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Abstract

We introduce a semantic encoding of partial algebras as total algebras through a Horn axiomatization of the existence equality

relation interpreted as an algebraic operation. We show that this novel encoding enjoys several important properties that make

it a good tool for the execution of partial algebraic specifications through means specific to ordinary algebraic reasoning, such as

term rewriting.

Key words: Partial algebra; Encoding; Formal specifications

1. Introduction

Partial functions play an important role in computing
science; this is well know. In particular, the specification
power of operations that are partially defined makes par-
tial algebra as one of the important formalisms employed
by modern formal methods, a prominent example being
the recent algebraic specification language CASL [1]. How-
ever, the current mathematical culture, including school
mathematics that is responsible for the basic patterns of
our mathematical thinking, is strongly biased towards to-
tal functions. Reasons are manifold. First of all, algebraic
reasoning with total functions is much simpler. Then, the
semantics of partial functions is significantly more sophis-
ticated than that of ordinary total algebra. These above
two aspects are of course interdependent. Consequently,
mechanical algebraic reasoning with total functions is sup-
ported by a rather impressive variety of tools and execution
engines, most of them based upon the so-called term rewrit-
ing method, while partial algebra formalism lacks such kind
of computational infrastructure.

The above mentioned reasons have led to various efforts
to translate, or encode, partial algebra into logics with to-
tal functions with the benefit of doing things in the trans-
lation and exporting the results back to the original par-
tial algebra framework. Although such way of ‘doing logic
by translation’ has a long tradition starting perhaps with
the study of embeddings of classical into intuitionistic logic
[11], this has received a new life with the arrival of the so-
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called institution theory [7] with its array of model theory
oriented category theoretic concepts supporting the sys-
tematic studies of logic translations [13] at a higher mathe-
matical level. A characteristic aspect of the institution the-
oretic translations is that due to their semantic nature they
are rather fine grained, in the sense that they involve the
deepest aspects of the logical systems. The translations of
partial algebra into logics with total functions appear usu-
ally as ‘simple theoroidal comorphisms’ of [9]. One of the
most prominent such translation [12] encodes partial op-
erations as total operations but employs also relations for
expressing the domains of definition of the partial opera-
tions. Another important one [12,14] encodes the partial
operations as relation symbols. Both of them can be found
also in the recent monography [5].

Here we propose a novel translation that, unlike the pre-
vious ones, has a pure algebraic nature since it does em-
ploy only operation symbols, no relation symbols. Thus any
partial algebraic signature gets encoded as a set of condi-
tional equations for a total algebraic signature. We show
that the proposed translation enjoys some important prop-
erties, such as the so-called ‘satisfaction condition’ of insti-
tution comorphisms, and the so-called ’persistent liberality’
property. These properties together with the above men-
tioned pure algebraic feature of the translation lead to an
important proof theoretic consequence: a sound and com-
plete calculus for the Horn fragment of partial algebra can
be expressed as ordinary equational calculus with total op-
erations symbols. This provides a simple and efficient way
to execute Horn partial algebraic specifications by ordinary
term rewriting. Another plus of our proposed translation is
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that it yields a rather simple and intuitive representation
of partial algebras as total algebras.

Regarding the translation itself, it is inspired from the en-
coding of the conditions of the equations as Boolean terms
as done by the OBJ language [10] and its succesor CafeOBJ
[6]. This is based upon the encoding of the equality relation
= as a Boolean valued algebraic operation ==, CafeOBJ ex-
tending this also to the transition relation (for preordered
algebras) as ==> and to the behavioural equivalence relation
as =b=. Thus our proposed translation encodes the funda-
mental existence equality relation

e
= from partial algebra

as an algebraic operation, denoted e© , and provides a set
of Horn axioms for this operation.

Although our translation of partial algebras as total al-
gebras is based upon institution theoretic principles, and
can be presented as an institution comorphism, we keep our
presentation as elementary as possible by avoiding any di-
rect employment of institution theoretic notions. However
we assume some familiarity with the basic category theo-
retic notions of category, functor, and initial objects. We
also use the diagrammatic notation for the compositions
of functions and homomorphism, i.e. if f : A → B and
g : B → C then f ; g : A → C denotes the composition
between f and g.

2. Preliminaries

Now let us briefly review the basic notions and fix some
notations about total algebras and about partial alge-
bras,considered in their many sorted form.

