescu.
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3

We show that extra theory morphisms of (Diaconescu, 1998) can be regarded as ordinary theory
morphisms in a Grothendieck institution. In this way, we come back to the globalisation of insti-
tutional properties studied in (Diaconescu, 1998) from the new higher conceptual perspective of
the Grothendieck (fibred) institutions. In this paper we extend the main globalisation results of
(Diaconescu, 1998) (obtained there in sufficient form) to necessary and sufficient conditions. These
include theory colimits, liberality, exactness, and inclusion systems.

Theory colimits. Module expressions in algebraic languages in the Clear-OBJ tradition are eval-
uated as colimits of theories (Goguen and Burstall, 1992). The problem of existence of theory
colimits exhibits very clearly the conceptual power of Grothendieck institutions, which enable a
very compact proof (contrasting to the rather complex similar proof of (Diaconescu, 1998)) by
using important results from indexed category theory and institution theory.

Liberality. Liberality (Goguen and Burstall, 1992; Tarlecki, 1986) is a basic desirable property
expressing the possibility of free constructions generalising the principle of ‘initial algebra seman-
tics’ which underlies the tight semantics of algebraic languages, including semantics for parame-
terised modules (Diaconescu et al., 1993). Here we give a necessary and sufficient condition for the
liberality of a Grothendieck institution which extends a similar result of (Diaconescu, 1998).

Exactness. Exactness expresses the possibility of amalgamation of consistent models (or ‘imple-
mentations’, in a more application oriented jargon) for different specification modules (for more
details see (Diaconescu et al., 1993)) and is a hecessary technical condition on the underlying logic
for good semantic properties of the module system for a specification language. A set of necessary
and sufficient conditions for the globalisation of exactness was the main conjecture of (Diaconescu,
1998), in this paper we solve this problem within the framework of Grothendieck institutions.

Inclusions. Theory inclusions model mathematically the concept of module import (see (Dia-
conescu et al., 1993)), which is the most fundamental structuring operation for specification lan-
guages.Inclusion systemsvere first introduced in (Diaconescu et al.,, 1993) as the underlying
categorical structure of an institution-independent module algebra. They were further studied and
their definition simplified in (@zanescu and Rosu, 1997). Inclusion systems are related to the better
established concept of factorisation systems, but they capture the uniqueness property of inclusions
(such as set-theoretic inclusions). Here we extend the construction of inclusion systems for extra
theory morphisms of (Diaconescu, 1998) to Grothendieck institutions.

2. Preliminaries

2.1. CATEGORIES

This work assumes some familiarity with category theory (including 2-categories), and generally
uses the same notations and terminology as Mac Lane (MacLane, 1998), except that composition
is denoted by “;” and written in the diagrammatic order. The application of functions (functors) to
arguments may be written either normally using parentheses, or else in diagrammatic order without
parentheses, or, more rarely, by using sub-scripts or super-scripts. The category of sets is denoted
asSet, and the category of categorleas Cat. The opposite of a categof§ is denoted byC°P.

The class of objects of a categoyis denoted by|C|; also the set of arrows i having the

objecta as source and the objdeotas target is denoted &4a,b). We use=- to denote 2-cells in
2-categories. The ‘horizontal’ compaosition between 2-cells is also written in diagrammatic order by
simple juxtaposition.

1 We steer clear of any foundational problem related to the “category of all categories”; several solutions can be found
in the literature, see, for example (MacLane, 1998).
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Indexed categories (Raland Schumacher, 1978) play an importdié rin this paper, for the
purpose of this work they are more adequate tharfibhved categoriegGrothendieck, 1963) for-
mulation of indexation. (Tarlecki et al., 1991) constitutes a good reference for indexed categories
and their applications to algebraic specification. iAdexed categoryTarlecki et al., 1991) is a
functorB: 1°P — Cat; sometimes we denof(i) asB; (or B') for an indexi < |I| andB(u) asBY for
an index morphisnu € |. The following ‘flattening’ construction providing the canonical fibration
associated to an indexed category is known under the name @rtitkendieck constructioand
plays an importantdle in mathematics and in particular in this paper. Given an indexed category
B: I°P — Cat, let B* be theGrothendieck categoryaving (i, ), with i € ||| andZ € |B;|, as objects
and(u, ¢): (i,Z) — (", '), withuel(i,i") andd : = — Z'BY, as arrows. The composition of arrows
in B? is defined by(u, ¢); (U, ¢") = (u;u’, ¢;(¢'BY)).

