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Răzvan Diaconescu

Institute of Mathematics “Simion Stoilow” of the Romanian Academy

Abstract

We develop a general study of the algebraic specification practice, originating from the OBJ tradition, which encodes
atomic sentences in logical specification languages as Boolean terms. This practice originally motivated by opera-
tional aspects, but also leading to significant increase in expressivity power, has recently become important within the
context of some formal verification methodologies mainly because it allows the use of simple equational reasoning
for frameworks based on logics that do not have an equational nature. Our development includes a generic rigorous
definition of the logics underlying the above mentioned practice, based on the novel concept of ‘quasi-Boolean encod-
ing’, a general result on existence of initial semantics for these logics, and presents a general method for employing
Birkhoff calculus of conditional equations as a sound calculus for these logics. The high level of generality of our
study means that the concepts are introduced and the results are obtained at the level of abstract institutions (in the
sense of Goguen and Burstall [12]) and are therefore applicable to a multitude of logical systems and environments.
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1. Introduction

Equational logic, usually in many sorted form, is traditionally the logical basis for classical algebraic specification.
The sentences, or the axioms, of algebraic specifications are often considered as conditional equations, i.e. first order
sentences of the form (∀X)H⇒ (t = t′) where t = t′ is an equation, i.e. a formal equality of terms for a corresponding
signature, and H is a finite conjunction of equations (t1 = t′1)∧. . .∧(tn = t′n). For example this is assumed to be the case
for the famous pioneering language OBJ [17] or for the functional part of many of the modern algebraic specification
languages, such as CafeOBJ [6, 8]. Conditional equational logics have a series of properties that make them rather
suitable for formal specification. In particular they admit initial semantics, which is the main way to specify data types.
They also have good computational properties, that provide a simple and smooth integration between the specification
and the formal verification aspects of formal methods based upon conditional equational logic. Moreover, equational
logic in conditional form provides the framework for the so-called ‘equational logic programming’ [14, 15], a rather
powerful logic programming paradigm.

In some cases, including OBJ and CafeOBJ, the execution mechanism of conditional equational logic specifi-
cations by rewriting requires the following trick: the conditions H of the equations are considered as Boolean terms
by encoding the syntactic equality = as an algebraic operation == of the Boolean sort, each equation ti = t′i as a
Boolean term ti == t′i , and the syntactic conjunction ∧ as an algebraic operation on the Boolean sort. Moreover, within
the multi-logic framework of CafeOBJ such encodings are also used for preordered algebra (the syntactic transition
relation => gets encoded as the operation ==>) and hidden algebra for behavioural specification (the syntactic be-
havioural equivalence gets encoded as the operation =b=); details of these can be found in [6]. Thus, whilst in the
OBJ case this practice of conditions as Boolean terms represents an encoding of equational logic into equational logic,
in CafeOBJ it also means encodings of other logics into equational logic.

We argue that such encodings, far from being mere operational aspects, in reality lead to other underlying logics
than the assumed ones for the respective languages. For example, the common specification practice in OBJ or in
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Preprint submitted to Journal of Logic and Algebraic Programming October 4, 2009



CafeOBJ uses as conditions Boolean expressions that are more complex than finite conjunctions, corresponding to
universally quantified first-order sentences that in general may not admit initial semantics. Although the specification
power of conditions as Boolean terms is significantly increased by the use of Boolean operators other than conjunction,
this poses several problems, such as whether initial semantics is still possible in such an extended context.

This paper develops an analysis of the logic of conditional sentences with conditions as Boolean terms in a generic
way at the level of abstract institutions. The theory of institutions of [12] is a category theoretic form of abstract model
theory that has gained a foundational status in algebraic specification theory especially in connection with the general
developments of concepts and results that are independent of the details of particular logical systems. Such abstract
generic developments have proved to be extremely useful for dealing with the population explosion in specification
logics that took place over the last two decades. This is the case of our study too. Our general results can be instantiated
to a multitude of base logics, captured as institutions, including those of OBJ and of CafeOBJ mentioned above. We
illustrate this by developing explicitly applications to a series of concrete logics, including (many sorted) total algebra,
predicate logic, preordered algebra, partial algebra, and hidden algebra.

The contents of our work is as follows:

1. We start with a rigorous definition of a generic logic of conditional sentences with conditions as Boolean terms,
which is organized as an institution. This is based upon the definition of an encoding of abstract institutions
into equational logic. An important aspect of these definitions is that instead of the conventional two-valued
Boolean type they use a loose variant of Booleans that in a minimal format can be specified only as a sort
with a truth constant. This corrects the current practice of using the standard tight semantics Boolean type for
encoding conditions, which may have some serious gaps including inconsistency in the sense of impossibility
to have models for the specification.

2. Next we develop a general result about the existence of initial semantics for the institutions of conditional
sentences introduced in the previous section of the paper. This is obtained via abstract quasi-varieties of models.

3. The final technical part of this paper develops proof theoretic consequences of the encoding of abstract institu-
tions into equational logic that underlies our work. We show how the standard Birkhoff calculus for conditional
equations can be used as a sound calculus for a multitude of institutions of conditional sentences including
logics that do not have an equational nature. For example, while this covers the current OBJ and CafeOBJ
formal verification practice based upon equational reasoning, in the CafeOBJ case even within the context of
non-equational logics, it can also be applied to many other situations, for example to partial algebra specifica-
tions.

One of the specific aspects of the encoding of institutions into equational logic studied here is the treatment of the
Boolean connectors as algebraic operations. This allows the usage of conditions that correspond to Boolean expres-
sions much beyond simple conjunctions of atoms, with all their specification power benefits, and yet admitting initial
semantics and the use of the ordinary conditional equational proof calculus as a sound proof system, situations not
enjoyed by the conventional (unencoded) treatment of the Boolean connectors.

The encoding of equations as Boolean terms via the encoding of the syntactic equality = as a Boolean valued op-
eration == plays a central role in the recent so-called OTS/CafeOBJ verification method [10, 24]. The work reported
in this paper may provide the necessary foundations for at least some aspects of the above mentioned verification
method.

2. Preliminaries

In this section we introduce some institution theory concepts and present a series of examples of institutions that
will be used to illustrate instances of the general developments of our paper.

Category theory.. We assume the reader is familiar with basic notions and standard notations from category theory;
e.g., see [19] for an introduction to this subject. Here we recall very briefly some of them. By way of notation, |C|
denotes the class of objects of a categoryC,C(A, B) the set of arrows with domain A and codomain B, and composition
is denoted by “;” and in diagrammatic order. The category of sets (as objects) and functions (as arrows) is denoted by
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Set, and Cat is the category of all categories.1 The opposite of a category C (obtained by reversing the arrows of C)
is denoted Cop. For the purpose of our work let us relax the concept of natural transformation as follows.