Total algebra. (abbreviatted ALG)
An algebraic signature is pair (S, F ) consisting of a set of
sort symbols S and of a family F = {Fw→s | w ∈ S∗, s ∈ S}
of sets of function symbols indexed by strings of sort sym-
bols, called arities, (for the arguments) and sorts (for the
results). Algebras A for a signature (S, F ) interpret each
sort symbol s as a set As and each function symbol σ ∈
Fw→s as a function Aσ : Aw → As where by Aw we denote
the cartesian product As1

× · · · ×Asn
where w = s1 . . . sn.

An algebra homomorphism h : A → A′ is an indexed fam-
ily of functions {hs : As → A′

s}s∈S such that hs(Aσ(a)) =
A′

σ(hw(a)) for each σ ∈ Fw→s and each a ∈ Aw. 1 For any
signature (S, F ), the (S, F )-algebra homomorphisms com-
pose component-wise as functions, and this yields a cate-
gory denoted ALG(S, F ).

(S, F )-terms can be defined inductively as follows: for
any σ ∈ Fs1...sn→s, a structure of the form σ(t1, . . . , tn) is
a term of sort s whenever ti are terms of sorts si, respec-
tively. The sentences of the signature (S, F ) are the usual
first order sentences built from equational atoms of the form
t = t′, where t and t′ are terms of the same sort, by itera-
tive application of Boolean connectives (∧, ¬, ⇒, etc.) and

1 If w = s1 . . . sn and a = (a1, . . . , an) then by hw(a) we mean the

tuple (hs1
(a1), . . . , hsn

(an)).

quantifiers. For quantifiers this goes as follows: if X is a fi-
nite set of variables for (S, F ), each variable x ∈ X having
a designated sort sort(x) ∈ S, and if ρ is an (S, F ∪ X)-
sentence (where F ∪ X means (F ∪ X)w→s = Fw→s when
w is non-empty and (F ∪X)→s = F→s∪{x ∈ X | sort(x) =
s}), then (∀X)ρ and (∃X)ρ are both (S, F )-sentences. By
a conditional equation we mean any sentence of the form
(∀X)H ⇒ C where H is a finite conjunction of equational
atoms and C is a single equational atom. The satisfaction
of (S, F )-sentences by (S, F )-algebras, denoted by |=ALG

(S,F ),
is the usual Tarskian satisfaction defined inductively on the
structure of the sentences. In more detail this means
– A |= t = t′ if and only if At = At′ where for any term t

its evaluation in A, denoted by At, is defined inductively
by the formula Aσ(t1,...,tn) = Aσ(At1 , . . . , Atn

).
– A |= ρ1 ∧ ρ2 if and only if A |= ρ1 and A |= ρ2, A |= ¬ρ

if and only if A 6|= ρ, etc.
– A |= (∀X)ρ if and only if A′ |= ρ for any (S, F ∪ X)-

expansion A′ of A. An (S, F ∪X)-algebra A′ is an expan-

sion of A when A′
z = Az for each z ∈ S or z ∈ Fw→s.

Partial algebra. (abbreviated PA) Here we refer to the
partial algebra as used in CASL [12] which represents a
slight refinement of the concept of partial algebra as defined
in the standard textbook [3]. Another important partial
algebra work within computing science is [15].

A partial algebraic signature is a tuple (S, TF, PF ), where
both (S, TF ) and (S, PF ) are algebraic signatures such that
TFw→s and PFw→s are always disjoint. TF stands for ‘to-
tal’ function symbols while PF stands for ‘partial’ function
symbols. A partial algebra A is just like a total algebra but
interpreting the function symbols of PF as partial rather
than total functions. This means that for each σ ∈ PFw→s

there is a subset dom(Aσ) ⊆ Aw which is the domain of
definition of Aσ, i.e. the subset of the arguments for which
Aσ is defined. A partial algebra homomorphism h : A → B
is a family of (total) functions {hs : As → Bs}s∈S indexed
by the set of sorts S of the signature such that hw(Aσ(a)) =
Bσ(hs(a)) for each operation σ ∈ TFw→s∪PFw→s and each
string of arguments a ∈ Aw for which Aσ(a) is defined.
(In particular this also implies that hs(a) ∈ dom(Bσ).) For
any PA signature (S, TF, PF ), the homomorphisms of par-
tial (S, TF, PF )-algebras compose component-wise as func-
tions, and this yields a category denoted PA(S, TF, PF ).

