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Abstract

We extend the ordinary concept of theory morphism in intits toextratheory morphisms. Extra theory
morphism map theories belonging to different instituti@esoss institution morphisms. We investigate
the basic mathematical properties of extra theory morphisapporting the semantics of logical multi-
paradigm languages, especially structuring specificatiomodule systems) a la OBJ-Clear. They include
model reducts, free constructions (liberality), co-lsnitnodel amalgamation (exactness), and inclusion
systems.

We outline a general logical semantics for languages whesestics satisfy certain “logical” prin-
ciples by extending the institutional semantics developétin the Clear-OBJ tradition. Finally, in the
Appendix, we briefly illustrate it with the concrete exampfeCafeOBJ.
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1 Introduction

Computing Motivation

This work belongs to the research arearsititutionswhich now constitute the modern level of algebraic
specification tradition. Its results apply to multi-pagdilogical computing languages. Fogical lan-
guage is a specification and/or programming language haringnderlying logi€ in which all its basic
constructs/features can be rigorously explained. Thisegnwas first formulated by Goguen and Mese-
guer in [22] under the name of “logical programming”. Exaegbf logical languages include most of the
OBJ family of languages, such as OBJ3 [25], Eglog [21], Ma@jeCafeOBJ [13], etc., but they might
also include (pure) Prolog and (pure) Lisp.

Multi-paradigm logical languages admit institution semi@in which each paradigm has an under-
lying institution and paradigm embedding formally corrasgs to institution morphisms. This approach
can be regarded aselativistic as opposed to the more absolute one that works only with gniegtitution
embedding all other institutions underlying the variousad&gms, and has also been advocated by other
recent works [32, 2]. Following the tradition of Clear [4]ch®BJ [25], flattened modules or basic speci-
fications (belonging to either a primary or a more complexagi&ym) in logical languages correspond to
theories in the institution underlying that paradigm. Aiéad language achieving high paradigm integra-
tion must support a global module system, meaning globat&tring operations on modules (specifica-
tions), such as (various kinds of) imports, parametepmatetc. As strongly emphasized by the Clear-OBJ
tradition, the structuring operations on modules are nemtbly putting together theories via co-limits of
theory morphisms.

In this paper we extend the concept of theory morphism (icadilly local to a given institution; we
call themintra theory morphisms) t@xtra theory morphisms, which are morphisms of theories across
institution morphisms (embeddings). The core of this warksists of the investigation of the basic prop-
erties for extra theory morphisms supporting the semaafinsulti-paradigm logical languages, especially
advanced module systems for such languages. We devotdéangectketching an extra theory morphism
based generic semantics for multi-paradigm logical laggaaand in the Appendix we illustrate this with
the concrete example @fafeOBJ [14].

Properties of Extra Theory Morphisms

The basic mathematical properties of theory morphisms atkestablished for the ordinary “intra” ver-
sion, in this paper we investigate them for the more genendt&” concept. Here we briefly review these
properties.

Liberality. Liberality [17, 31] is a basic desirable property expregdime possibility of free construc-
tions generalizing the principle of “initial algebra serties’ which underlies the tight semantics of alge-
braic languages, including semantics for parameterizedutas [15]. We extend the traditional concept
of liberality to extra theory morphisms and we investigaime natural sufficient conditions.

Co-limits. Module expressions in algebraic languages in the Clear4@#lition are evaluated as co-
limits of theories. In the case of multi-paradigm languageslimits in the category of extra theory
morphisms are needed. We show how these more general ¢e-tiam be constructed from ordinary intra
theory morphisms co-limits.

Exactness. Exactness expresses the possibility of amalgamation cfistemt implementations for dif-
ferent modules (for more details see [15]) and is a necedsahpical condition on the underlying logic

IHere “logic” should be understood in the modern relaticisgnse of “institution” which provides a mathematical défin
for a logic (see [17]) rather than in the traditional sense.



for good semantic properties of the module system. We studgteess properties for the general case of
extra theory morphisms.

Inclusions. Theory inclusions model mathematically the concept of nduport (see [15]), which

is the most fundamental structuring operatidnclusion systemsvhere first introduced in [15] as the
underlying categorical structure of an institution-indegent module algebra. They were further studied
and their definition simplified by Rosu and Cazanescu ]n [Bclusion systems are related to the better
established concept of factorization systems, but thetucaphe uniqueness property of inclusions (such
as set-theoretic inclusions). Here we show that an inatusystem of institution morphisms together with
inclusion systems for the signatures of each of the ingiitstinvolved naturally determine an inclusion
system for extra theory morphisms.

Finally, this work assumes familiarity with the basics ofeggory theory, and generally uses the same
notation as Mac Lane [27], except that composition is dehbye';” and written in the diagrammatic order.
The application of functions (functors) to arguments mawiigen either normally using parentheses, or
else in diagrammatic order without parentheses. The cgtegets is denoted &et, and the category
of categoried asCat. The opposite of a categofy is denoted byC°P. The class of objects of a category
C is denoted byC|; also the set of arrows i@ having the objeca as source and the objdetas target is
denoted a€(a,b).
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2 Institutions

In this section we start by reviewing some of the basic cotscapd results on institutions, and continue
with introducing new concepts related to extra theory mismplk. A good introduction to institutions is
[17], and [15] contains many results about institutionshwiirect application to modularization.

From a logic perspective, institutions are much more abstten Tarski's model theory, and also
have another basic ingredient, namely signatures and t&hjility of translating sentences and models
across signature morphisms. A special case of this tramsla familiar in first order model theory: if
> — ¥ is an inclusion of first order signatures akdis aX’-model, then we can form theductof M to
>, denotedM |s. Similarly, if e is aZ-sentence, we can always view it a&’asentence (but there is no
standard notation for this). The key axiom, called $lagisfaction condition says thatruth is invariant
under change of notatigmwhich is surely a very basic intuition for traditional lagi

Definition 1: An institution 0 = (Sign, SenMobD, |=) consists of
1. a categongign, whose objects are callailgnatures

2. afunctorSen Sign — Set, giving for each signature a set whose elements are csdlieénceover
that signature,

3. a functor Mop: Sign — Cat®P giving for each signatur& a category whose objects are called
2-models and whose arrows are call@g(model) morphisms, and

2\We stay away of any foundational problem related to the tgae of all categories”; several solutions can be found & th
literature, see for example [27].