The following simple lemma will be used later in the paper:

LEMMA 1. LetB: I1°° — Cat be an indexed category. Then each arfawg) : (i, Z) — (i’, Z') in
the Grothendieck category Ban be canonically factored as

(U, 0) = (Li, §); (U, 1zgu)

Moreover, if the functor Bhas a left adjoinBY with unitZ, then(u, ¢): (i, =) — (i, £’) can also
be factored as

<U, ¢> = <U, ZZ>, <1i’7 zp—)

whered: ZBY — ¥’ is the free extension df: < — Z'BY.

(1i,0)

(i,2) ———(i,2'B")
<U.Zz>l/ <U,¢> <u712’BU>
i SBu st
(i, 2BH o (i", ')

2.1.1. Grothendieck Construction in 2-categories
In this section we internalise the Grothendieck construction for indexed categories to any 2-category
rather tharCat by using the following basic resudt:

THEOREM 1. The Grothendieck category Bf an indexed category:B°P — Cat is the vertex of
the lax colimit u B~» B* of B inCat, where

— for each index i |I|, i : B' — BF is the canonical inclusion of categories, and

— for each index morphism @ I (i, j), W BY; i = p is defined by fi= (u, 1pg) for each
object be |B!|.

Lax colimits(see (Borceux, 1994)) constitute the most relaxed concept of colimit in 2-categories,
where diagrams are required to commute up to 2-cells only (rather than ordinary strict equality).
Notice that since the Grothendieck construction is a lax colimit of an ordinary (1-)functor, this

simply means that the lax co-copef Theorem 1 is initial.

COROLLARY 1. Any 2-functor B 1* — Cat, where [ is the 2-dimensional dual changing the
direction of 2-cells both horizontally and vertically, induces a canonical 2-category structure on the
Grothendieck category®®f the (1)-functor B |°P — Cat.

2 We omit the proof of this result since we believe this is mathematical folklore although we are not aware of any clear
reference for this result. Also, the proof of this theorem is straightforward.
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We now internalise the concept of Grothendieck construction to 2-categories as follows:

DEFINITION 1. Given a (1-)functoB: 1°°P — V, whereV is a 2-category, &rothendieck con-
structionfor B is a lax colimitp: B~ Bf. ThenB! is called theGrothendieck objecassociated to
B.O

2.2. INSTITUTIONS

Institutions (Goguen and Burstall, 1992) were introduced in the mid eighties as (categorical) abstract
model theory for specification and programming; since then the theory of institutions became the
modern level of algebraic specification and institutions now constitute the mathematical structure
underlying the algebraic specification theory. In this section we briefly review some of the basic
concepts on institutions. Besides the seminal paper (Goguen and Burstall, 1992), (Diaconescu et al.,
1993) contains many results about institutions with direct application to modularisation in algebraic
specification languages.

From a logic perspective, institutions are much more abstract than Tarski’s model theory, and
also have another basic ingredient, namely signatures and the possibility of translating sentences
and models across signature morphisms. A special case of this translation is familiar in first order
model theory: if — 5’ is an inclusion of first order signatures aldis a%’-model, then we can
form thereductof M to Z, denotedM[s. Similarly, if e is a Z-sentence, we can always view it
as a¥’-sentence (but there is no standard notation for this). The key axiom, calledttsfaction
condition says thatruth is invariant under change of notatipwhich is surely a very basic intuition
for traditional logic.

DEFINITION 2. Aninstitutiond = (Sign, Sen, MoD, =) consists of
1. a categoryign, whose objects are calleijnatures

2. afunctorSen: Sign — Set, giving for each signature a set whose elements are cadlisténces
over that signature,

3. afunctor MoD: Sign°P — Cat giving for each signaturg a category whose objects are called
2-models and whose arrows are call@e(mode) morphismsand

4. arelation=s C [MoD(Z)| x Sen(ZX) for eachX € [Sign|, calledX-satisfaction
such that for each morphisgn ~ — %’ in Sign, thesatisfaction condition

M =5 Sen()(e) iff M ob(§)() =5 e

holds for each’ € [MoD(Y')| ande € Sen(X). We may denote the reduct functordd(¢) by _fo
and the sentence translatiSan(¢) by ¢ (). O

DEFINITION 3. Let = (Sign,Sen,M0OD, =) be an institution. For any signatukethe closure
of a setE of Z-sentences iE* = {e| E =5 €}°. (Z,E) is atheoryif and only if E is closed, i.e.,
E=E"°.

A theory morphisng : (Z,E) — (Z',E’) is a signature morphisgn: = — ¥’ such thaty(E) CE’.
Let Th(O) denote the category of all theoriesih O

For any institution], the model functor MD extends from the category of its signatufgn to
the category of its theoriéBh(J), by mapping a theory, E) to the full subcategory MD(Z,E)
of MoD(%) formed by thex-models which satisf{.