Definition 2.1 (Quasi-natural transformations). Given functors F,G : C → D a quasi-natural transformation
γ : F ⇒ G consists of families of arrows {γΣ : F(Σ) → G(Σ) | Σ ∈ |C|} and {γϕ | ϕ ∈ C} such that for each
arrow ϕ : Σ→ Σ′ in C we have that γϕ : F(ϕ); γΣ′ → γΣ; G(ϕ).

Quasi-natural transformations are like the well established 2-categorical concept of lax natural transformation minus
some compositionality conditions on γϕ. Although all quasi-natural transformations in our examples are in fact
lax natural transformations, we prefer to work with the former concept because it is technically enough and in the
applications it has the advantage of having to check less conditions.

Institutions. Institutions have been defined by Goguen and Burstall in [2], the journal seminal paper [12] being printed
after a delay of many years. Below we recall the concept of institution which formalises the intuitive notion of logical
system, including syntax, semantics, and the satisfaction between them.

Definition 2.2 (Institutions). An institution I = (SigI,SenI,ModI, |=I) consists of

1. a category SigI, whose objects are called signatures,
2. a functor SenI : SigI → Set, giving for each signature a set whose elements are called sentences over that

signature,
3. a functor ModI : (SigI)op → CAT giving for each signature Σ a category whose objects are called Σ-models,

and whose arrows are called Σ-(model) homomorphisms, and
4. a relation |=I

Σ
⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SigI|, called Σ-satisfaction,

such that for each morphism ϕ : Σ→ Σ′ in SigI, the satisfaction condition

M′ |=I
Σ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M′) |=I

Σ
ρ

holds for each M′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

We may denote the reduct functor ModI(ϕ) by ¹ϕ and the sentence translation SenI(ϕ) by ϕ(−). When M = M′¹ϕ
we say that M is a ϕ-reduct of M′, and that M′ is a ϕ-expansion of M. When there is no danger of ambiguity, we may
skip the superscripts from the notations of the entities of the institution; for example SigI may be simply denoted Sig.
Also, when the signature is clear we may omit it as subscript of the satisfaction relation |=.
General assumption: We assume that all our abstract institutions are such that satisfaction is invariant under model
isomorphism, i.e. if Σ-models M, M′ are isomorphic, then M |=Σ ρ if and only if M′ |=Σ ρ for all Σ-sentences ρ. This
very basic assumption holds virtually for all concrete institutions of interest, including those discussed in our current
paper.

Notation 2.1. For E and E′ sets of Σ-sentences in an arbitrary institution by E |=Σ E′ we denote that for all Σ-models
M, if M |=Σ E then M |=Σ E′.

There are myriads examples of institutions from logic or computing science (see [4] for some of these). The
examples presented below will be used as concrete benchmarks for our general results.

Example 2.1 (Total algebra). This institution is denoted ALG. Its signatures are called algebraic signatures, which
are pairs (S , F) consisting of a set of sort symbols S and of a family F = {Fw→s | w ∈ S ∗, s ∈ S } of sets of function
symbols indexed by strings of sort symbols, called arities, (for the arguments) and sorts (for the results). Signature
morphisms map the two components in a compatible way. This means that a signature morphism ϕ : (S , F)→ (S ′, F′)
consists of

1Strictly speaking, this is only a ‘quasi-category’ living in a higher set-theoretic universe.
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– a function ϕst : S → S ′,

– a family of functions ϕop = {ϕop
w→s : Fw→s → F′

ϕst(w)→ϕst(s) | w ∈ S ∗, s ∈ S }.
Given a signature (S , F), the models A of (S , F) are called (S , F)-algebras and they interpret each sort symbol s as a
set As and each function symbol σ ∈ Fw→s as a function Aσ : Aw → As where by Aw we denote the cartesian product
As1×. . .×Asn where w = s1 . . . sn. An algebra homomorphism h : A→ A′ is an indexed family of functions (hs : As →
A′s)s∈S such that hs(Aσ(a)) = A′σ(hw(a)) for each σ ∈ Fw→s and each a ∈ Aw.2 For any signature (S , F), the (S , F)-
algebra homomorphisms compose component-wise as functions, and this yields the category ModALG(S , F). For any
signature morphism ϕ : (S , F)→ (S ′, F′) and any (S ′, F′)-algebra A′, the ϕ-reduct A′¹ϕ is defined by (A′¹ϕ)s = A′

ϕst(s)
for each sort symbol s ∈ S , and (A′¹ϕ)σ = A′ϕop(σ) for each operation symbol σ in F.

(S , F)-terms can be defined inductively as follows: for any σ ∈ Fs1...sn→s, a structure of the form σ(t1, . . . , tn)
is a term of sort s whenever ti are terms of sorts si, respectively. The set of the (S , F)-terms of sort s is denoted
by (T(S ,F))s. Each signature morphism ϕ : (S , F) → (S ′, F′) induces a canonical translation Tϕ : T(S ,F) → T(S ′,F′)
defined by Tϕ(σ(t1, . . . , tn)) = ϕop(Tϕ(t1), . . . , Tϕ(tn)). The sentences of the signature (S , F) are the usual first order
sentences built from equational atoms of the form t = t′, where t and t′ are terms of the same sort, by iterative
application of Boolean connectives (∧, ¬,⇒, etc.) and quantifiers. For quantifiers this goes formally as follows. For
any signature (S , F), a variable for (S , F) is a triple (x, s, (S , F)) where x is the name of the variable, s its sort, and
(S , F) its signature. Any set X of variables for (S , F) such that any two different variables have different names can be
added as new constants to (S , F); the extended signature ths obtained is denoted (S , F ∪ X) and is formally defined by
(F∪X)w→s = Fw→s when w is not empty, and (F∪X)→s = F→s∪{(x, s, (S , F)) | (x, s, (S , F)) ∈ X}. If ρ is any (S , F∪X)-
sentence for a finite set X of variables for (S , F), then (∀X)ρ and (∃X)ρ are both (S , F)-sentences. By a conditional
equation we mean any sentence of the form (∀X)H ⇒ C where H is a finite conjunction of equational atoms and
C is a single equational atom. Sentence translations along signature morphisms extend the translations Tϕ of terms
to sentences; they just rename the sorts and the function symbols according to the respective signature morphisms.
The satisfaction of (S , F)-sentences by (S , F)-algebras is the usual Tarskian satisfaction defined inductively on the
structure of the sentences. In more detail this means

– A |= t = t′ if and only if At = At′ where for any term t its evaluation in A, denoted by At, is defined inductively
by the formula Aσ(t1,...,tn) = Aσ(At1 , . . . , Atn ).

– A |= ρ1 ∧ ρ2 if and only if A |= ρ1 and A |= ρ2, A |= ¬ρ if and only if A 6|= ρ, etc.