4. arelation=s C [IMOD(Z)| x Ser{Z) for eachZ € |Sign|, calledZ-satisfaction,

such that for each morphisgn: = — %’ in Sign, thesatisfaction condition

M’ b Ser(d)(e) iff M oD(9)(M') = e

holds for eachM’ € [IMoD(Z')| ande € Ser{X). We may denote the reduct functordw(¢) by _[ and
the sentence translatid®erid) by ¢ (_).

Definition 2: Let O = (Sign, SenMobD, =) be an institution. For any signatubethe closure of a sef
of Z-sentences iE* = {e| E =5 €}°. (Z,E) is atheory iff E = E°.

A theory morphism ¢: (Z,E) — (Z',E’) is a signature morphism: ¥ — ¥’ such thath(E) C E'.
Let Th(O) denote the category of all theories(ilh andsign” the forgetful functorTh(0) — Sign.

For any institutiori], the model functor MD extends tdl'h(0J), by mapping a theoryZ, E) to the full
subcategory MD(Z,E) of MoD(Z) formed by thex-models that satisf.

Definition 3: A theory morphismp: (Z,E) — (X', E’) is liberal iff the reduct functor
_l¢: MoD(Z',E’) — MoD(Z,E) has a left-adjoint_)°.

M s E M —— (M®) ] Mé
hl H Ty ;%ereexists aunique
M/ ':Z’ E/ M/H) M/

The institution( is liberal iff each theory morphism is liberal. Wheix, E) is the empty theory for the
signature>, we denote(_)® by _/E’.

General results [31] show that liberality is equivalentite power of Horn axiomatisability.

Definition 4:  An institution [ is exact iff the model functor MoD: Sign — Cat®P preserves finite co-
limits. O is semi-exactiff M oD preserves only pushout$:]

The possibility of amalgamating consistent implementatimay also be formalized by a wéakersion
of exactness, which in the case of multi-paradigm languagesre adequate.

Definition 5:  An institution [0 is weakly semi-exaciff the model functor MoD preserves weak pushouts.

Semantics of multi-paradigm systems involves severagwdfit institutions which have to be linked
together by using the following concept:

Definition 6: Let O and[l be institutions. Then aimstitution morphism O — [’ consists of

1. afunctor®d: Sign’ — Sign,
2. anatural transformatiom: ®; Sen=- Sen, and
3. a natural transformatigd: ®;Mob = Mop’

3E |=5 emeans thaM |=5 efor any>-modelM that satisfies all sentenceskn
4In the sense of “weak universal properties” of [27] requgramly existencevithout uniqueness for the corresponding univer-
sal arrows.



such that the followingatisfaction conditionholds

M’ s ax(e) iff Bx(M') Fyo e

for any3’-modelM’ from [ and any>’®-sentences from 0. [¢]

In the literature there are several concepts of institutimrphism, each of them being adequate to some
specific problem. A good survey of various concepts of instih morphism discussing their usefulness
can be found in [32]. The definition presented above andmallyi given by Goguen and Burstall [17]
seems to be the most adequate for our approach. Howevery ipaper the direction of the institution
morphisms goes opposite than in [17]. The choice of [17]dffedl by many researchers) fits better with
the understanding of institution morphisms as projecti@hswhile our choice is motivated mainly by the
co-limit and especially the inclusion paradigms.

For obtaining some technical properties for extra theoryphisms, some technically stronger versions
of this institution morphism are needed. These are veryrahtachnical conditions which are easily
satisfied in practice.

Definition 7:  An institution morphism(®,a,B): 0 — O'is

e a[strong] embeddingiff ® admits a [left-inverse] left-adjoint [with identity unjtsp,

e liberal iff By has a Ieft—adjoinﬁz, for eachZ’ € [Sigr’|, andpersistentiff in addition Bz, are also
left-inverses t@3s with identity units, and

¢ [weakly] additive iff the squares defining the naturality Bfare [weak] pullbacks.

MoD(Z'd) <2 Moo/ (¥)

|\/|OD(¢<D)T TMOD’(@
MoD(Z]®) o MoD'(%))

-/
I

The idea of institution embedding (although not formulatiekctly) is as old as the seminal work on
institutions [17]. Notice that the terminology “institati embedding” is used also by Meseguer [29]
but in a completely different sense. Also, several variafitpersistent institution morphism have been
independently introduced in the literature, such thatctegorical retractive simulationsf [26] and the
extension mapsf [29].

3 Extra Theory Morphisms

Extra theory morphisms generalize the ordinary concephebry morphism (Definition 2) in that they
map theories across an institution morphism. Intra (i.&inary) theory morphisms can be regarded as
special cases when the institution morphism is an identity.

Definition 8: Let (®,a,B): O — ' be an institution morphism, antl = (%,E) and T’ = (¥',E’) be
theories inJ and[l respectively. Aextra theory morphism T — T’ is an[J-signature morphisnp: = —
>'® such thatiy (¢ (E)) C E'.

In the case of institution embeddings we have an equivaiemgier formulation for extra theory morphism
given by Proposition 10. Instances of the following resolt the particular case of strong embeddings
appeared in [17, 2]:



Fact 9: Any institution embedding®, a,): 0 — [’ gives rise to a functo®* : Th() — Th([) defined
by

®*(Z,E) = (2P, a55((2()(E))*)
where is the unit of the adjoint pair of functo®, ®. [°]

Proposition 10: Let(®,a,B): 0— ' be an institution embedding and Te€ |Th(0)| andT’ € |Th(CY)|.
Then there is a natural bijection between extra theory memhT — T’ and [I'-theory morphisms
O (T) - T.