3 E =5 emeans thaM =5 efor anyZ-modelM that satisfies all sentencestin
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DEFINITION 4. Atheory morphisng: (Z,E) — (¥',E’) isliberal if and only if the reduct functor
_l¢: MoD(Z',E’) — MoD(Z, E) has a left-adjoint_)®.
The institutionO is liberal if and only if each theory morphism is liberal.

General results (Tarlecki, 1986) show that liberality is equivalent to the power of Horn axiomatis-
ability.

DEFINITION 5. An institution = (Sign, Sen,M oD, |=) is exactif and only if the model functor
Mob: Sign°? — Cat preserves finite limitslJ is semi-exacif and only if MOD preserves only
pullbacks.OC

Exactness properties for institutions formalise the possibility of amalgamating models of different
signatures when they are consistent on some kind of ‘intersection’ of the signatures (formalised
as a pullback). In practice, the wélakersion of exactness properties may actually suffice (see
(Diaconescu, 1998; Tarlecki, 2000)).

2.2.1. Institution morphisms
DEFINITION 6. Let[dandlY be institutions. Then aimstitution morphisni)’ — [ consists of

1. a functord: Sign’ — Sign,

2. a natural transformatiom: ®; Sen = Sen’, and
3. a natural transformatigh: MoD’' = ®°P; MoD

such that the followingatisfaction conditiomolds
m =y as(e) iff Bx/(m) Fyoe

for anyX’-modelm’ from [’ and anyX’®-sentence from L.
An institutionmodificationbetween institution morphism®, a, ) = (¢',a’,p’) consists of

1. a natural transformation ® = @/,

2. a modificatiorw: B = B’;TMOD, i.e., for eact¥’ € |Sigr/|, a natural transformatiom : By =
B/Z’; MOD(TZ/).

a

By defining the canonical compositions (both vertical and horizontal) for institution morphisms
and modifications, we can define a 2-categlmywhich has institutions as objects (0-cells), insti-
tution morphisms as 1-cells, and their modifications as 2-cells.

In the literature there are several other concepts of institution homomorphism (such as the
so-called “institution representations”), each of them being adequate to some specific class of prob-
lems; a survey on this topic can be found in (Tarlecki, 1996). The definition presented above and
originally given by (Goguen and Burstall, 1992) intuitively expresses that a “richer” institution is
built over a “poorer” one, and is the most relevant for the applications of this work. This definition
is also a structure preserving one (as will be seen in Section 3).

The following properties of institution morphisms play an importée in this paper.

DEFINITION 7. An institution morphisni®,a,B): ' — Ois

— anequivalenceff ® is an equivalence of categories,

— anembeddingff ® admits a left-adjoint® (with unit ); an institution embedding is denoted
as(®,®,Z,a,B): 0 — 0, and is

4 In the sense of ‘weak universal properties’ of (MacLane, 1998) requiringexistencavithout uniqueness for the
corresponding universal arrows.
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— liberal iff By has a left-adjoinBs, for eachs’ € [SigrY|.

An institution embedding®,®,Z,a,B): [ — O is exactif and only if the square below is a
pullback

oD
Mob(Z) ) Mob(zy)
MOD(ZZ)T TMOD(&Z)
MoD(ZP®) MoD(Z,P®)
qu:T Tﬁzla
MobD'(ZP MobD'(Z:®
(5) 31050, MOD (2:0)

whered : Z — Z; is any signature morphism in. O

Our notion of institution equivalence is a natural generalisation of the notion of categorical equiv-
alence. The idea of institution embedding (although not formulated directly) is as old as the seminal
work on institutions (Goguen and Burstall, 1992). Notice that the terminology ‘institution embed-
ding’ is used also by (Meseguer, 1998) but in a completely different sense. Besides (Diaconescu,
1998), several stronger variants of liberal institution morphisms have been independently introduced
in the literature, such that theategorical retractive simulationsf (Kreowski and Mossakowski,
1995) and thextension mapsf (Meseguer, 1998). Exact institution embeddings are a novel concept
which expresses the primitive possibility of amalgamation of consistent models across an institution
embedding. Similar notions of exactness basefl-oaturality diagrams being pullbacks have been
introduced in the literature, such as theditive institution morphismef (Diaconescu, 1998; Dia-
conescu and Stefaneas, 1998) anditis&itutions representations with amalgamatioih(Tarlecki,

2000).

3. Grothendieck Institutions
The following definition generalises the concept of indexed category to institutions.
DEFINITION 8. Anindexed institutiory is a functor: 1°°P — Ins O
The following theorem generalises the Grothendieck construction from categories to institutions:

THEOREM 2. The 2-category of institutionns admits a Grothendieck construction for each
indexed institutiory ; 1°°P — Ins.