The sentences for a signature are build like in the case
of the total algebras from existence equality atoms t

e
= t′

and by restricting the quantification only to sets of vari-
ables X that are total. The quasi-existence equations are
the sentences of the form (∀X)H ⇒ C where H is any fi-
nite conjunction of existence equality atoms and C is a sin-
gle existence equality atom. An existence equality t

e
= t′

holds in an algebra A when both terms are defined and are
equal. The terms are formed with function symbols from
TF and PF , and a term t is defined in an algebra A when
At can be evaluated, which means that assuming that t =
σ(t1, . . . , tn) then t is defined in A when each ti is defined
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in A and (At1 , . . . , Atn
) ∈ dom(Aσ); in this case At =

Aσ(At1 , . . . , Atn
). The satisfaction of existence equalities

by partial algebras can be extended to all sentences like for
total algebras; note the role played by the assumption that
the quantifications are total. The satisfaction relation(s)
thus obtained may be denoted by |=PA

(S,TF,PF ).

Presentations. Given a signature Σ (either of total or
partial algebras) a Σ-presentation consists of a set of Σ-
sentences E. Σ-presentations are denoted by (Σ, E).

3. The encoding

The proposed encoding has three components. First
there is the encoding of the PA signatures as ALG pre-
sentations. Then each PA sentence gets translated to an
ALG sentence of the corresponding translated signature.
Hence the translation of the sentences goes in the same
direction with the translation of the signatures. The trans-
lation of the models however goes opposite, any (total)
algebra of the encoding of a PA signature gets mapped to
a partial algebra of that signature. This may be the most
often used kind of logical encoding, known in institution
theory as ‘simple theoroidal comorphism’ [9], which is a
special kind of comorphism between institutions.

3.1. The encoding of the signatures

Each PA signature (S, TF, PF ) gets mapped to an ALG
presentation ((S ∪ {b}, TF ⊕ PF ),Γ(S,TF,PF )) where
– (TF ⊕ PF )w→s = TFw→s ∪ PFw→s when s 6= b,
– (TF ⊕ PF )ss→b = { e©s} for each s ∈ S, and
– (TF ⊕ PF )→b = {true}.
and Γ(S,TF,PF ) contains the following conditional equations:
1. (∀X)(X e©X = true) ⇒ (σ(X) e©σ(X) = true) for any

total operation symbols σ and X a string of variables
matching the arity of σ. 2

2. (∀X,Y )(X e©Y = true) ⇒ (X e©X = true).
3. (∀X,Y )(X e©Y = true) ⇒ (X = Y ).
4. (∀X)(σ(X) e©σ(X) = true) ⇒ (X e©X = true) for any

total or partial operation symbols.
The set Γ(S,TF,PF ) corresponds to characteristic properties

of the existence equality relation
e
= on terms. Thus the

equations 1. and 4. above correspond to the fact that a
term σ(t1, . . . , tn) is defined if and only if its immediate
sub-terms t1, . . . , tn are defined when σ is total and only
the implication from the left to the right holds when σ is
partial, whilst the equations 2. and 3. correspond to the
fact that t

e
= t′ implies both that t and t′ are defined and

that they are equal in the ordinary sense.

2 If X = {x1, . . . , xn} then X e©X denotes the finite conjunction

(x1 e©x1) ∧ · · · ∧ (xn e©xn).

3.2. The translation of the sentences

Given a PA signature (S, TF, PF ), the sentence transla-
tion α(S,TF,PF ) maps each (S, TF, PF )-sentence to a (S ∪
{b}, TF ⊕ PF )-sentence as follows:

– α(S,TF,PF )(t
e
= t′) = (t e© t′ = true) for any terms t and

t′ of the same sort.
– α(S,TF,PF ) commutes with all Boolean connectives, i.e.

α(S,TF,PF )(ρ1∧ρ2) = α(S,TF,PF )(ρ1)∧α(S,TF,PF )(ρ2), etc.
– α(S,TF,PF )((∀X)ρ) = (∀X)((X e©X) ⇒ α(S,TF∪X,PF )(ρ)).
When there is no confusion about the context signature
(S, TF, PF ) we may simply denote α(S,TF,PF ) by α.