– A |= (∀X)ρ if and only if A′ |= ρ for any (S , F ∪ X)-expansion A′ of A.

Example 2.2 (Predicate logic). This institution is denoted PDL. It signatures are triples (S ,C, P) where S is a set
of sort symbols, C = (Cs)s∈S is a S -indexed family of sets of constant symbols, and P = (Pw)w∈S ∗ is an S ∗-indexed
family of predicate or relation symbols. Signature morphisms map the three components of signatures in a compatible
way, similar to the signature morphisms of ALG. (S ,C, P)-models M interpret any sort symbol s ∈ S as a set Ms,
any constant symbol σ ∈ Cs as an element Mσ ∈ Ms, and any predicate symbol π ∈ Pw as a relation Mπ ⊆ Mw.
(S ,C, P)-model homomorphisms h : M → N are similar to algebra homomorphims, preserving the interpretations
of the constants, i.e. hs(Mσ) = Nσ for any σ ∈ Cs, and of the predicates, i.e. hw(Mπ) ⊆ Nπ for any π ∈ Pw.
Reducts along signature morphisms are defined like in ALG. The sentences, and their translations along signature
morphisms are defined also like in ALG, with the difference that the atoms of PDL consist of expressions of the form
π(σ1, . . . , σn) for π ∈ Pw and σ1, . . . , σn string of constants matching w. Then M |=PDL π(σ1, . . . , σn) if and only if
(Mσ1 , . . . ,Mσn ) ∈ Mπ. This satisfaction relation can be extended to full first order sentences formed from the atoms
of PDL as in the case of ALG.

Example 2.3 (Preordered algebra). This institution, denoted POA, represents a dilluted form of rewriting logic [21]
in that it considers only unlabelled transitions. It is directly realized as a paradigm for specifying transitions by the
language CafeOBJ [6].

2If w = s1 . . . sn and a = (a1, . . . , an) then by hw(a) we mean the tuple (hs1 (a1), . . . , hsn (an)).
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POA has the same signatures as ALG, but the models M of a signature (S , F), called preordered algebras, interpret
any sort symbol s ∈ S as a preorder relation (Ms,≤s) and the operation symbols as monotonic functions with respect
to these preorders. Sentences, satisfaction, model reducts and sentence translations along signature morphisms are
defined like in ALG with the following difference: the atoms are transitions of the form t ≤ t′, with t and t′ terms of
the same sort, and M |=POA t ≤ t′ if and only if Mt ≤ Mt′ for any preordered algebra M of the respective signature.

Example 2.4 (Partial algebra). This institution is denoted PA. Here we refer to the partial algebra as used in CASL
[22] which represents a slight refinement of the concept of partial algebra as defined in the standard textbook [1].

A partial algebraic signature is a tuple (S ,TF, PF), where both (S ,TF) and (S , PF) are algebraic signatures such
that TFw→s and PFw→s are always disjoint. TF stands for ‘total’ function symbols while PF stands for ‘partial’ function
symbols. A partial algebra A is just like a total algebra but interpreting the function symbols of PF as partial rather
than total functions. This means that for each σ ∈ PFw→s there is a subset dom(Aσ) ⊆ Aw which is the domain
of definition of Aσ, i.e. the subset of the arguments for which Aσ is defined. A partial algebra homomorphism
h : A → B is a family of (total) functions {hs : As → Bs}s∈S indexed by the set of sorts S of the signature such that
hw(Aσ(a)) = Bσ(hs(a)) for each operation σ ∈ TFw→s∪PFw→s and each string of arguments a ∈ Aw for which Aσ(a) is
defined. (In particular this also implies that hs(a) ∈ dom(Bσ).) For any PA signature (S ,TF, PF), the homomorphisms
of partial (S ,TF, PF)-algebras compose component-wise as functions, and this yields the category ModPA(S ,TF, PF).

The sentences for a signature (S ,TF, PF) are built like in the case of the total algebras from existence equality
atoms t e

= t′ and by restricting the quantification only to sets X of total variables, i.e. variables that are added as new
constants to TF. An existence equality t e

= t′ holds in an algebra A when both terms are defined and are equal. The
terms are formed with function symbols from TF and PF, and a term t is defined in an algebra A when At can be
evaluated, which means that by assuming that t = σ(t1, . . . , tn) then t is defined in A when each ti is defined in A and
(At1 , . . . , Atn ) ∈ dom(Aσ); in this case At = Aσ(At1 , . . . , Atn ). The satisfaction of existence equalities by partial algebras
is extended to all sentences like in ALG; note the role played by the assumption that the quantifications are total.

Example 2.5 (Hidden algebra). Hidden algebra has been introduced in [11, 13] as an algebraic formalism underly-
ing the behavioural specification paradigm and further developed by works such as [7, 18, 25]. In an essential form
it can be presented as the following institution, denoted HA. The signatures of HA are triples (H,V, F) where V and
H are sets of visible and hidden sort symbols, respectively, with H ∩ V = ∅, and (H ∪ V, F) is an ALG signature.
Signature morphisms ϕ : (H,V, F) → (H′,V ′, F′) are ALG signature morphisms such that ϕ(H) ⊆ H′, ϕ(V) ⊆ V ′

and such that the following encapsulation condition holds: for each operation symbol σ′ of F′ such that its arity
contains a hidden sort of ϕ(H), there exists an operation symbol σ of F such that ϕ(σ) = σ′. The (H,V, F)-models,
called (H,V, F)-algebras, are exactly the (H ∪ V, F)-algebras. A hidden congruence on a given (H,V, F)-algebra is a
many-sorted congruence which is the equality on the visible sorts. A crucial result in the theory of hidden algebras
establishes the existence of the largest hidden congruence on a given algebra A (see [25], for example); this is called
the behavioural equivalence of A and may be denoted by ∼A. A homomorphism of hidden algebras is a homomor-
phism of ordinary algebras which in addition preserves the behavioural equivalence relations. The sentences in HA
are defined like those in ALG with the difference that the atoms are behavioural equalities of the form t ∼ t′, with
t and t′ terms of the same sort. An (H ∪ V, F)-algebra satisfies t ∼ t′ when At ∼A At′ . The encapsulation condition
for signature morphisms plays a crucial role for proving the satisfaction condition of HA; this connection between its
pragmatic object-oriented meaning and its logical significance and has been discovered in [11].

Actual instances of results in this paper often consider institutions having only atoms as sentences.

Notation 2.2 (Atomic sub-institutions). For each institution I presented in the examples above, let A(I) denote the
‘sub-institution’ of I which has only the atoms of I as sentences.