Proof.>

We start with the following lemma:

LEMMA 2. Let K be any 2-category antk be the Grothendieck 2-category for the 2-functor
Cat[(—)°P,K]: Cat* — Cat. Then the fibratiolk : Ix — Cat creates Grothendieck constructions
for each functor? ; 1°P — Ik.

Proof.We have to prove that for each functpr 1°P — I, there exists a Grothendieck construc-
tion u: 7~ 9% in Ik such thallk (1) = i, wherepk : § ~ St is the Grothendieck construction in
Cat for § = 7;MNk.

5 For a better understanding of the structure of Grothendieck institutions we go here for a rather direct proof of this
result. Alternatively one may use the general theorem of existence of weighted colimits in enriched categories (Borceux,
1994) instantiated to the case of lax colimits.
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Cat

Sincelk is a Grothendieck (2-)category, as notational convention, let us assuni@' tagts", 0OY)
for eachu € | (either index or index morphism).

Let 7% = (S, OF), where[D*: (5%)°P — K is the unique functor (by the universal property of the
Grothendieck construction fgf) such that

—  ; (OF)°P = (0P for each object € ||, and
— W (OF)°P = (O4)°P for each arrowu € .
We then defingL by
W = (b, 1ou)

for eachu € | (either index or index morphism) and we have to prove fhiatinitial. This is enough
since lax colimits of (ordinary 1-)functors are simply initial lax co-cones. Consider another lax co-
cone(v, p): 7~ (S, ). We prove that there exists a uniq(€, p’): (¢, 0%) — (§’, ') such

that

— (W, 1g); (v, p')y = (v, p') for each index < |1], and
— (MK, 1)V, p') = (WY, pY) for each index morphism € I.

By projecting the first condition on the first component, we have vhats® — ' is the unique
functor such thai ;' = v' for each index € || andpiv’ = vV for each index morphism ¢ .
The first condition on the second component megahg®Pp’ = p' for eachi € |1|, which deter-
mines the natural transformatihby pj; ;, = p. for eachi € |I| andZ € |S'|. The checking of the
second condition follows now by routine calculations.
This concludes the proof of this lemma.

The theorem now follows by noticing thiis = Trqom WhereRoomis the 2-category which has
objects triplegM, S R) such that

— M is a category,
— Sis aset (regarded as discrete small category), and

— Ris afunction|M| — P(S), where? is the contravariant power-set functor,

and has pairs of functord/1’ iR M, S S) as 1-cellgM’,;S,R) — (M, S R) such that the follow-
ing diagram

M| —F—~ p(3)
] P(g)
M| ?(9)

commutes, and has natural transformatibrs f’ as 2-cells betwee(f, g) = (f’, ¢').
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Notice that the generality level of Lemma 2 permits variants of Theorem 2 for concepts of
institutions enriched with additional structure, such as proof-theoretic, operational, etc. This can
be easily achieved by replacifigpomwith an appropriate 2-category.

The explicit structure of the Grothendieck institution of an indexed institution is given by the
following:

REMARK 1. The Grothendieck institutiofi’ of an indexed institutiorf : 1°° — Inshas

1. the Grothendieck categoBign' as its category of signatures, whedign: 1°° — Cat is the
indexedcategory of signatures of the indexed institution

2. Mop#: (Sign?)°P — Cat as its model functor, where

— Mop*((i, Z)) = MoD/(Z) for each index € |I| and signatur& < |Sign'|, and
— Mob*((u, ) = BY; MoD'(¢) for each(u, ) : (i, Z) — (", '),

3. Sen’: Sign' — Set as its sentence functor, where

—  Sen®((i, X)) = Sen' (%) for each index € ||| and signatur& < |Sign'|, and
— Sen({u, §)) = Sen'(9); &y, for each(u, ¢): (i, =) — (i, '),

4. m ):§i~2> eiff m=} efor each index € |1], signatureZ € [Sign'|, modelm € [MoD?((i, Z))|,
and sentence € Ser’((i, 3)).

where 7' = (Sign’,MoD', Sen', =') for each index € |I| and 7Y = (®Y,a",p") for u € | index
morphism.O

COROLLARY 2. The concept of extra theory morphisBigconescu, 1998cross an institution
morphisml’ — [ (with all its subsequent concepts) is recuperated as an ordinary theory morphism
in the Grothendieck institution of the indexed institution given by the morphism [ (i.e., which

hase — e as its index category).

3.1. FBRED INSTITUTIONS

For the readers preferring fibred categories to indexed categories, we generalise fibred categories to
fibred institutions We show thasplit fibred institutionsare essentially the same as the (previously
introduced) Grothendieck institutions. Readers with no background in fibred categories may skip
this section because the rest of the paper does not use any of the developments of this section and
stays within the framework of indexed and Grothendieck institutions. For this reason we also keep
the developments of this section very brief.