3.3. The translation of the models

This can be defined as a functor β(S,TF,PF ) : ALG(S ∪
{b}, TF⊕PF,Γ(S,TF,PF )) → PA(S, TF, PF ) (often denoted
simply by β when there is no danger of confusion) as follows:
– For each (S ∪ {b}, TF ⊕ PF )-algebra A satisfying

Γ(S,TF,PF ),
· β(A)s = {a ∈ As | A e©

s
(a, a) = Atrue} for each sort

s ∈ S,
· β(A)σ(a) = Aσ(a) when A e©

s
(Aσ(a), Aσ(a)) = Atrue

for any operation symbol σ ∈ TFw→s ∪ PFw→s.
· β(A)σ(a) is undefined when A e©

s
(Aσ(a), Aσ(a)) 6=

Atrue for any operation symbol σ ∈ TFw→s ∪ PFw→s.
Note that if β(A)σ(a) is defined then β(A)σ(a) ∈ β(A).

– For each (S ∪ {b}, TF ⊕ PF )-algebra homomorphism
h : A → B we define the homomorphism of partial al-
gebras β(h) : β(A) → β(B) defined by β(h)(a) = h(a)
for each a ∈ β(A).

Proposition 3.1 For each (S∪{b}, TF ⊕PF )-algebra ho-

momorphism h : A → B, β(h) is indeed a homomorphism

of partial algebras β(A) → β(B).
Proof. We first need to show that for each a ∈ β(A) we
have that β(h)(a) ∈ β(B). Since β(h)(a) = h(a) we need to
have that B e© (h(a), h(a)) = Btrue. But B e© (h(a), h(a)) =
h(A e© (a, a)) because h is an (S ∪ {b}, TF ⊕ PF )-algebra
homomorphism. By the assumption that a ∈ β(A) we
have that A e© (a, a) = Atrue. By the homomorphism
condition on h we have that h(Atrue) = Btrue, hence
B e© (h(a), h(a)) = Btrue and thus β(h)(a) ∈ β(B).

Now let us show that for any σ ∈ PFw→s and any a ∈
β(A)w if β(A)σ(a) is defined then β(B)σ(h(a)) is defined
too. We have the following:
B e© (Bσ(h(a)), Bσ(h(a))) =

= h(A e© (Aσ(a), Aσ(a))) (h is homomorphism)

= h(Atrue) (β(A)σ(a) is defined)

= Btrue (h is homomorphism).

Hence, by definition, β(B)σ(h(a)) is defined.
Finally, that h(β(A)σ(a)) = β(B)σ(h(a)), when

β(A)σ(a) defined, holds as follows:
h(β(A)σ(a)) =
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= h(Aσ(a)) (definition of β(A)σ(a))

= Bσ(h(a)) (h is homomorphism)

= β(B)σ(h(a)) (definition of β(B)σ(h(a))).
2

The functoriality of β, i.e. that it preserves the composi-
tion of homomorphisms and the identities follows very eas-
ily from the fact that as functions there is no difference
between h and β(h) when neglecting that the domain and
the codomain of β(h) are subsets of the domain and the
codomain, respectively, of h.

3.4. The satisfaction condition

The property that we are going to prove below is rather
crucial for the good functioning of logical encodings in gen-
eral, and of our encoding in particular. In institution the-
ory this property is known as the ‘satisfaction condition’
[9,5] or as the ‘representation condition’ [12] for institution
comorphisms.
Theorem 3.2 (Satisfaction condition) For each PA
signature (S, TF, PF ), for each (S ∪ {b}, TF ⊕PF )-algebra
A satisfying Γ, and for each (S, TF, PF )-sentence ρ

A |= α(ρ) if and only if β(A) |= ρ.

Proof. We do the proof by induction on the structure of
ρ. For the base case let us consider an existence equation
t

e
= t′.
Let as us assume that β(A) |= t

e
= t′. This implies that

both β(A)t and β(A)t′ are defined and β(A)t = β(A)t′ . We
use the following lemma:
Lemma 3.3 For any (S, TF, PF )-term t, if β(A)t is defined

then β(A)t = At.

By Lemma 3.3 it follows that β(A)t = At which implies
thatAt ∈ β(A) which means A e© (At, At) = Atrue. From
Lemma 3.3 we also have β(A)t′ = At′ , hence At = At′ .
Thus A e© (At, At′) = A e© (At, At) = Atrue which means
A |= (t e© t′ = true).

For showing the implication in the other direction, we
assume A |= (t e© t′ = true). This means A e© (At, At′) =
Atrue. Because A |= (∀X,Y )(X e©Y = true) ⇒
(X e©X = true) it follows that A e© (At, At) = Atrue. We
use the following lemma:
Lemma 3.4 For any (S, TF, PF )-term t, if A e© (At, At) =
Atrue then β(A)t is defined.