The following property, needed by our work, plays a crucial role for the semantics studies of formal specifications
and comes up in very many works in the area, a few early examples being [9, 20, 26, 27]. It is a necessary condition
in many model theoretic results using institutions (see [4]), thus being one of the most desirable properties for an
institution. It is also not to be confused with a much harder property in conventional first order model theory which
refers to amalgamation along elementary extension of models within the same signature.
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Definition 2.3 (Model amalgamation). An institution has model amalagamation when for each pushout in the cate-
gory of it signatures, as in the diagram below,

Σ
ϕ1 //

ϕ2
²²

Σ1

θ1²²
Σ2

θ2

// Σ′

for each Σ1-model M1 and a Σ2-model M2 such that M1¹ϕ1 = M2¹ϕ2 , there exists an unique Σ′-model M′ such that
M′¹θ1 = M1 and M′¹θ2 = M2.

A relaxed variant of this property is obtained by dropping off the uniqueness requirement on M′; this is called
weak model amalgamation.

Most of the institutions formalizing conventional or non-conventional logics have model amalgamation, including
all the examples presented above. An easy proof of model amalgamation in first order logic, which can be easily
replicated for the examples presented above in this section, can be found in [4].

3. Quasi-Boolean Encodings

In this section we describe a kind of encodings of abstract institutions to the institution ALG of total algebra that
capture the phenomenon of conditions as Boolean terms at a general institution-independent level. This concept is
illustrated with several examples based upon the actual institutions presented in the previous section. Next we show
that on top of such an encoding, in the presence of a rather technical condition easily satisfied by examples, we can
define an institution of conditional sentences with conditions in the form of Boolean terms. Actual logical systems
underlying the practice of conditions as Boolean terms in OBJ or in CafeOBJ appear as instances of this general
construction.

3.1. Quasi-Boolean encodings: definition and examples
Definition 3.1 (Quasi-Boolean encoding). Let I = (Sig,Sen,Mod, |=) be any institution. A quasi-Boolean encoding
of I consists of the following data:

1. a functor Φ : Sig→ SigALG such that

– for each signature Σ in I, Φ(Σ) has a distinguished sort BΣ and a distinguished constant trueΣ of sort BΣ,
and

– for each signature morphism ϕ in I, Φ(ϕ) preserves B and true,

2. a natural transformation α : Sen⇒ (TΦ(−))B (i.e. a mapping of sentences to terms of sorts B), and
3. a quasi-natural transformation γ : Mod⇒ Φ; ModALG,

such that the following Encoding Condition holds:

M |=IΣ ρ if and only if γΣ(M) |=ALG
Φ(Σ) (αΣ(ρ) = true)

for each signature Σ ∈ |Sig|, each Σ-model M, and each Σ-sentence ρ.

In the applications the base institution I from Def. 3.1 is often an ‘atomic institution’, i.e. an institution whose
sentences are atoms. This is also the case in the following examples. For the following series of examples of quasi-
Boolean encodings we give only the construction of the encoding, and invite the reader to check the detailed technical
conditions by [her/him]self.

Example 3.1 (Equational logic). This is a quasi-Boolean encoding of A(ALG) which underlies the practice of con-
ditions as Boolean terms in OBJ and the equational logic part of CafeOBJ, the operations =©s below corresponding
to the operations ==s in OBJ/CafeOBJ. A key aspect of this encoding is that the semantic equalities a =© b for which
a , b are not collapsed to a value representing ‘false’.
For each algebraic signature (S , F), Φ(S , F) = (S ] {B}, F∗) where
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– F∗w→s = Fw→s when s , B,

– F∗ss→B = {=©s}, F∗→B = {true}, and

– F∗w→B = ∅ otherwise.

For each (S , F)-algebra A, γ(S ,F)(A) expands A as follows:

– γ(A)B = {1} ∪ {(s, a, b) | s ∈ S , a , b ∈ As} and

– γ(A)true = 1 and γ(A) =©s
(a, b) =

{
1 when a = b
(s, a, b) when a , b.

For each (S , F)-homomorphism h : A→ B, γ(S ,F)(h) expands h as follows:

– γ(h)B(x) =

{
1 when x = 1 or x = (s, a, b) and h(a) = h(b)
(s, h(a), h(b)) when x = (s, a, b) and h(a) , h(b).

For each morphism of signatures ϕ : (S , F) → (S ′, F′) and each (S ′, F′)-algebra A′, the algebra homomorphism
(γϕ)A′ : γ(S ,F)(A′¹ϕ)→ γ(S ′,F′)(A′)¹Φ(ϕ) is identity on the sorts s , B and maps 1 to 1 and each (s, a, b) to (ϕ(s), a, b).
For all terms t1 and t2 of sort s,

– α(S ,F)(t1 = t2) = (t1 =©st2).

Example 3.2 (Predicate logic). This quasi-Boolean encoding of A(PDL), i.e. the atomic part of PDL, has been first
defined in [3].
For each PDL signature (S ,C, P), Φ(S ,C, P) = (S ] {B},C⊕P) where

– (C⊕P)→s = C→s when s , B,

– (C⊕P)w→B = { π© | π ∈ Pw}, when w is non-empty,

– (C⊕P)→B = {true}, and

– (C⊕P)w→s = ∅ when w is non-empty and s , B.

For each (S ,C, P)-model M, γ(S ,C,P)(M) expands M as follows:

– γ(M)B = {1} ∪ {(π, a1, . . . , an) | π ∈ Ps1...,sn , (a1, . . . , an) < As1...sn \ Mπ}, and

– γ(M)true = 1 and γ(M) π© (a1, . . . , an) =

{
1 when (a1, . . . , an) ∈ Mπ

(π, a1, . . . , an) when (a1, . . . , an) < Mπ

For each (S ,C, P)-homomorphism h : M → N, γ(S ,C,P)(h) expands h as follows:

– γ(h)B(x) =


1 when x = 1 or

x = (π, a1, . . . , an) and (h(a1), . . . , h(an)) ∈ Nπ

(π, h(a1), . . . , h(an)) when x = (π, a1, . . . , an) and (h(a1), . . . , h(an)) < Nπ

For each morphism of signatures ϕ : (S ,C, P) → (S ′,C′, P′) and each (S ′,C′, P′)-model M′, the model homo-
morphism (γϕ)M′ : γ(S ,C,P)(M′¹ϕ) → γ(S ′,C′,P′)(M′)¹Φ(ϕ) is identity on the sorts s , B and maps 1 to 1 and each
(π, a1, . . . , an) to (ϕ(π), a1, . . . , an).
For any relation symbol π and any terms t1, . . . , tn of appropriate sorts,

– α(S ,C,P)(π(t1, . . . , tn)) = π© (t1, . . . , tn).
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Example 3.3 (Preordered algebra). This quasi-Boolean encoding of A(POA), i.e. the atomic part of POA, underlies
the implementation of the preordered algebra specification paradigm in CafeOBJ. The CafeOBJ operations ==>
correspond to the operations⇒© below.
For each algebraic signature (S , F), Φ(S , F) = (S ] {B}, F∗) where

– F∗w→s = Fw→s when s , B,

– F∗ss→B = {⇒©s}, F∗→B = {true}, and

– F∗w→B = ∅ otherwise.