Proof: LetT be (Z,E) andT’ be (¥',E’). We have to establish a canonical bijection between extra
theory morphism§ — T’ and ['-theory morphismsp*(T) — T’. This is given by the restriction of the
adjointness bijection

Sign(z, ') < Sign (8,2
to the subset$d | as (¢p(E)) CE'} and{¢’ | ¢'(as4((ZC)(E)) C E'}. This is well-defined because when-
everd’ =y(9), oz ($(E)) = ¢/'(0s5((ZQ)(E)) by the naturality ofx and because is a left-adjoint tod,
as shown in the following diagram:
Serz'®) —2 - SeA(s)
TSemcb'cr’) TSel‘m’)
SN/ sers o) - Seh(sP)

AZ)

Sert)

For readers familiar with indexed categories [33], the jmes results just says that in the case of institution
embeddings extra theory morphisms can be regarded as aimatve flattening (i.e., the Grothendick
construction) of the indexed (by the category of institmgipcategorylh.

3.1 Model Reducts

Model reducts are the semantic aspect of theory morphigmesefore they play a central role in any
semantics based on institutions. Model reducts for extearthmorphisms generalize ordinary model
reducts for intra theory morphisms; they are introducedheyfollowing result which can also be regarded
as a Satisfaction Condition for extra theory morphisms:

Proposition 11: Let (d,a,B): O — [ be an institution morphism. For any extra theory morphism
¢: (Z,E) — (¥,E’) there is a reduct functarfy : MoD'(T’) — MoD(T) defined by

Ml = Bs' (M) Ty

for M’ any (¥',E")-model. If(®,a,B) is an embedding, then
M'lp = Bso(MTo) 3¢

where¢’: Z® — 5’ is the free extension df: = — 3'®.

Proof: Firstly, we have to prove thfl’ =5 E’ implies s (M’)[¢ }=5 E. ButM’ =3 E' impliesM’ =5/
as (¢ (E)) which is equivalent (by the Satisfaction Condition for itgton morphisms) t@s(M’) a5
¢ (E) which is equivalent (by the Satisfaction Condition for ingtons) toBs (M’)[¢ =5 E.

7



The second part follows by the naturality fapplied top and because is a left-adjoint tod, as
shown in the following diagram:

MoD/(') — %~ Mop(Z/®)

MOD’(q)')l MOD(¢'®)l

_ MobD
MoD' (ZP) e MoD(ZdP) @

pX0}
Mm

MoD(Z)

3.2 Liberality

Liberality (i.e., the existence of free extensions aloreptly morphisms) is one of the fundamental model-
theoretic properties in strong connection with module ayssemantics for specification/programming
multi-paradigm logical languages.

In this section we provide sufficient conditions for the éxiee of free extensions along extra theory
morphisms. We fix an institution morphis(®,a,p): 0 — 7.

Definition 12: An extra theory morphism: (,E) — (¥, E’) isliberal iff the reduct functor [ : MoD/(Z',E’) —
MoD(Z,E) has a left adjoint, i.e., iff for any modd € [MoD(Z, E)|, there exists amod®l’ € [MoD' (X', E’)|

and a model morphistin: M — M’ such that for any mod@l’ € [MoD’(¥,E’)| and any model mor-
phismh: M — N’ there exists a unique model morphi$m M’ — N’ such thah = Mn;h'[.

M
M —> M’] M’
N

N'To N’
We need a categorical lemma:

Lemma 13: Let U: C — DD be a functor with a left-adjoin¥ , letC’ — C be a full reflective subcategory,
andD’ — ID be a full subcategory, such that(C’) C '. Then the restrictiort/[c: C' — D’ has a left-
adjoint.

Proof: Let us denote the left-adjoint 6’ — C by ® . Then for eachld’ € |D’| andc’ € |C'|, we have the
following natural isomorphismsd’(d’,c/ U) ~ D(d’,c U) ~ C(d'F,c) ~C'(d' FR,C).

Theorem 14: If Ois liberal on signature morphismg, and (®,a,p) are liberal, then any extra theory
morphismé: (%,E) — (¥',E’) is liberal. Moreover, the fre¢Z’,E’)-model over a giveriZ, E)-modelM
can be obtained & (M?)/E'.

Proof: This is obtained by applying Lemma 13 @t the composite of the two right-adjoint functors
Mop'(') P2 Mop(z'®) =% Mop(z)

and for the full subcategory BD(Z,E) — MoD(Z) and the full reflective subcategory ' (Z',E’) —
MoD'(%'). The condition?t/(MoD'(Z',E")) € MoD(Z, E) holds by Proposition 11[1]



In the case of institution embeddings we can obtain anothiicient condition for the liberality of
extra theory morphisms without requiring any liberality fo

Theorem 15: If (®,a,B) is a strong liberal embedding] is liberal, and satisfies the following Satis-
faction Condition:

Bs(M) =z as(e) if MEgoe
forallM € [MoD(Z'®)| ande € Ser{Z'®), then each extra theory morphigm (Z,E) — (Z',E’) is liberal.

Proof: Following the second part of Proposition 11, the reductd{%’,E’) T, MoD(Z,E) can be
factored as

Y _ _
Moo/ (5/,E') ~% Mo/ (£, 045(E)*) =2 Mob(s, E)

The first reduct has a left-adjoint becauises liberal, and the second has as left-adjoint the resiriotf
Bse to MOD(Z,E). This works well because M € [MoD(Z, E)|, thenBs4(M) =5 056(€).

Corollary 16: If (®,a,p) is a persistent strong embedding adids liberal, then any extra theory mor-
phism is liberal.

Proof: Notice that the Satisfaction Condition from the hypothesEdheorem 15 follows from the
Satisfaction Condition for persistent institution mogrhs.

3.3 Theory Co-limits

Co-limits of theories are the main technical tool for evéigamodule expressions in the OBJ-Clear tradi-
tion. In the case of multi-paradigm languages one has todenextra theory morphisms for computing
such co-limits.