Hence β(A)t is defined and by Lemma 3.3 we have that
β(A)t = At. From A e© (At, At′) = Atrue, because A |=
(∀X,Y )(X e©Y = true) ⇒ (X = Y ) it follows that
At = At′ , and because A e© (At, At) = Atrue we obtain
that A e© (At′ , At′) = Atrue which by Lemmas 3.3 and 3.4
implies that β(A)t′ is defined and β(A)t′ = At′ . We thus
have that both β(A)t and β(A)t′ are defined and that
β(A)t = At = At′ = β(A)t′ , which means precisely that

β(A) |= t
e
= t′.

There are two step cases in our structural induction. One
of them is when ρ is the negation or the conjunction of sen-

tences for which the conclusion holds. This case is imme-
diate since α preserves the Boolean connectives. The other
case, when ρ = (∀X)ρ′ is more interesting. In this case we
assume that the conclusion holds for ρ′ and have to prove
that

A |= (∀X)((X e©X = true) ⇒ α(ρ′)) if and only if
β(A) |= (∀X)ρ′.
For the implication from the left to the right, let B′ be

any (S, TF ∪X,PF )-expansion of β(A). This yields an ex-
pansion A′ of A defined by A′

x = B′
x for each x ∈ X. Note

that A′ |= (X e©X = true), which implies A′ |= α(ρ′).
Since β(A′) = B′, by the induction hypothesis we obtain
that B′ |= ρ′.

For the implication from the right to the left, let A′ be
any expansion of A such that A′ |= (X e©X = true). Then
β(A′) is an (S, TF ∪X,PF )-expansion of β(A), and by the
induction hypothesis it follows that A′ |= α(ρ′).

We still owe the proofs of Lemmas 3.3 and 3.4:
Proof of Lemma 3.3: By induction on the structure of

t. Consider t = σ(t1, . . . , tn). If β(A)σ(t1,...,tn) is defined
then for each i ∈ {1, . . . , n} we have that β(A)ti

is de-
fined and that β(A)ti

∈ dom(β(A)σ). By the induction
hypothesis β(A)ti

defined implies β(A)ti
= Ati

. More-
over A e© (Ati

, Ati
) = Atrue since Ati

∈ β(A). Because
each β(A)ti

= Ati
∈ dom(β(A)σ), by the definition of

dom(β(A)σ) we have that A e© (Aσ(Ati
), Aσ(Ati

)) = Atrue.
Hence β(A)σ(β(A)t1 , . . . , β(A)tn

) = β(A)σ(At1 , . . . , Atn
) =

Aσ(At1 , . . . , Atn
) = Aσ(t1,...,tn).

Proof of Lemma 3.4: By induction on the structure of t.
Consider t = σ(t1, . . . , tn). If A e© (Aσ(t1,...,tn), Aσ(t1,...,tn)) =
Atrue then A e© (Aσ(At1 , . . . , Atn

), Aσ(At1 , . . . , Atn
)) =

Atrue. Since A |= (∀X)(σ(X) e©σ(X) = true) ⇒
(X e©X = true) it follows that A e© (Ati

, Ati
) = Atrue for

each i ∈ {1, . . . , n}. By the induction hypothesis this means
that β(Ati

) is defined for each i ∈ {1, . . . , n}. By Lemma
3.3 it follows that β(Ati

) = Ati
and by the definition

of dom(β(A)σ) that (β(A)t1 , . . . , β(A)tn
) ∈ dom(β(A)σ).

Hence β(A)σ(t1,...,tn) is defined. 2

The following is an immediate important consequence of
the satisfaction condition Thm. 3.2.
Corollary 3.5 For any PA signature (S, TF, PF ) and any

sets of (S, TF, PF )-sentences E and E′ we have that

E |=PA

(S,TF,PF ) E′ implies α(E)∪Γ(S,TF,PF ) |=
ALG

(S∪{b},TF⊕PF )

α(E′).

4. Persistent liberality

In this section we show another important property
for our encoding, namely that the model translations
admit free constructions such that their universal homo-
morphisms are identities. We also develop a couple of
important implications of this property.
Theorem 4.1 For each PA signature (S, TF, PF ) and

for each partial (S, TF, PF )-algebra A there exists a

((S ∪ {b}, TF ⊕ PF ),Γ(S,TF,PF ))-algebra γ(A) such that
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β(γ(A)) = A and such that for each ((S ∪ {b}, TF ⊕
PF ),Γ(S,TF,PF ))-algebra M and each partial algebra homo-

morphism h : A → β(M) there exists an unique ALG
homomorphism h′ : γ(A) → M such that h = β(h′).