For each (S , F)-algebra A, γ(S ,F)(A) first forgets the preorder relations of A and then expands the resulting (S , F)-
algebra as follows:

– γ(A)B = {1} ∪ {(s, a, b) | s ∈ S , a � b ∈ As}, and

– γ(A)true = 1 and γ(A)⇒©s
(a, b) =

{
1 when a ≤ b
(s, a, b) when a � b.

For each (S , F)-homomorphism h : A→ B, γ(S ,F)(h) expands h as follows:

– γ(h)B(x) =

{
1 when x = 1 or x = (s, a, b) and h(a) ≤ h(b)
(s, h(a), h(b)) when x = (s, a, b) and h(a) � h(b).

For each morphism ϕ of POA signatures, γϕ is defined like in Ex. 3.1.
For all terms t1 and t2 of sort s,

– α(S ,F)(t1 ⇒ t2) = (t1⇒©st2).

Example 3.4 (Partial algebra). This quasi-Boolean encoding of A(PA), i.e. the atomic part of PA, has been defined
in [5]. A key aspect of this encoding is that the syntactic existence equality relation e

= is represented as an algebraic
operation e© , the ‘undefined’ expressions are not collapsed to one single ‘undefined’ value, and the semantic equalities
a e© b for which a and b are not equal or one of them is an ‘undefined’ element are not collapsed to a value representing
‘false’.
For each PA signature (S ,TF, PF), Φ(S ,TF, PF) = (S ] {B},TF⊕PF) where

– (TF⊕PF)w→s = TFw→s ∪ PFw→s when s , B,

– (TF⊕PF)ss→B = { e©s}, (TF⊕PF)→B = {true}, and

– (TF⊕PF)w→B = ∅ otherwise.

For each (S ,TF, PF)-algebra A, γ(S ,TF,PF)(A) is defined as follows:

1. Let (S ,TF+PF+A) be the algebraic signature which adds each element of As as a new constant of sort s to the
signature that puts together the total and the partial operation symbols of (S ,TF, PF).

2. Let A∗ be the initial (S ,TF+PF+A)-algebra satisfying all equations

σ(a1, . . . , an) = Aσ(a1, . . . , an)

for all (a1, . . . , an) ∈ dom(Aσ).
3. Then γ(S ,TF,PF)(A) is defined as follows:

– γ(A)s = A∗s for each s ∈ S ,

– γ(A)B = {1} ∪ {(s, a, a′) | a, a′ ∈ A∗s, a , a′ or a < As},
– γ(A)σ = A∗σ for any operation symbol σ from TF or PF,

– γ(A)true = 1, and
8



– γ(A) e©s
(a, a′) =

{
1 when a = a′ ∈ As,
(s, a, a′) otherwise.

For each (S ,TF, PF)-homomorphism h : A→ B, γ(S ,TF,PF)(h) is defined as follows:

– The (S ,TF+PF+B)-algebra B∗ can be regarded as a (S ,TF+PF+A)-algebra B∗h by letting (B∗h)a = h(a) for each
element a of A. Because h is a homomorphism of partial algebras it is easy to show that B∗h, satisfies the
equations defining A∗. Hence let h∗ be the unique homomorphism A∗ → B∗h.

– Then γ(h) is defined as follows:

– γ(h)s = h∗s for each s ∈ S , and

– γ(h)B(x) =

{
1 when x = 1 or x = (s, a, b) and a, b ∈ As and h(a) = h(b)
(s, h∗(a), h∗(b)) when x = (s, a, b) and h(a) , h(b) or a < As.

For each morphism of signatures ϕ : (S ,TF, PF) → (S ′,TF′, PF′) and each (S ′,TF′, PF′)-algebra A′, the homo-
morphism (γϕ)A′ : γ(S ,TF,PF)(A′¹ϕ) → γ(S ′,TF′,PF′)(A′)¹Φ(ϕ) is defined as follows. Let ϕ∗ : (S ,TF + PF + A¹ϕ) →
(S ′,TF′ + PF′ + A′) be the morphism of ALG signatures that is determined canonically by ϕ. Note that the set of
equations defining A′∗ contains the translations by ϕ∗ of the equations defining A¹∗ϕ. Then (γϕ)A′ is the expansion of
the unique homomorphism (A′¹ϕ)∗ → A′∗¹ϕ∗ that maps 1 to 1 and each (s, a, a′) to (ϕ(s), a, a′).
For all (S ,T F+PF)-terms t1 and t2 of sort s,

– α(S ,TF,PF)(t1
e
= t2) = (t1 e©st2).

Example 3.5 (Hidden algebra). This quasi-Boolean encoding of A(HA), i.e. the atomic part of HA, underlies the
implementation of the behavioural specification paradigm in CafeOBJ. The CafeOBJ operations =b= correspond to
the operations ∼© below.
For each HA signature (H,V, F), Φ(H,V, F) = (H ∪ V ] {B}, F∗) where

– F∗w→s = Fw→s when s , B,

– F∗ss→B = { ∼©s}, F∗→B = {true}, and

– F∗w→B = ∅ otherwise.

For each (H,V, F)-algebra A, γ(H,V,F)(A) expands A as follows:

– γ(A)B = {1} ∪ {(s, a, b) | s ∈ S , a /A b ∈ As}, and

– γ(A)true = 1 and γ(A) ∼©s
(a, b) =

{
1 when a ∼A b
(s, a, b) when a /A b.

For each homomorphism of (H,V, F)-algebras h : A→ B, γ(H,V,F)(h) expands h as follows:

– γ(h)B(x) =

{
1 when x = 1 or x = (s, a, b) and h(a) ∼B h(b)
(s, h(a), h(b)) when x = (s, a, b) and h(a) /B h(b).

For each morphism ϕ of HA signatures, γϕ is defined like in Ex. 3.1.
For all terms t1 and t2 of sort s,

– α(S ,F)(t1 ∼ t2) = (t1 ∼©st2).