In this section we study co-limits of extra theory morphisiikse co-limit of a diagram of extra theory
morphisms is computed in a pre-defined fixed institution incwlall institutions underlying the nodes
of the diagram are embedded. This is more general than justy dtoin the co-limit of the underlying
diagram of institution embeddingssince in applications the co-cones of the underlying tusitins are
not necessarily co-limit co-conés.

For the purpose of this section we fix a diagram of institutiwrphismg [ )ic3, wherelJ; = (Sign', Sef, MoD', =
) are institutions for € [J| and[, = (®Y,a",B"): O; — O; are institution morphisms for all € J(i, j).

Then we fix a co-cone of institution embeddin@®, o', "))y (Di)ics — Do.

Theorem 17: Given a diagran{Ti);c; of extra theory morphisms such that

- Ti = (Zi, ) is a theory inJ; for eachi € |J|, and
- Ty = ¢" is a extra theory morphisfiy — T; with (®“,a", ) the underlying institution morphism,
forallue J(i, j),

and assuming tha&igny hasJ-co-limits, then there exists a theofy = (2, Ep) in g and a co-cone
@i (Mica— To

with (®',a', B)igy the underlying co-cone of institution morphisms, such tfiaen any other institution
morphism (®°,a® B%): Do — 0; and any extra theory morphism co-cof®@)icy: (T)ics — T1 With

T1 = (Z1,E1) and((@', o', p); (@°,a°, B°))ic(5 being the underlying co-cone of institution morphisms for
(6")ic ), then there exists an unique extra theory morphlstilp — Ty such thath';5 = ' for all i € |J].

SThis co-limit exists by the fundamental results on existeafco-limits of institutions of [17].
6This is also the case @afeOBJ see the Appendix.



Oi (Zi,E)

(4°.0°) ¥

(®¥04,pY) O ————=[ o (20,Eq) o (21,E1)

¢J’
/@,GJ781) / 6

Uj (=),Ej)
Proof: The plan of this proof is as follows:

1. TheJ-diagram(T;)ic; of extra theory morphisms generated-diagram(T;)ic; of intra theory mor-
phisms in’, whereT; = ®*'(T;) for all i € |J|,

2. Let(Zo,Ep) be the co-limit of(Ti)ies with (Z; ol M Z0)ie)y the co-limit co-cone. The(IZ.
Zo®')ic|3 is the corresponding co-con& )icy — To.

3. Given(e')iem we prove the existence and uniqueness:ofp — Ty such thaty'; 5= 6' for alli € |J|.

1. Each arrowp": (Z;,Ei) — (X}, E;) in the original diagram of extra theory morphisms gets mdppe
the theory morphism

(0% (Z;2))": (P, 0y 5 ((ZT)(E))®) — (2P 0(’ S (ZT)ED))

(see the following diagram)

50 — .
2 T PP
¢! l(ﬂbu?q’u(zjzj))"r’i
Zjop! 2 DidpipY = 2 oI
U(Z;Lh)

In order to prove that¢; ®!(2;¢)))’ is indeed a theory morphism we have to show that

(0% (=0 (o ((ZT)(E)) € ol (%) (Ey))”

M semz) o Sed((9 ®*(2,7))))
(naturality of a') = Seh(Z;{); SeA((¢Y; DY (Z;7))) dh); 0('z "
(functoriality of Sert) = Seh(Z{'; (¢4 DY (Z; ZJ)) h; 0('z B
(adjoint pair @', @) = Se($pY; dY(Z;0)));a zan
(functoriality of Sert) = Sen(¢Y); Ser(d!(Z; ZJ))

z @i
(the syntax part of the co-cone property

of institution embeddings = Sen(¢Y); SeA(d!(Z;2)));a z cmcm'o‘jzﬁ
. ]
(naturality of a¥) = Sen(¢Y); ag, ;Serl(2;0);a

Then _ ZCDJ
(0% 04(22)) (el m((Z0)(E)) = m,(Seﬁ(Z 3) (0, (Seh(9")(E)))
(since ¢! is extra theory morphisin C (Seﬁ(z ZJ)(EJ))

z oY
Finally, the functoriality of mapping thé- dlagram of extra theory morphisms intoJadiagram of

(intra) theory morphisms can be easily checked by simplgrdia pasting.
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2. By Proposition _10¢i are extra theory morphisn¥s— To, for i € [J|. We still have to prove the co-cone
property, i.e., thab' = ¢“; ¢’ as extra theory morphisms, for eackt J(i, j). This meang®' = ¢; ¢’ d":
¢' o
(universal property of%;{') = %5 (¢")®
(co-cone property of§')ic ;) = il (94X (1)) Dl (9!) @
(universal property of5;i(') = ¢ Z;{/®%; (o)
o= 0Ny (gl
(universal property ofz;{!) = ¢ ¢
3. For each e |J], let (8')': %@ — Z;d° be the free extension & : 3 — 30!, The(8')_, form a

ielJ|

CO-cone over thé—diagramsignDO (Ti)ies (the proof is similar to the proof of part 2. of this theorem).

Because the forgetful functaigr?” : Th(°) — Sign® created co-limits (see [17]), we have that
(q)i);em is a co-limit forsigrPo(Ti)ieJ. Thed: Sy — =10 should be theiniquesignature morphism such
that(¢')’;0=(6") for alli € |J].

The rest of the proof shows thais indeed a extra theory morphisiBg, Eg) — (21, E1), which means
Ggl(é(Eo)) C E;.