A
= //

h

""E

E

E

E

E

E

E

E

E

E

E

E

β(γ(A))

β(h′)

��

γ(A)

h′

��
β(M) M

Proof. Let (S, TF + PF + A) denote the ALG signature
with sorts S and such that
– (TF +PF +A)w→s = TFw→s∪PFw→s if w is non-empty,

and
– (TF + PF + A)→s = TF→s ∪ PF→s ∪ As.
Let A∗ denote the initial (S, TF+PF+A)-algebra satisfying
the equations

Aσ(a) = σ(a)

for each operation symbol σ ∈ TFw→s ∪ PFw→s and for
each a ∈ dom(Aσ) (when σ is total operation symbol we
consider dom(Aσ) = Aw). Note that A∗ can be regarded
as consisting of the elements of A plus all terms t formed
with non-constant operation symbols from TF and PF and
with the expressions σ(a) for a 6∈ dom(Aσ) in the role of
constants. Then γ(A) is defined as follows:
– γ(A)s = A∗

s for each s ∈ S,
– γ(A)b = {1} ∪ {(s, a, a′) | a, a′ ∈ A∗

s, a 6= a′ or a 6∈
As},

– γ(A)σ = A∗
σ for any operation symbol σ from TF or PF ,

– γ(A)true = 1, and

– γ(A) e©
s
(a, a′) =







1 when a = a′ ∈ As,

(s, a, a′) otherwise.

It is easy to check that γ(A) |= Γ(S,TF,PF ) and that
β(γ(A)) = A.

For showing the universal property of γ(A) we con-
sider any (total) (S ∪ {b}, TF ⊕ PF )-algebra M satis-
fying Γ(S,TF,PF ) and any partial algebra homomorphism
h : A → β(M). This yields a (S, TF + PF + A)-algebra
Mh as follows:
– (Mh)s = Ms for each sort symbol s ∈ S and (Mh)σ =

Mσ for each operation symbol σ in TF or in PF , and
– (Mh)a = h(a) for each a ∈ A.
Let us show that Mh |= Aσ(a) = σ(a) for each a ∈
dom(Aσ). We have that (Mh)Aσ(a) = h(Aσ(a)). Since
a ∈ dom(Aσ) and because h : A → β(M) is a homomor-
phism of partial algebras we have that h(a) ∈ dom(β(M)σ)
and that h(Aσ(a)) = β(M)σ(h(a)). By the definition of
β, h(a) ∈ dom(β(M)σ) also implies that β(M)σ(h(a)) =
Mσ(h(a)). Since (Mh)σ(a) = (Mh)σ((Mh)a) = Mσ(h(a))
we obtain that (Mh)Aσ(a) = (Mh)σ(a).

Because A∗ is the initial (S, TF + PF + A)-algebra sat-
isfying the above mentioned equations, let h∗ : A∗ → Mh

be the unique (S, TF + PF + A)-algebra homomorphism.
We define the homomorphism h′ : γ(A) → M as follows:
– h′(a) = h∗(a) for any a ∈ A∗,

– h′(1) = Mtrue,
– h′(s, a, a′) = Mtrue when a, a′ ∈ As and h(a) = h(a′),

and
– h′(s, a, a′) = M e© (h∗(a), h∗(a′)) when h∗(a) 6= h∗(a′) or

a 6∈ As or a′ 6∈ As.
In order to complete the proof of our theorem we have to
prove three things about h′: that h′ is a homomorphism,
that β(h′) = h, and the uniqueness property of h′.

For the homomorphism property of h′ we check three
different cases as follows:
– For any operation symbol σ from TF or PF and for

any list a of appropriate arguments for γ(A)σ we have
the following sequence of equalities: h′(γ(A)σ(a)) =
h′(A∗

σ(a)) = h∗(A∗
σ(a)) = (Mh)σ(h∗(a)) = Mσ(h∗(a)) =

Mσ(h′(a)).
– h′(γ(A)true) = h′(1) = Mtrue.
– For any two elements a, a′ ∈ γ(A)s for s ∈ S, we have

that h′(γ(A) e© (a, a′)) =

=







h′(1) when a = a′ ∈ As,

h′(s, a, a′) otherwise.