Example 3.6 (Adding Boolean logical connectives as algebraic operations). All examples above can be developed
further by coding the Boolean logical connectives as operations on the sort B. Let us present in detail this idea only
for equational logic (Ex. 3.1), since the other examples presented above in this section can be upgraded similarly.
Our upgrading of Ex. 3.1 starts by including all Boolean operations to F∗ as follows:
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– F∗→B = {true, false}, F∗B→B = { ¬© } and F∗BB→B = { ∧© , ∨© }.
For any (S , F)-algebra A, the algebra γ(S ,F)(A) gets upgraded to the expansion of A such that (γ(A)B, ∧© , ∨© , ¬© , true, false)
is the Boolean algebra freely generated by the set {(s, a, b) | s ∈ S , a , b ∈ As}.
For each (S , F)-homomorphism h : A → B, the homomorphism γ(S ,F)(h) expands h such that γ(h)B is the unique al-
gebra homomorphism (γ(A)B, ∧© , ∨© , ¬© , true, false) → (γ(B)B, ∧© , ∨© , ¬© , true, false) extending the function

that maps (s, a, b) to
{

1 when h(a) = h(b)
(s, h(a), h(b)) when h(a) , h(b).

For each morphism of signatures ϕ : (S , F) → (S ′, F′) and each (S ′, F′)-algebra A′, the homomorphism (γϕ)A′ is
identity on the sorts s , B and ((γϕ)A′)B is the unique Boolean algebra homomorphism that maps each (s, a, b) to
(ϕ(s), a, b).

An important aspect of this logical semantics of the Boolean connectives, which constitutes one of the main
motivation for our study, is that it is different from the standard one since equivalence relationships such as

A |= ¬ρ if and only if γ(A) |= ¬©α(ρ), or

A |= ρ1 ∨ ρ2 if and only if γ(A) |= α(ρ1)∨©α(ρ2)

do not hold in general. This is due to the fact that the Boolean algebras (γ(A)B, ∧© , ∨© , ¬© , true, false) in gen-
eral consist of more that two values. If one attempts to fix this by defining γ(A)B to consist of two values only by
collapsing all values (s, a, b) for a , b to false, then it is not possible anymore to have γ defined on non-injective
homomorphisms. In order to see this, it is enough to consider a , b ∈ A and h : A → B such that h(a) = h(b). Thus
A =© (a, b) = Afalse. Since h is homomorphism, on the one hand h(A =© (a, b)) = B =© (h(a), h(b)) = Btrue, and on the
other hand h(Afalse) = Bfalse, hence Btrue = Bfalse. However, as we will see below in the paper, the fact that γ(S ,F)
as a functor is defined also on all homomorphisms plays a crucial role for initial semantics. In fact it is exactly the
difference between this semantics of the Boolean connectives as algebraic operations and the standard semantics the
Boolean logical connectives that is responsible for the possibility of initial semantics for sentences conditioned by any
Boolean expression formed over atoms.

3.2. Institutions with quasi-Boolean conditioned sentences

On top of a quasi-Boolean encoding of an institution I we define an extension of I in which the sentences are
conditioned by quasi-Boolean terms (i.e. terms of sort B) and are universally quantified. We define this extension
at the fully general level of abstract quasi-Boolean encodings. Particular concrete examples include the institutions
underlying the practice of conditions as Boolean terms in OBJ and in the various specification logics of CafeOBJ;
also this construction can be applied to specification frameworks based upon other logics, such as partial algebra.

The universally quantified conditioned sentences are introduced in two steps. First we introduce the conditioned
sentences without quantifiers and then we apply a general universal quantification construction to the result of the first
step.

Definition 3.2 (Truth injective). A quasi-Boolean encoding (Φ, α, γ) is truth injective when for each signature mor-
phism ϕ : Σ→ Σ′ and each Σ′-model M′ we have that (γϕ)−1

M′ ((γΣ′(M′)¹Φ(ϕ))true) = {(γΣ(M′¹ϕ))true}.

Truth injectivity just says that the homomorphisms (γϕ)M′ do not map to true any value that is not true. This is a
merely technical property that is satisfied by all quasi-Boolean encodings presented in Examples 3.1-3.6; we invite
the reader to check this fact by [her/him]self.

Theorem 3.1. For any truth injective quasi-Boolean encoding (Φ, α, γ) of an institution I the following defines an
institution, denoted C(Φ, α, γ) or just C when there is no danger of confusion:

– SigC = SigI and ModC = ModI,

– SenC(Σ) = {H ⇒ C | H ∈ (TΦ(Σ))B,C ∈ SenI(Σ)} for each signature Σ, and

– SenC(ϕ)(H ⇒ C) = ((TΦ(ϕ))B(H)⇒ SenI(ϕ)(C)) for each signature morphism ϕ : Σ→ Σ′, and
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– M |=C
Σ

(H ⇒ C) if and only if M |=I
Σ

C when γΣ(M) |=ALG
Φ(Σ) (H = true).

Proof. We check only the Satisfaction Condition for C(Φ, α, γ) since in this case the other institution axioms hold
rather trivially. Let ϕ : Σ → Σ′ be any signature morphism, M′ be a Σ′-model, and let (H ⇒ C) ∈ SenC(Σ). We have
to show that

M′ |=CΣ′ ((TΦ(ϕ))B(H)⇒ SenI(ϕ)(C)) if and only if M′¹ϕ |=CΣ (H ⇒ C).

By the Satisfaction Condition for I we have that M′ |=I
Σ′ SenI(ϕ)(C) if and only if M′¹ϕ |=IΣ C. This means that it is

enough to show that

γΣ′(M′) |=ALG
Φ(Σ′) ((TΦ(ϕ))B(H) = true) if and only if γΣ(M′¹ϕ) |=ALG

Φ(Σ) (H = true). (1)

We need the following lemma whose proof, omitted here, consists of a simple induction process on the structure of
the term t.

Lemma 3.1. For any ALG signature Σ, any homomorphism of Σ-models h : A → B, and any Σ-term t, we have that
h(At) = Bt.

By induction on the structure of the term H and by Lemma 3.1 applied for the model homomorphism γϕ(M′) we have
that

γΣ′(M′)(TΦ(ϕ))B(H) = (γΣ′(M′)¹Φ(ϕ))H = (γϕ)M′((γΣ(M′¹ϕ))H). (2)

By Lemma 3.1 applied for the model homomorphism γϕ(M′) we also have that

γΣ′(M′)true (= (γΣ′(M′)¹Φ(ϕ))true) = (γϕ)M′ ((γΣ(M′¹ϕ))true). (3)

The implication from the right to the left in (1) follows immediately from (2) and (3). The implication from the left to
the right in (1) follows from (2) by the truth injectivity hypothesis. 2

For the rest of this paper we assume that all abstract quasi-Boolean encodings are truth injective.
The main idea of the following treatment of quantifiers at the level of abstract institutions originates probably from

[28] (see also [4]).