By the fundamental result on theory co-limits (see [17]),kmew thatEy is the closure of

U @) (@l 5((E2)(E)))

i€lJ|

Therefore it is enough if we proved that for ak |J|,
08, (3((0l, (%) (E) € Ex
But = .
Ser‘)(ZiZ');O('zig;Ser‘?(q)')’;Serﬁ’(tS);O(g1 o -
(naturality of a') = Sen(Zil'); Sen((¢')'®");as,; Sed(d); af,
(universal property ofz;{' -
and functoriality of Sert) = Sen(¢'); 05 ; Ser‘_?(é); 0(21
(naturality of a') = Ser(¢'); Sen(dP');ay qo; af,
(functoriality of Ser) = Seh(e');a'zlq)o;agl |
Then the conclusion follows becaus%l(a'zlmo(e'(Ei))) C E; sincef': (Zi,E) — (Z1,E;) is a extra
theory morphism.[17]

Corollary 18: A diagram of extra theory morphisms has a co-limit whenelverdo-limit co-cone of the
underlying diagram of institution morphisms consists atitution embeddings| ]

Corollary 19: Consider a partially ordered seiNST,C) of institutions, where the ordering is given
by institution embeddings. (INST,C) has finite least upper bounds and the category of signatufres o
each institution iIINST has finite co-limits, then the categdfh(INST, C) of the extra theory morphisms
corresponding tdINST, C) has finite co-limits

This corollary applies to the case of t@afeOBJ cube presented in the Appendix.

"Using [27] terminology; this means it lifts them uniquely tayminology of [1].
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3.4 [Exactness

In this section we study the amalgamation property for ctest models within the general framework of
extra theory morphisms.
Consider the following pushout of extra theory morphismthasense of Section 3.3

ul CDUl,(Xlﬂ,Blﬂ
T —>¢ T1 0 —>( ) [y
q)uzl lq)l (¢,u27qu27Bu2)l l(ml’ql’ﬁl)
Ty —>¢2 To )} 4>(¢2,02,[32) Uo

where (by consistency with the notations of Theorem (&, a",B"): O — [ are the institution mor-
phisms underlyingp" and(®',a',8'): 0 — o are the institution embeddings underlyigg fori € 1,2.
Then, exactness for extra theory morphisms means that thesponding diagram of model reducts

—r¢u1
MoD(T) <—— MoD(Ty)

- [¢u2 T T— f¢1

MoD?(Ty) pvy Mon®(To)

is a pullback. Unfortunately, such a result is not possihl¢he general case even when the institution
embeddings involved have good properties. Very informétig is basically due to the possibility thag
and, share some semantic structure which does not exist in

Fortunately, some special cases of exactness for extraytnearphisms are enough to explain most
practical situations. An important special case is givetheypushout between an intra and an extra theory
morphism.

Theorem 20: Consider an institution embeddirig, a,B): 0 — O; and letp*?: T — T, be a intra theory

morphism in0, and¢“*: T — T; be a extra theory morphism witt®, a, B) the underlying institution

morphism. If(J; is (weakly) semi-exact an@td,a,p) is (weakly) additive and either of the following
holds:

- (®,0,p) is strong, or
- Ois (weakly) semi-exact ang is surjective on objects and full

then the corresponding diagram of model reducts

—f¢u1
MoD(T) <—— Mob}(Ty)

- f¢u2 T T - f¢1

MoD(T>) < MoDb!(Tp)
-lo

is a (weak) pullback.

Proof: Using similar notations to those of Theorem 17, by expligitathe model reduct functors (Propo-
sition 11), we get that the square of model reducts to be pr@weak) pullback can be decomposed into
the following tower consisting of 3 commutative squares.
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MoD(¢2)

MoD(Z,E) MoD(Z,Ep)
MoOD(5?) MOD(2,2)
MOD(ZPD, (57)(E)) <700 MOD(Z,80, (220) (E2)

Prs B,
Mob!(Z®, a54((20)(E MoD!(Z,®, a5 5((Z20) (E
(2. 055((20) (E))) =15y, MO0 (229025 (220) (E2)
MoDY((¢u) Mob'($?)
Mop*(Zy, Ey) oD MoD?(Zo, Eo)

The top square commutes by the naturality pthe middle one by the naturality @§fextended from
signatures to theories by using the Satisfaction Conditon the bottom one by the constructionTgfas
a theory pushout ial (Theorem 17).

Then the bottom square is a (weak) pullback becalisie (weakly) semi-exact. The middle square is
also a (weak) pullback becauge, a,3) is (weakly) additive (extended to theories by using thestattion
Condition). The top square collapsesdf,a, ) is strong and is (weak) pullback wheéris (weakly) semi-
exact andb is surjective on objects and full. The latter holds becabéeing surjective on objects and full
implies that the underlying square of signature morphisnisis a weak pushout (by routine manipulation
of the hypotheses) and this lifts to the corresponding tkeor

Finally, the big square is a (weak) pullback as a composi{evefik) pullback squaregz°]

An important open question of this research is finding otleéviant sufficient conditions for weak
exactness in the case of extra theory morphisms.

3.5 Inclusion systems

As mentioned above, inclusion systems where first introdibgg 15] for the institution-independent study
of structuring specifications. They provide the underlymgthematical concept for module imports,
which are the most fundamental structuring construct. is plaper we use theeak inclusion systems
of [6], which constitute a improvement of the original defiiom of inclusion systems of [15].

Definition 21: (I, E) is aweak inclusion systemfor a categoryC if I andE are two sub-categories
with |I| = |E£| = |C| such that

1. Iis a patrtial order, and

2. every arrowf in C can be factored uniquely ds= e;i with e € £ andi € I.

The arrows off are callednclusions and the arrows of are calledsurjections.. The domain (source)
of the inclusioni in the factorization off is called called thémage of f and denoted as Itf).

For the fundamental properties of weak inclusion systendgechniques to construct them consult [6].
We need the following technical definition:

Definition 22: Let C andC’ be two categories with weak inclusion syste@sZ) and(I’, E') respec-
tively. Then a functor: C — C' lifts inclusions uniquely iff for any inclusiont’: A’ — B in I’ with
B € |C|, there exists a unique inclusiore 7 such that U =1".

8Surjections of some weak inclusion systems need not nadgssasurjective in the ordinary sense.
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Theorem 23: Consider a category of institutions with a weak inclusiostegn(1'NST, £NST) sych that
each of institutions involvedl = (Sign, MoD, Sen|=) has a weak inclusion systefi”, £") for its cate-
gory of signatures. If

e @ preserves inclusions for eaf,a,B) € I'NST and
e ® preserves both inclusions and surjections and lifts in@hssuniquely for each®, a,B) € ENST,

then the corresponding category of extra theory morphisassam inclusion system whe¢e (X,E) —
(X E)is

- inclusioniff both the underlying institution morphisig®, a, ) : 0 — [’ and the signature morphism
¢: X — 2’ are inclusions,

- surjectioniff both the underlying institution morphisrt®,a,B): 0 — ' and the signature mor-
phism¢: £ — '@ are surjections, and @x (¢(E))* =E'.