=







Mtrue when a, a′ ∈ As, h(a) = h(a′)

M e© (h∗(a), h∗(a′)) otherwise.

But when a, a′ ∈ As and h(a) = h(a′) we have that
M e© (h∗(a), h∗(a′)) = M e© (h(a), h(a′)) = M e© (h(a), h(a)) =
Mtrue, the last equality holding by the virtue of the
fact that h(a) ∈ β(M). Hence h′(γ(A) e© (a, a′)) =
M e© (h∗(a), h∗(a′)) which means h′(γ(A) e© (a, a′)) =
M e© (h′(a), h′(a′)).
In order to prove that β(h′) = h we consider any element

a ∈ A. Then we have the following sequence of equalities:
β(h′)(a) = h′(a) = h∗(a) = h(a). Hence β(h′) = h.

For showing the uniqueness of h′ first let us note that
since β(h′) = h then for each a ∈ A we need to have that
h′(a) = h(a). Then by the homomorphism property of h′

for the operation symbols in TF or PF , by the initiality
property of A∗ we obtain that h′(a) = h∗(a) for each a ∈
A∗. Moreover h′(1) = Mtrue by the homomorphism prop-
erty of h′ for true and h′(s, a, a′) = h′(γ(A) e© (a, a′)) =
M e© (h′(a), h′(a′)) = M e© (h∗(a), h∗(a′)) by the homomor-
phism property of h′ for e©s. 2

Besides its technical consequences that we will develop
below, the proof of Thm. 4.1 gives a very intuitive repre-
sentation of partial algebras as total algebras. For example,
if we consider the rational numbers Q with division / as
a partial operation, then its ‘totalization’ Q∗ as given by
Thm. 4.1 adds to the set of the rational numbers, as ‘error’
values, the normal forms of all terms (in the sense of evalu-
ating parts of them as much as possible) formed by the ra-
tional numbers and operation symbols, such that 2/0+1/2,
etc.

The following important consequence of Thm 4.1, a well
known result in the theory of partial algebras establishing
the initial semantics for Horn partial algebra specifications,
has been developed at the very general level of abstract
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institutions in [12] (see also [5]). Here we develop it within
the framework of our encoding.
Corollary 4.2 Each set of quasi-existence equations ad-

mits an initial partial algebra.

Proof. Let E be any set of quasi-existence equations for a
PA signature (S, TF, PF ). Note that the translation by α of
any quasi-existence equation (∀X)H ⇒ C is semantically
equivalent (i.e. satisfied by the same class of algebras) to
the conditional equation (∀X)(X e©X)∧α(H) ⇒ α(C). By
using the very classical result of existence of initial (total)
algebras for any set of conditional equations, let M be the
initial algebra of α(E)∪ Γ(S,TF,PF ). We show that β(M) is
the initial partial algebra satisfying E.

That β(M) |= E follows from M |= α(E) by the satis-
faction condition Thm. 3.2. For any partial algebra B sat-
isfying E, because β(γ(B)) = B, by the satisfaction condi-
tion Thm. 3.2 we obtain that γ(B) |= α(E). Since γ(B) |=
Γ(S,TF,PF ) too, let h : M → γ(B) be the unique ALG ho-
momorphism. Then β(h) : β(M) → B is a partial algebra
homomorphism.

For showing that β(h) is unique let us consider
g : β(M) → B. Since β(M) = β(γ(β(M))) and since
β(M) |= E, by the satisfaction condition Thm. 3.2
we have that γ(β(M)) |= α(E), hence γ(β(M)) |=
α(E) ∪ Γ(S,TF,PF ); let pM : M → γ(β(M)) be the unique
ALG homomorphism given by the initiality property of
M . Let qM : γ(β(M)) → M be the unique ALG ho-
momorphism such that β(qM ) = 1β(M). By the initiality
of M we have that pM ; qM = 1M , hence by applying β
to this equality we obtain that β(pM ) = 1β(M). Since
pM ; γ(g) : M → γ(B), by the initiality of M we have that
h = pM ; γ(g). This implies β(h) = β(pM );β(γ(g)) = g. 2

The following extension Cor. 3.5 is another important
consequence of Thm. 4.1.
Corollary 4.3 For any PA signature (S, TF, PF ) and any

sets E and E′ of (S, TF, PF )-sentences,

E |=PA

(S,TF,PF ) E′ if and only if

α(E) ∪ Γ(S,TF,PF ) |=
ALG

(S∪{b},TF⊕PF ) α(E′).
Proof. The implication from the left to the right is
given by Cor. 3.5. For showing the implication from the
right to the left we consider any partial (S, TF, PF )-
algebra A such that A |=PA