DEFINITION 9. Given a category, afibred institution over the basei$ a tuple
O = (Sign,1,M,MoD, Sen, =) such that

— IM: Sign — | is a fibred category, and
— (Sign,MoD, Sen, =) is an institution.

O is split when the fibratior1 is spilit.

A cartesian institution morphisiis an institution morphism between fibred institutions for which
the signature mapping functor is cartesian functor between the corresponding fibred categories of
signaturest

EXAMPLE 1. By Remark 1 any Grothendieck institution is a split fibred institution.
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10
Now we try to define an opposite mapping, from (split) fibred institutions to indexed institutions.

DEFINITION 10. Given a fibred institutiofl = (Sign,1,M,MoD, Sen, |=), for each object € 1|,
thefibre of 0 at i is the institution()' = (Sign', MoD', Sen', =') where

— Sign' is the fibre off1 ati, and

— MoD', Sen', and=' are the restrictions of MD, Sen, and respectively= to Sign'.

|

PROPOSITION 1. Given a fibred institutiori] = (Sign,I,M,MoD, Sen, =), for each arrow uc

1(i, j), any ‘inverse image functor: Sign/ — Sign' determines a canonical institution morphism
(®Y,04,pY): O — O between the fibres &f, whereay, = Sen(¢$) andBY, = Mop(¢$) for each
signatureX’ in the fibreSign/ at j, andq);’, : 2’oY — ¥’ being the distinguished cartesian morphism
corresponding tab".

Proof. The naturality ofa“ and " follow directly from the way the family of distinguished
cartesian morphism&ps }s determine the functo®!, and by applying the sentence functor and
the model functor, respectively, to the corresponding commutative diagrams.

Finally, the satisfaction condition for the institution morphigm“ a“, ") follows from the
satisfaction condition of the fibred institutiahapplied for the distinguished cartesian morphisms.

COROLLARY 3. Consider a category I. There exists a natural isomorphism between the category
of split fibred institutions over | (with cartesian institution morphisms as arrows) and the category
of institutions indexed by | (with natural transformation between the indexing functors as arrows).

Now we can extend &iabou’s result (Bnabou, 1985) to fibred institutions:

COROLLARY 4. Each fibred institution is equivalent to a Grothendieck institution.

4. Globalisation of Institutional Properties

This section is devoted to the study of the most important institutional properties (as seen from the
semantics of specification languages; see (Diaconescu et al., 1993)) for Grothendieck institutions.
These include theory colimits, liberality (i.e., free constructions), exactness (i.e., model amalgama-
tion), and inclusion systems for institutions. In all cases we follow the same pattern of ‘globalisation’
of the properties by lifting them from the ‘local’ level of the indexed institution to the ‘global’ level
of the Grothendieck institution. All developments of this section can be immediately translated into
the language of fibred categories/institutions. However, the framework of indexed institutions seems
to be the most appropriate for applications and for the presentations and development of the results.
Most of the developments of this section rely on a stronger version of indexed institution for
which the institution morphisms are embeddings. This is a natural technical condition which almost
always occurs in practical applications.

DEFINITION 11. An embedding-indexed institutias an indexed institutiory : 1°° — Ins for
which all institution morphismg/¥ are embedding$®d!, ®Y. 2" aY,BY) for all index morphisms
uel.

A embedding-indexed institution oherentf and only if

U oY = puY (j.e., the indexed category of signatures is ‘globally’ reversible)
and
Zu;@zu’q)u _ Zu;u’

foreachue I(i,j) andu € I(j,k). O
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11
4.1. THEORY COLIMITS IN GROTHENDIECKINSTITUTIONS

DEFINITION 12. An indexed categor: 1°P — Cat is locally J-cocompletéor a small category
Jif and only if the category' is J-cocomplete for each indexc |I|. O

The ‘sufficient’ part of the following fundamental result was essentially obtained for the first
time in (Diaconescu, 1998) in the context of ‘extra theory morphisms’.

THEOREM 3. Let 7: I°P — IIns be an embedding-indexed institution such that | is J-cocomplete
for a small category J. Then the category of theofi¥g 7%) of the Grothendieck institutiofi* has
J-colimits if and only if the indexed category of signatuseg of 7 is locally J-cocomplete.

Proof. For the ‘necessary’ part of this theorem, it is sufficient to notice that for each ingéx
the canonical inclusion functdh(7') < Th(7%) reflects colimits, henc&h(7') hasJ-colimits if
Th(7*) hasJ-colimits. This implies thafign' hasJ-colimits for each index < 1.

For the ‘sufficient’ part of the theorem, by the fundamental result that in any institution the
forgetful functor from theories to signatures creates colimits (see (Goguen and Burstall, 1992)), we
have only to show that the category of signatures of the Grothendieck instittitivesJ-colimits.