Proof: Let us denote byITh the subcategory of inclusion extra theory morphisms andEgSV the
subcategory of surjection extra theory morphisms.

Consider two extra theory morphisms (Z,E) — (¥',E’) and¢: (¥',E’) — (Z",E”) with (®,a,pB): O—
[ and(®’',a’,p'): [ — 0" as underlying institution morphisms. If both of them arduis@ons inzTh,
then(®,a,B) and (', a’, ') are inclusions i'NST, hence their composition is an inclusionilST too.
Also, ¢;¢’® is an inclusion as a composite of two inclusiond ihwhere the latter is an inclusion because
@ preserves inclusions. A similar argument holds for comjoss of surjections; however in the case of
surjections we also have to check the closure conditions fidiliows by routine calculation.

Now, let¢: (Z,E) — (¥',E’) be an arbitrary extra theory morphism witt,a,p): 0 — I’ as its
underlying institution morphism. The®, a, ) factors uniquely as

.0,
(®.a,p s ¢

0 ) O
(¢e’ae7Be) A’Gi’ﬁi) ;x q)l
7" Zl

where (®°,a® %) € £NST and (@', o', B') € I'NST and ¢ factors uniquely through the weak inclusion
system(1”, £5). Since®® lifts inclusions uniquely there exists an unique inclusipn >’ — 3'®' such
that¢'®® = ¢1. We then defin&€” = oS, (¢%(E))®. Thereforep®: (%,E) — (2”,E") is a surjection extra
theory morphism and' : (2" E”) — (2',E’) is an inclusion extra theory morphism.

Finally, the uniqueness of this factorization follows steg®e from the uniqueness of the factorization
of the underlying institution morphism, then from the ureégess of the factorization through the inclusion
system ofl] (by using the preservation of inclusions by th®), then from the uniqueness of the lifting to
17", and finally from the closure condition on sentencis]

Z/CDi ot

Practical applications use mostly the following much siengorollary:

Corollary 24: Consider a partial ordered set of institutions and institumorphisms such that each of
institutions involved = (Sign,MoD, Senl=) has a weak inclusion systetd", E") for its category of
signatures withb preserving inclusions for each institution morphig# o, 3). Then the corresponding
category of extra theory morphisms has an inclusion systeered: (X, E) — (X' E’) is

- inclusioniff the signature morphisnp: £ — >'® is an inclusion in/",
- surjectioniff the underlying institution morphism is identity and & & surjection ing"

Proof: By considering the inclusion system of the partially ordeset of institutions with all institution
morphisms as inclusions and identities as surjectigss.
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4 Logical Semantics for Multi-Paradigm Languages

In this section we outline a general logical semantics foltinparadigm specification/programming lan-
guages; this semantics is based on the concept of extrg/thrawphism. We assume the following general
framework and principles:

1. There is a lattice (the partial order being denoted as C) of institution embeddings in which
all basic constructs/features of the language can be rigorously explained.

2. Each institution corresponds to a language paradigm, institution embeddings correspond-
ing to paradigm embeddings.

3. For a given language paradigm, the basic specifications are assimilated to the theories
generated in the corresponding institution.

This intimate relationship between the language and itdéudging logic” (in this case given by the lattice
of institution embeddings) was first conceptualized by Gogand Meseguer [22] under the name of
logical programming As mentioned in the Introduction, such logical languagefude most of the OBJ
family of languages. In the Appendix we illustrate our laisemantics with the example GafeOBJ
[14], a modern successor of OBJ.

4.1 Basic Specifications

At the level of basic specifications (the so-called “prognging in-the small”), we have two kinds of
semanticstight, andloose Given a basic specificatioh (regarded as a theory in an institutian, its
tight denotation is the initial model § of MoD(T), and itsloose denotationis given by all models in
MobD(T). The notation for the denotation of a specificatibiis [T]. To resume

[T] = Oy ifinitial semantics
~ | MoD(T) ifloose semantics

4.2 Structured Specifications

This is the level of the logical semantics where most of tlsellte on extra theory morphisms apply. We
extend the basic concepts of the OBJ structuring mechamismdgdule system) which are inherited from
earlier work on Clear [4] and further developed at the intthal level in [15] to the more refined situation
of lattice of institution embeddings.

The concept omodel expansiois dual to model reducts, and plays a crucial réle for degjrtime
denotations of structured specifications:

Definition 25: Given an extra theory morphisgn: T — T/, and a modeM of T, anexpansion ofM
along ¢ is a modelM’ of T’ satisfying the following properties:

e M'fy = M iff the expansion iprotecting,

e there is arinjective’ model homomorphisrnvi — M’[, iff the expansion iextending,
e there is an arbitrary model homomorphidm— M'[y iff the expansion isising, and
e M'is the free oveM with respect tah (see Definition 12) iff the expansion fie.

The general structuring mechanism is constitutednmgule expressionsvhich are iterations of sev-
eral basic structuring operations, such as imports, paesjénstantiation of parameters by views, trans-
lations, etc. In this section we discuss the most importaesoimports and parameterization.

9Under a suitable concept of “injectivity”.
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4.2.1 Imports

Module imports constitute the primitive concept underlysmy module interconnection systems, here is
it's mathematical definition:

Definition 26: A module import T < T’ is an inclusion extra theory morphisin— T’, where the insti-
tution O of T/ embeds the institutiofly of T (i.e., Ot C Oy in the fixed lattice of institutions)[2¢]

The (weak) inclusion system underlying this definition iattmtroduced by Corollary 24 for the current
lattice of institution embeddings.