(S,TF,PF ) E. By Thm. 4.1 we

have that β(γ(A)) = A, hence by the satisfaction con-
dition Thm. 3.2 we obtain that γ(A) |=ALG

(S∪{b},TF⊕PF )

α(E). Since γ(A) |=ALG

(S∪{b},TF⊕PF ) Γ(S,TF,PF ) we have

that γ(A) |=ALG

(S∪{b},TF⊕PF ) α(E) ∪ Γ(S,TF,PF ). By the

hypothesis this implies γ(A) |=ALG

(S∪{b},TF⊕PF ) α(E′). By
the satisfaction condition Thm. 3.2 again we obtain A =
β(γ(A)) |=PA

(S,TF,PF ) E′. 2

5. Proof theoretic consequences

The model theoretic properties of our encoding result
into an important proof theoretic consequence: the ordi-

nary Birkhoff proof calculus for total algebras may serve
as a sound and complete proof calculus for quasi-existence
equations in partial algebra. Since the former calculus can
be mechanized rather efficiently by term rewriting, our re-
sults provide a framework for the execution of partial al-
gebra specifications with quasi-existence equations by or-
dinary term rewriting.

For any ALG signature (S, F ) by ⊢e
(S,F ) let us denote

the proof theoretic consequence relation generated by the
ordinary Birkhoff proof calculus for conditional equations.
Corollary 5.1 For any PA signature (S, TF, PF ), any set

E of quasi-existence equations, and any ρ quasi-existence

equation, both for (S, TF, PF ),
E |=PA

(S,TF,PF ) ρ if and only if

α(E) ∪ Γ(S,TF,PF ) ⊢
e
(S∪{b},TF⊕PF ) α(ρ).

Proof. By Cor. 4.3 we have that E |=PA

(S,TF,PF ) ρ if and

only if α(E) ∪ Γ(S,TF,PF ) |=ALG

(S∪{b},TF⊕PF ) α(ρ). The re-
mark made within the proof of Cor. 4.2, namely that each
quasi-existence equation gets mapped by α to a sentence
equivalent to a conditional equation, allows the applica-
tion of the Birkhoff completeness result [2,8,4,5] giving
that α(E) ∪ Γ(S,TF,PF ) |=

ALG

(S∪{b},TF⊕PF ) α(ρ) if and only if

α(E) ∪ Γ(S,TF,PF ) ⊢
e
(S∪{b},TF⊕PF ) α(ρ). 2

Example 5.2 Let us illustrate how Cor. 5.1 may be used
to perfom quasi-existence equational calculus by means
of ordinary equational calculus. For this we consider the
soundness of the following PA congruence rule:

{t
e
= t′, σ(t)

e
= σ(t)} ⊢ {σ(t)

e
= σ(t′)}

for t and t′ terms and σ partial operation symbol (for sim-
plicity σ is assumed to take only one argument). By Cor. 5.1
we have to show that

Γ∪{t e© t′ = true, σ(t) e©σ(t) = true} ⊢e σ(t) e©σ(t′) = true

By Substitutivity we have that Γ ⊢e (t e© t′ = true) ⇒
(t = t′), by Modus Ponens and Symmetry this implies Γ ∪
{t e© t′ = true} ⊢e (t = t′) ⊢e (t′ = t). From this, by term
rewriting we obtain σ(t) e©σ(t′) = σ(t) e©σ(t) = true.

6. Conclusions

We have defined a semantic translation of partial alge-
bra to total algebra by encoding the existence equality re-
lation as an algebraic operation and by providing an ax-
iomatization for the latter. We have proved a satisfaction
condition and a persistent free construction property for
this translation and developed a couple of consequences of
these results, the most important being a sound and com-
plete equational calculus with total operations for quasi-
existence equations. Another significant consequence is a
rather intuitive representation of partial algebras as total
algebras.
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[6] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report:

The Language, Proof Techniques, and Methodologies for Object-

Oriented Algebraic Specification, volume 6 of AMAST Series in

Computing. World Scientific, 1998.
[7] Joseph Goguen and Rod Burstall. Institutions: Abstract model

theory for specification and programming. Journal of the

Association for Computing Machinery, 39(1):95–146, 1992.
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