Proposition 3.1. Let I be any institution with pushout of signatures and weak model amalgamation and let D be a
class of its signature morphisms such that for any signature morphisms (χ : Σ → Σ′) ∈ D and ϕ : Σ → Σ1 there is a
designated pushout

Σ
ϕ //

χ
²²

Σ1

χ(ϕ)²²
Σ′

ϕ[χ]
// Σ′1

with χ(ϕ) ∈ D and such that the ‘horizontal’ composition of such designated pushouts is a designated pushout too,
i.e. for the pushouts of the following diagram

Σ
ϕ //

χ

²²

Σ1

χ(ϕ)
²²

θ // Σ2

χ(ϕ)(θ)
²²

Σ′
ϕ[χ]

// Σ′1 θ[χ(ϕ)]
// Σ′2

we have that ϕ[χ]; θ[χ(ϕ)] = (ϕ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ; θ), and such that
χ(1Σ) = χ and 1Σ[χ] = 1Σ.

Then the following data defines an institution, called the institution of universally D-quantified sentences over I
and denoted ∀DI, or just ∀I whenD is clearly fixed from the context:

– Sig∀I = SigI and Mod∀I = ModI,
11



– Sen∀I(Σ) = {(∀χ)ρ′ | (χ : Σ→ Σ′) ∈ D and ρ′ ∈ SenI(Σ′)} for each signature Σ,

– Sen∀I(ϕ)((∀χ)ρ′) = (∀χ(ϕ))SenI(ϕ[χ])(ρ′) for each signature morphism ϕ : Σ→ Σ1, and

– M |=∀I
Σ

(∀χ)ρ′ if and only if M′ |=I
Σ
ρ′ for all χ-expansions M′ of M.

Proof. We have to prove only the functoriality property for Sen∀I and the Satisfaction Condition for |=∀I. The former
follows immediately from the compositionality hypotheses on D. For showing the latter we consider a signature
morphism ϕ : Σ→ Σ1, any Σ1-model M1, and any Σ-sentence (∀χ)ρ′ where (χ : Σ→ Σ′) ∈ D. We have to prove that

M1 |=∀IΣ1
(∀χ(ϕ))SenI(ϕ[χ])(ρ′) if and only if M1¹ϕ |=∀IΣ (∀χ)ρ′

For the implication from the right to the left, for any χ(ϕ)-expansion M′1 of M1 we have that M′1¹ϕ[χ] is a χ-expansion
of M1¹ϕ and thus by the hypothesis M′1¹ϕ[χ] |=IΣ′ ρ′. By the Satisfaction Condition for I this implies M′1 |=IΣ′1
SenI(ϕ[χ])(ρ′).

For the implication from the left to the right we consider any χ-expansion M′ of M1¹ϕ. By the weak model
amalgamation hypothesis for I, there exists a Σ′1-model M′1 such that M′1¹χ(ϕ) = M1 and M′1¹ϕ[χ] = M′. Because
M1 |=∀IΣ1

(∀χ(ϕ))SenI(ϕ[χ])(ρ′) it follows that M′1 |=IΣ′1 SenI(ϕ[χ])(ρ′) and by the Satisfaction Condition for I that

M′1¹ϕ[χ] |=IΣ′ ρ′. 2

Example 3.7. For the institutions presented in Sect. 2, the sentences of the form (∀X)ρ′, where ρ′ is a quantifier-free
sentence, are special cases of universally D-quantified sentences in the sense of Prop. 3.1 when we consider D to
consist of all signature extensions with a finite set of variables in the case of ALG, PDL, POA, HA, and with a finite
set of total variables in the case of PA. For these examples the designated pushouts from Prop. 3.1 are defined as
follows. If χ is an extension of a signature Σ with a finite set X of variables and ϕ : Σ → Σ1 is a signature morphism
then χ(ϕ) is the extension of Σ1 with the set Xϕ of variables where Xϕ = {(x, ϕ(s),Σ1) | (x, s,Σ) ∈ X}.

Example 3.8. The institutions of universally quantified sentences conditioned by (quasi-)Boolean terms from OBJ
and CafeOBJ can be obtained by applying the construction of Prop. 3.1 through Ex. 3.7 to the result of the construc-
tion of Thm. 3.1 applied to the corresponding examples of quasi-Boolean encodings presented in Sect. 3.1. Thus the
respective institutions underlying the equational specification paradigm in OBJ and CafeOBJ, the preordered algebra
specification and behavioural specification in CafeOBJ arise as ∀DC(Φ, α, γ) for D respective classes of signature
extensions with finite sets of variables and where (Φ, α, γ) are the quasi-Boolean encodings of the variants of Ex. 3.6
corresponding to A(ALG), A(POA), and A(HA) respectively.

4. Initial semantics

In this section we establish a set of general and widely applicable conditions for the existence of initial semantics
for institutions of universally quantified sentences conditioned by quasi-Boolean terms, i.e. institutions of the form
∀DC(Φ, α, γ) as defined by Thm. 3.1 and 3.1. Since we are aiming here for a general result in line with the develop-
ments in Sect. 3.1, we use the method of abstract quasi-varieties. This means that we have to show that universally
quantified sentences conditioned by quasi-Boolean terms are preserved by direct products and sub-models (i.e. their
models form a quasi-variety) and then use a general result on existence of initial models for quasi-varieties. In the
literature there are several general approaches on quasi-varieties at the level of abstract categories with only slight
technical differences among them. Since the concept of direct product is a standard categorical concept, all above
mentioned approaches are essentially abstract definitions for notions of ‘sub-models’. Here we use the approach of
[4] that handles abstractly the concept of ‘sub-model’ via the so-called inclusion systems of [9].

Let us recall the definition of inclusion systems from [4], which is a slightly simplified variant of the original
definition given in [9].

Definition 4.1 (Inclusion system). 〈I, E〉 is a inclusion system for a category C if I and E are two sub-categories
with |I| = |E| = |C| such that
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1. I is a partial order (with the ordering relation denoted by ⊆ or by ↪→), and
2. every arrow f in C can be factored uniquely as f = e f ; i f with e f ∈ E and i f ∈ I.

The arrows of I are called abstract inclusions, and the arrows of E are called abstract surjections. The domain of the
inclusion i f in the factorization of f is called the image of f and is denoted as Im( f ) or f (A) when A is a domain of
f . When f : A→ B is an abstract inclusion, A is called a sub-model of B.

From the multitude of examples of inclusion systems used in specification theory and in model theory (many of
them can be found in [4]) we present below only the examples that are going to be used in our current work.

Example 4.1 (Inclusion systems for models in ALG, PDL, POA, and PA). According to the terminology of [4] a
homomorphism h : M → N of models for a signature is closed when

– h−1(Nπ) = Mπ for each relation symbol π of the signature, in the case of PDL,

– m1 ≤ m2 if h(m1) ≤ h(m2) for any elements m1,m2 of M of the same sort, in the case of POA, and

– m ∈ dom(Mσ) if h(m) ∈ dom(Nσ) for any m ∈ Mw and any partial operation symbol σ with arity w, in the case
of PA.