By following the OBJ tradition, we can distinguish betweemasic kinds of importsprotecting,
extending andusing. At the level of the language, these should be treated jus¢msntic declarations
which determine the denotation of the importing module ftbmdenotation of the imported module.

Definition 27: Fix an importT <T'. Then[T'] =

e {M'|M'|=T' M protecting (and free ifT’ is initial) expansion of a modeM € [T]}, when the
importation mode iprotecting

e {(M'|M ET' M extending (and free ifT’ is initial) expansion of a modeM € [T]}, when the
importation mode igxtending and

e {M'| M ET’, (and free expansion ofamod® of T if T’ isinitial)}, when the importation
mode isusing

Multiple imports are handled by a lattice structure on is@uas (see [15, 6].

Definition 28: Given two module§ andT’, theirshared part T NT’ is thegreatest lower bounih the
lattice of imports<t and theirsum T + T’ is thelowest upper bound[2]

We can easily notice the that the institution of the sum usiftee paradigms of the institution of the
components:

Fact 29: Uyt = Uy Uy, i.e., the lowest upper bound oF and [y in the lattice of institution em-
beddings.[2°]

The following extends a basic result on multiple importsyirfi5] to the multi-paradigm case:

Corollary 30: LetT andT’ be two modules. Then we have the following pushout-pullbsgkare (in
Or U Oy)

g

T T+T

<| E

TAT ——T

whereT NT’ is the shared part (i.e., the intersection)lahndT’.
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4.2.2 Parameterization

Parameterized specification/programming is a very impofeature of all modern declarative languages.
The mathematical definition of parameterized modules isdbas the following concept anjection

Definition 31: Given a (weak) inclusion system, arection is the composite between an inclusion and
an isomorphism [31]

Definition 32: A parameterized specification (module) (X :: P) is aninjection P2 T. The institu-
tion of the parametdP is embedded in the institution of the bodiyi.e., Op C Liy).
A view is just an extra theory morphisnsz]

We distinguish two basic approaches on parameters: a ‘@hangl a “non-shared’ one. In the “non-
shared” approach, the multiple parameters are mutualfgidig(i.e., Im(X) NIm(X’) = 0 for X and X’
two different parameters) and they are also disjoint fropnrandule importslo < T (i.e., Im(X) NTy = 0).

In the “shared” approach this principle is relaxed to beirgjoiht outside common importge., Im(X) N
IM(X') = S,ax TaN I 1,ax T1 for X and X’ two different parameters and (X§) N To = 31, ax NTo for all
To<T. The “non-shared” approach has the potentiality of a mucherpowerful module system, while
the “shared” approach seems to be more convenient to imptembeCafeOBJ definition contains both
of them, for details on “non-shared” vs. “shared” paranmie&tion and for a more detailed presentation of
a module system based on this theory, see [14].

Definition 33: LetT(X :: P) be a parameterized module andP — P’ be a view. Then the instantiation
T(v) is given by the following pushout in the sense of Theorem 17

in the “non-shared” approach and by the following co-limithe sense of Theorem 17

PNT

L

P—T()

in the “shared” approach. In both cases the embeddinguitistitis (it LI Opr.

5 Conclusions and Future Research

We have defined a more general concept of theory morphism intagipeories across institution mor-
phisms. This generalizes the ordinary concept of theoryphiem which is confined to single institutions.
We have lifted the basic concepts related to theory morphisam the ordinary case to the “extra” case,
and we have investigated the basic properties of extrayhmorphisms. We have proved the following
results:

e Existence of model reducts for extra theory morphisms {edemt to a Satisfaction Condition for
extra theory morphisms),

17



We

Sufficient conditions for free constructions along extraaity morphisms,
Construction of theory co-limits,

Exactness (model amalgamation) properties, and

Inclusion systems for extra theory morphisms.

have also sketched a generic logical semantics for pattdigm languages which is based on extra

theory morphisms.

Future research directions include the full developmera géneral logical semantics based on extra

theory morphisms (including a corresponding “module atg8b and further investigations of sufficient
conditions for exactness properties.
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A CafeOBJ

As previously mentionedzafeOBJ [14], currently under development in Japris a modern successor

of the famous algebraic language OB&afeOBJ adds new basic paradigms such as behavioural concur-
rent specification [20] and rewriting logic [5]. The follomg table shows the correspondence between
specification/programming paradigms and institutionshay tappear in the actual design ©&feOBJ,

also pointing to some basic references.

ABBREVIATION | LOGIC SPECPGM PARADIGM BAsIC REF.
MSA many sorted algebraic specification | [16]
algebra
OSA order sorted algebraic specification | [16, 23, 18]
algebra with subtypes
HSA hidden sorted behavioural concurrent | [7]
algebra specification
HOSA hidden order sorted behavioural specification [?, 3]
algebra with subtypes
RWL rewriting logic rewriting logic [28]
specification
OSRWL order sorted rewriting logic
rewriting logic specification
with subtypes
HSRWL hidden sorted behavioural rewriting [12, 9]
rewriting logic logic specification
HOSRWL hidden order sorted behavioural rewriting
rewriting logic logic specification
with subtypes

An approximation
CafeOBJ cube:

of the lattice of the institution embedgsninvolved is given by the following

Other “dimensions” might be added to this cube, most notéfdyconstraint logic[7, 10] which give
elegant semantics to pre-defined data types and to libraries

All institution morphisms of the&CafeOBJ cube are strong, persistent, and additive embeddings. The
symmetry of theCafeOBJ cube means it is a lattice, therefore all basic hypothesttgedbgical semantics
of Section 4 are fulfiled. HOSRWL embeds all other instiius, hence it represents the flattening of the
cube; below we briefly present it. However, it is importanttmsider theCafeOBJ cube in its entirety
rather than HOSRWL alone since some subtle information errdationship between the component
features is lost in this flattening. Such flattening workslwely when all institution embeddings involved
have the components of the model translatigd}saé equivalence of categortésbut in the case of the

1%project supported on a large scale by the Japanese Govertimamgh its Information Promotion Agency.
1icalled just “institution embeddings” in [29].
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CafeOBJ cube this property does not hold along the RWL dimension isezaf forgetting the transitions
from the RWL models.