By Remark 1, the category of signatures®fis the Grothendieck category of signatufign’.
The conclusion of the theorem now follows from the general result on existence of colimits in
Grothendieck categories (see (Tarlecki et al., 1991)).

This theorem shows very clearly the conceptual power of Grothendieck institutions, since in this
case they enable a very compact proof by invoking important results from indexed category theory.
This situation contrasts to the rather complex proof given in (Diaconescu, 1998) for the existence of
colimits for extra theory morphisms.

4.2. LIBERALITY IN GROTHENDIECKINSTITUTIONS

DEFINITION 13. Anindexed institutiory : 1°P — Insis locally liberal if and only if the institution
7' is liberal for each indekc |. O

The following result represents the global counterpart of a similar result of (Diaconescu, 1998)
where we studied liberality at the level theory morphisms only.

THEOREM 4. The Grothendieck institutiort of an indexed institutiorf ;: 1°° — Ins is liberal if
and only if7 is liberal and each institution morphisift is liberal for each index morphismal.

Proof. The ‘necessary’ part of the theorem follows by noticing that local liberality of the indexed
institution is contained by the liberality of the Grothendieck institution because each model functor
MoD' is a restriction of the model functor &¢ of the Grothendieck institutio’:

Th(J")°° ———— Th(J#)°P

. M oD
Mop'

Cat

and by noticing that for each index morphisng | (i,i’), the liberality of the institution morphism
JY = (o4 a",pY) is the same as the liberality of the (extra) signature morphism
<U, lz/q;u>: <|, Z’CD“> — <i/, Z’)

For the ‘sufficient’ part of the theorem, we consider an (extra) theory morphism
(ud): (i, (£,E)) — (', (¥',E")) and a(Z,E)-model M. The free expansion dfl along (u, ¢)
is the modelBs/(M?)/E’, whereM? is the free expansion d¥l along the (intra) signature mor-
phism¢: = — Z'dY (by the liberality of '), and_/E’ is the left adjoint to the forgetful inclusion
Mop' (3/,E’) — Mob' (£') (by the liberality of7"). Finally, the universal property @ (M?®)/E’
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follows as a composition of the three universal properties corresponding to the three adjunctions
involved:

M M® M? Bz (Bz(M?)) B (M?) Bz (M?)/E
\ ‘““’“’ \ lﬁy(ﬁ‘” k e
Bz (N) [ Bs/(N) N E

This liberality result is also stronger than its counterpart from (Diaconescu, 1998) because it
gives an ‘if and only if’ characterization of liberality in Grothendieck institutions.

4.3. EXACTNESS IN GROTHENDIECKINSTITUTIONS

From all the properties of Grothendieck institutions, exactness seems to be the most complex to
study. In (Diaconescu, 1998) we conjectured an ‘if and only if’ characterization of exactness for
extra theory morphisms, in this section we solve this problem. Our approach is to decompose the
exactness property into a set of atomic orthogonal necessary and sufficient conditions.

DEFINITION 14. An indexed institutiory : 1°° — Insis locally (semi-)exactf and only if the
institution 7' is (semi-)exact for each indéx 1. O

PROPOSITION 2. If the Grothendieck institution of an indexed institution is semi-exact, then the
indexed institution is locally semi-exact. _

Proof. By Remark 1, for each indeix the model functor MD' is the restriction MvD*((i, —))
of the model functor of the Grothendieck institution to the sub-catefigny of the Grothendieck
category of signatureSign’ (i.e. the category of signatures of the Grothendieck institution).

(Sign')°P ——— (Sign*)°P

. M oD
MobD'

Cat

Because the canonical injecti€ign' — Sign preserves co-limits (as a simple general property of
the Grothendieck constructions), we have thabiV preserves whatever limits are preserved by
MoD*?, hence MbD' preserves pullbacks.

PROPOSITION 3.If the Grothendieck institution of an indexed institution is semi-exact, then each
institution embedding of the indexed institution is exact.

Proof. Consider an institution embeddirfig", @Y, Y, a!,pY): 9" — 7', and an arbitrary signa-
ture morphisn: = — 31 in 7'

Notice that the following square

0,5 — 2P s

<U, zz>l l(lJZlZ)

<i/7 ZCD> (1,00) <i/7 216>

is a pushout. Because the Grothendieck institution is semi-exact, this pushout is mapped by the
(Grothendieck) model functor to a pullback square. All we still have to do is to notice that this
pullback square gives the exactness of the institution embedditigpy, ¢V, a, BY).
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DEFINITION 15. A coherent embedding-indexed institutipnl °° — Insis semi-exacif and only
if for each pushout

ul

i—jl

12—~k

in I, the following square

ul

MoD(5) Moo/ MoD! (SPLepul) zot Mopil(Zpul)
MoD' (5¢2) Mop" (zeig?)
MoD' (ZdulpUl) Mo/t (Zpulpvipvl)
MoDI2(Zdu2) —— MOD2(ZPpRp2P?2) <~ M oDX(Z UiV
M oD (zou27+2) B e

is a pullback for each signatukein [0'. O

PROPOSITION 4. Let 7 be a coherent embedding-indexed institution. If the Grothendieck institu-
tion 7% is semi-exact, then the indexed institutipis also semi-exact.