Hidden Order Sorted Rewriting Logic

We devote this appendix to the (rather informal) presemtati some detail of HOSRWL (first introduced
in [12] in the many sorted version) which embeds @dfeOBJ cube institutions. However, the deep
understanding of HOSRWL requires further reading on itsmtamponents ([28] for RWL and?[ 20]

for HSA) as well as their integration [12]. We assume familjawith basic many sorted algebra which
constitutes the underlying level of all algebraic specifwadevelopments (relevant background can be
found in [16, 24, 30]), but also with order sorted algebra, [PF.

Signatures

A hidden signatureis a tuple(H,V, <, ¥, %, 3°), where

(H,<) is a partially ordered set dfidden sorts
(V,<) is a partially ordered set afisible sorts
(H, <) and(V, <) are disjoint,
Wis an(V, <)-order-sorted (0.s., for short) signature,
Zisan(HUV,<)-o0.s. signature,
(S1) eaclo € Zyswithwe V* andseV lies in W,
e ¥ C 5 is a marked sub-signature béhavioural operationssuch that®>Nn¥ = 0, and
(S2) eaclo € Z,,s hasexactlyone element oH in w.

The operations iZ® have object-oriented meaning,c Z\?\,’S is method if sis hidden andttribute if sis
visible. Condition (S1) is a data encapsulation conditamd (S2) says that methods and attributes act on
(states of) single objects.

A hidden rewrite signature is given by(H,V, <,W,>,5° E) where(H,V, <,W¥, %, 7°) is a hidden o.s.
signature andt is a collection o-equations. Aidden sorted rewrite signature morphisme: (H,V, <
W T3P E) - (H,V/, <, W, 3, 5'b,E) is an o.s. signature morphis(il UV, <,3) — (H'UV', <,3)
such that

(M1) W) C ¥,

(M2) @H) C H" andg(z”) C 5'b,

(M3) if o € Z\’,BS and some sort i lies inH’, thena’ = @(o) for someo € =P,

(M4) if @(h) < @(h') for any hidden sorth,h' € H, thenh < i/, and

(M5) E' s @(E).

The first two conditions say that hidden sorted signaturepitiems preserve visibility and invisibility
for both sorts and operations, the tifdnd fourth conditions express the encapsulation of classes

subclasses (in the sense that no new methods or attributdseadefined on an imported class), while the
fifth expresses the encapsulation of structural axioms.

12wjithout (M3) the Satisfaction Condition fails, for more dis on the logical and computational relevance of (M3) §e [
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Sentences

Given a signatur¢H, <,% E), a sentence is either a (possibly conditiorejpation (moduloE) or else a
(possibly conditionalfransition (moduloE). Since equations are very traditional to algebraic speecifi
tion, we concentrate here on transitions. A conditionaigitton is written as

(VX) [t] = [T [ua] — [va]... [ — [wid

wheret,t’, u;,v; areZ-terms with variables and modulo the equations i (i.e., equivalence classes of
>-terms modulo the congruence determinedRyThe left-hand side df is the head of the transition and
the right-hand side is the condition of the transition.

Given a signature morphism: (H,V,<,W,3,5° E) — (H’,V/, <, W ¥, 5'b,E’) the translation of
sentences is defined by the translatioz éérms (modulcE) to ¥'-terms modulcE’ along@ by replacing
all symbols inZ-terms with the corresponding symbols &r Condition (M5) enforces the correctness of
this definition. For a full rigorous treatment of this isshe teader is advised to consult [7, 11].

Models

Given an algebraic theor®, E), arewrite model for (X, E) is given by the interpretation of the algebraic
theory intoCat. More concretely, a modéll interprets each sogtas a categorils, each subsort relation
s< s as sub-category relatidvis C My, and each operatiome %5 as a functooy : My, — Ms, whereM,,
stands foMg, x ... x Mg, forw=s; ...s,. Eachz-termt: w— sgets a functoty, : My — Ms by evaluating
it for each assignment of the variables occurring wmith arrows from the corresponding carriers\f
The satisfaction of an equatidn=t’ by M is given byty = t{,;** in particular all structural equations
should be satisfied byl. A model morphism is a family of functors indexed by the sedsxmuting with
the interpretations of the operationsan

This algebra “enriched” ovetat is a special case afategory-based equational logfsee [7, 8, 19])
when letting the categonk of models be the interpretations bfinto Cat as abovely described, the cate-
gory X of domains to be the category of many sorted sets, and thetfordunctor 1/: A — X forgetting
the interpretations of the operations and the compositewden the arrows, i.e., mapping each category
to its set of arrows. This enables the use of the machinergitefjory-based equational logic as a technical
aid to the model theory of RWL.

Hidden sorted modelsare just ordinary models (either algebras or rewrite mgdels

Satisfaction

Let (H,<,Z,E) be a hidden sorted signaturp] be a sentenc¥, andM be a model for this signature.
Satisfaction in RWL of ordinary equations was explainedhia paragraph on models, so we concentrate
on the satisfaction of transitions.

The satisfaction of a transitiofvX) [t] — [t'] if [u1] — [vi1]...[w] — [w] by M has a rather sophisti-
cated definition using the conceptsafbequalizerLet w be the string of sorts associated to the collection
of variablesX. Then

M = (VX)) [t] = [t]if [ua] — [va]... [u] — [vid

iff there exists a natural transformatidgy;ty = Ju;ty, wheredy: Subeq(Uiv,Vim)ic1..k) — My is the
subequalizer functor, i.e., the functor component of thal fibject in the category having paiBom(S) 5

Mw, (S Uim %, S Vim)ie1.k) as objects and functots such thaH; S = SandHa’ = a as arrows.
Finally, the satisfaction in HOSRWL Isehavioural (denoted by=); for details see [12, 9].

13This definition extends without difficulty to conditional emfions.
14we extend the equivalence class notation from terms tosesan the obvious way.
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