Proof. Consider a pushout squarelias in Definition 15. Notice (by the colimit construction in
Grothendieck categories cf. (Tarlecki et al., 1991)) that the following square

. 17 ZZUl ) -
(i, 5) — 2 s
(u2,5712) (v1, Zpuigy
(j2, 292) 2reacs, (K ZOUPY)

is a pushout in the category of signatufégn’ of the Grothendieck institution. Because the
Grothendieck institution is semi-exact, the Grothendieck model functop™Mnaps this pushout
square to the pullback square of Definition 15.

THEOREM 5. Let 7 be a coherent embedding-indexed institution. The Grothendieck instittition
is semi-exact if and only if

— the indexed institutior is locally semi-exact,
— the indexed institutior is semi-exact, and

— all institution embeddings are exact.

Proof.The ‘necessary’ part of this theorem holds by Proposition 2, Proposition 4, and Proposition
3.

For the ‘sufficient’ part, we consider an arbitrary pushout of signatures in the Grothendieck
institution
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(P, 1)

(sign?, Zo) —— "> (signt, £,
(P2, ¢2) (®1,61)

<Sign2, Zg) W <S|gn, Z)

where
(CDUI,W.ZUl,GUl,B“l)

o° ot
(fvuzﬁ,zuz,a“zﬁ“z)‘ |<¢1,@,z1.al,sl)

2

(92,02,22,02,p%)

is the underlying square of institution embeddifigs.

By factoring each of the extra signature morphisms accordingly to the second part of Lemma 1,
and by applying the pushout construction in Grothendieck categories (cf. (Tarlecki et al., 1991)), due
to the coherence property of the indexed institution, the pushout square of extra signature morphisms
can be expressed as the following composition of four pushout squares:

(@, 202") (1,97)

(Sign®, Zo) (Signt, Zodul) (Signt, 21)
<¢UZ7ZOZUZ> <¢)17ZOW11> <¢,17zlzl>
ign2. Sapu2y ——— > (S DU i ol
(Sign®, Zo®4?) 0250070 (Sign, ZoPuld') e (Sign, Z; 1)
(192) (L929?) (1.81)
(Sign?, =5) rx*a (Sign, Z,®2) o (Sign, %)

The Grothendieck model functor

— maps the up-left pushout square to a pullback square because the indexed institution is semi-
exact,

— maps the down-right pushout square to a pullback square because the indexed institution is
locally semi-exact, and

— maps the up-right and down-left pushout squares to pullback squares because the institution
embeddingg®!, ®1, ¢t al, Bl) and(d?, 2,72, 02, 3?) are exact.

Therefore, the Grothendieck model functor maps the original pushout square of signatures in the
Grothendieck institution to a pullback square by composing the four pullback squares obtained
from mapping the four component pushout squares.

Unlike the corresponding results for theory colimits or liberality, the result of Theorem 5 cannot
always be applied in practice; there are important practical cases when the necessary conditions for
the (semi-)exactness of the Grothendieck institution do not hold. In such situations one should try
to base the semantics of the specification language on a subclass of practically meaningful cases for
which the (semi-)exactness property can be obtained (Diaconescu, 1998). In this case Theorem 5

6 Notice that in the diagrams of this proof we represent the indices by their corresponding signature categories and the
index morphisms by the corresponding functors between the signature categories.
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allow us to isolate the condition which is responsible for the failure of the (semi-)exactness property.
It seems that in practice only the last two conditions of Theorem 5 might fail to hold.

4.4, INCLUSION SYSTEMS IN GROTHENDIECK INSTITUTIONS

Inclusion systemwhere first introduced by (Diaconescu et al., 1993) for the institution-independent
study of structuring specifications. They provide the underlying mathematical concept for module
imports, which are the most fundamental structuring construct. Mathematically, inclusion systems
capture categorically the concept of set-theoretic ‘inclusion’ in a way reminiscent of factorization
systems (Borceux, 1994)\eak inclusion systemgere introduced in (&znescu and Rosu, 1997)

as a weakening of the original definition of inclusion systems of (Diaconescu et al., 1993).

DEFINITION 16. (I, E) is aweak inclusion systerior a categoryC if I and £ are two sub-
categories withI| = |£| = |C| such that

1. I is a partial order, and
2. every arrowf in C can be factored uniquely ds= e;i with e E andi € I.

The arrows ofl are calledinclusions and the arrows off are calledsurjections7 The domain
(source) of the inclusionin the factorization off is called called thémage of fand denoted as
Im(f). Aninjectionis a composite between an inclusion and an isomorphim.

A weak inclusion systemI, £) is aninclusion systenif and only if I has finite least upper
bounds (denoted) and all surjections are epics (see (Diaconescu et al., 1993)).

Recall from (Diaconescu, 1998) the following technical definition:

DEFINITION 17. LetC andC’ be two categories with weak inclusion systefhsZ) and(I’, ‘E’)
respectively. Then a functatl: C — C’ lifts inclusions uniquelyf and only if for any inclusion
l": A — BUin I’ with B € |C|, there exists a unique inclusiore  such that U =1". 0

Because of the structure of the Grothendieck institutions (see Remark 1), the problem of an
inclusion system for its category of signatures is reduced to the problem of inclusion systems in
Grothendieck categories. However, in this paper we limit this study to the case of weak inclusion
systems.

4.4.1. Inclusion Systems in Grothendieck categories
THEOREM 6. Let B: 1°P — Cat be an indexed category such that

— | has a weak inclusion systefii', £'),
— B has a weak inclusion systefii, ') for each index & |I|,
— B preserves inclusions for each inclusion index morphismit, and

— B" preserves inclusions and surjections and lifts inclusions uniquely for each surjection index
morphism u= £'.

Then, the Grothendieck category las an inclusion systel(ﬂB”, EB”> where(u, ¢) is
— inclusioniff both u and¢ are inclusions, and

— surjectioniff both u andd are surjections.

7 Surjections of some weak inclusion systems need not necessarily be surjective in the ordinary sense.
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Proof. I% andE® are both sub-categories Bf becauséBY preserves inclusions (surjections)
wheneveu is inclusion (surjection).

We now consider an arrofu, ¢): (i, =) — (i’, =’} in the Grothendieck categoB and prove
that it factors uniquely as a composite between an arrow teSirand an arrow fronT® . We factor

uin (I', €'Yy and¢ in (I', ") as follows:
s - sgige
q)e
zl

i
R % %
iII

Sincete lifts inclusions uniquely there exists an unique inclusppn” — 3'BY such thaty/BY" =
¢*. Notice that(u', ¢') is an inclusion/u®, $°) is a surjection, and thati, ¢) = (ue, $°); (u', ¢').

Finally, the uniqueness of this factorization follows stepwise from the uniqueness of the factor-
ization of the index morphism, then from the uniqueness of the factorization through the inclusion
system ofB' (by using the preservation of inclusions by B8€), and finally from the uniqueness of
the lifting to I'".

A similar result was proved in (Diaconescu, 1998) directly for extra theory morphisms. Theo-
rem 6 avoids some complexities of the corresponding result from (Diaconescu, 1998) which were
related to the sentences. This simplification is possible due to the fact that we have a (Grothen-
dieck) institution in which extra theory morphisms appear as ordinary theory morphisms which
permits the automatic lifting of inclusion systems from signatures to theories (see (Diaconescu et al.,
1993; Gizanescu and Rosu, 1997)). In fact, as pointed out Azd@escu and Rosu, 1997), for the
case of weak inclusion systems this can be done in two different ways, thus obtaining two different
weak inclusion systems at the level of theories for each weak inclusion system for signatures. In
this way, from Theorem 6 one can also obtain a different variant of the result in (Diaconescu, 1998)
corresponding to the other way of lifting of weak inclusion systems from signatures to theories,
which shows that Theorem 6 is conceptually more general than the result of (Diaconescu, 1998).
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5. Conclusions

We extended the concepts of Grothendieck and fibred categories to institutions, including a Grothen-
dieck construction for institutions (easily extensible to other related structures) and an equivalence
resulta la Benabou between Grothendieck and fibred institutions. We showed that the concept of
extra theory morphism of (Diaconescu, 1998) appears as ordinary (intra) theory morphism in a
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Grothendieck institution, leading to a higher conceptual approach to multi-paradigm (heterogenous)
algebraic specification. We also extended the ‘globalization’ results of institutional properties of
(Diaconescu, 1998), by giving necessary and sufficient conditions for theory colimits, liberality,
exactness in Grothendieck institutions, and by providing inclusion systems to Grothendieck cat-
egories. The conceptual power of Grothendieck institutions enabled us to extend the results of
(Diaconescu, 1998), also by highly simplifying some of the proofs, and to give a necessary and
sufficient characterization for the exactness problem in Grothendieck institutions (conjectured in
(Diaconescu, 1998)).
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