Then a model homomorphism

• is an abstract inclusion when it is a set theoretic inclusion on each of its components and in the case of PDL,
POA, and PA is also closed, and

• is an abstract surjection when it is surjective on each of its components in the case of ALG, PDL, and POA,
and when it is epimorphism in the case of PA.

The institutions PDL, POA, and PA admit also other non-trivial inclusion systems (see [4]) but those do not fit our
aims here. The institution HA does not admit non-trivial inclusion systems for its categories of models; however this
does not pose any problem here since we do not aim to establish initial semantics for the HA related institution of
universally quantified quasi-Boolean terms conditioned sentences because behavioural specification is a loose or a
final semantics specification paradigm.

Definition 4.2 (Sub-model). In any institution that is equipped with inclusion systems for its categories of models,
we say that M is a sub-model of N when M is a sub-object of N with respect to the inclusion system of the category of
models of the respective signature.

Let us recall from [4] the abstract concept of quasi-variety.

Definition 4.3 (Categorical quasi-variety). A class Q of objects of a category with direct products of models and
with a designated inclusion system is a quasi-variety when is closed under direct products and sub-objects.

Within our abstract framework, let us also recall the following model theoretic terminology about ‘preservation of
sentences’.

Definition 4.4 (Preservation by sub-models). In any institution that is equipped with inclusion systems for its cate-
gories of models, a Σ-sentence ρ is preserved by sub-models when for any two Σ-models M and N, if N |= ρ and M is
a sub-model of N then M |= ρ too.

Example 4.2. Each sentence of A(ALG), A(PDL), A(POA), and A(PA) is preserved by sub-models with respect to
the corresponding inclusion system of Ex. 4.1. This fact is rather easy to check, therefore we omit this check here.

Definition 4.5 (Preservation by direct products). In any institution such that any of its categories of models has
small (direct) products (denoted

∏
), a Σ-sentence ρ is preserved by direct products when for any family (Mi)i∈I of

Σ-models, if Mi |= ρ for each i ∈ I, then
∏

i∈I Mi |= ρ too.
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Example 4.3. The institutions ALG, PDL, POA, PA, and HA admit direct products of models and their atoms, i.e.
the sentences of A(ALG), A(PDL), A(POA), A(PA), and A(HA) respectively, are preserved by the direct products of
models. This fact is also rather easy to check and therefore we also omit this check here.

Now we are ready to proceed with the development of the general result on existence of initial semantics for
the institutions of the form ∀C(Φ, α, γ). This is done in two steps corresponding to the quantifier-free and to the
quantified layers of these institutions. For the rest of this section we assume a fixed quasi-Boolean encoding (Φ, α, γ)
of an institution I = (Sig,Sen,Mod, |=) that has direct products of models and that comes equiped with inclusion
systems for its categories of models. By C we denote the institution C(Φ, α, γ) of Thm. 3.1.

Proposition 4.1. If each sentence of I is preserved by direct products then each sentence of C is preserved by direct
products too.

Proof. Let H⇒C be a Σ-sentence of C. Let (Ai)i∈I be a family of Σ-models such that Ai |= H⇒C for each i ∈ I and
let

∏
i∈I Ai be the product of this family with pi :

∏
i∈I Ai → Ai being the corresponding projections. Let us assume

that γΣ(
∏

i∈I Ai)H = γΣ(
∏

i∈I Ai)true. By considering the homomorphism γΣ(pi), it follows that γΣ(Ai)H = γΣ(Ai)true
for each i ∈ I. Hence Ai |= C for each i ∈ I and by the preservation hypothesis we obtain that

∏
i∈I Ai |= C. 2

Proposition 4.2. If each sentence of I is preserved by sub-models then each sentence of C is preserved by sub-models
too.

Proof. Let H ⇒ C be a Σ-sentence of C and let A ↪→ B be an inclusion of Σ-models such that B |= H ⇒ C.
Assume that γΣ(A)H = γΣ(A)true. We need to show that A |= C. By Lemma 3.1 applied to γΣ(A ↪→ B) it follows that
γΣ(B)H = γΣ(B)true, hence B |= C. Since C is preserved by sub-models we obtain A |= C. 2

Definition 4.6 (Lifting direct products). A signature morphism χ : Σ → Σ′ lifts direct products when each χ-
expansion A′ of a product

∏
i∈I Ai of Σ-models is a product

∏
i∈I A′i of χ-expansions of A′i of Ai for each i ∈ I.

Example 4.4. In the institutions ALG, PDL, POA, and HA each signature extension with constants lifts direct
products and in PA each signature extension with total constants lifts direct products. Let us show this for ALG, the
other cases being rather similar. Let (

∏
i∈I Ai

pi→ Ai)i∈I be a product of (S , F)-algebras, (S , F′) an extension of (S , F)
with constants, and A′ an expansion of

∏
i∈I Ai to (S , F′). Then A′ =

∏
i∈I A′i where for each new constant σ and each

i ∈ I, (A′i)σ = pi(A′σ).

Proposition 4.3. In any institution let ρ′ be a Σ′-sentence that is preserved by direct products and χ : Σ → Σ′ be a
signature morphism that lifts direct products. Then the Σ-sentence (∀χ)ρ′ is also preserved by direct products.

Proof. Let (Ai)i∈I be a family of Σ-models such that Ai |=Σ (∀χ)ρ′ for each i ∈ I. Consider the direct product
∏

i∈I Ai

and let A′ be any χ-expansion of
∏

i∈I Ai. By the lifting hypothesis on χ we have that A′ =
∏

i∈I A′i where A′i are
χ-expansions of Ai, respectively. Then A′i |=Σ′ ρ

′ for each i ∈ I. Since ρ′ is preserved by products it follows that
A′ |=Σ′ ρ

′. 2

Definition 4.7 (Lifting inclusions). A signature morphism χ : Σ→ Σ′ lifts inclusions when for each inclusion homo-
morphism A ↪→B and each χ-expansion A′ of a A there exists a χ-expansion of A ↪→ B to an inclusion homomorphism
A′ ↪→ B′.

Example 4.5. In the institutions ALG, PDL, POA, and HA each signature extension with constants lifts inclusions
and in PA each signature extension with total constants lifts the inclusions of the inclusion systems of Ex. 4.1. In all
these cases, given an inclusion homomorphism A ↪→B of Σ-models, a signature extension with constants χ : Σ→ Σ′,
and A′ a χ-expansion of A, then we define B′ to be the χ-expansion of B such that B′σ = A′σ for each new constant σ.

Proposition 4.4. In any institution let ρ′ be any Σ′-sentence that is preserved by sub-models and χ : Σ → Σ′ be a
signature morphism that lifts inclusions. Then the Σ-sentence (∀χ)ρ′ is also preserved by sub-models.
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Proof. Let A ↪→ B be an inclusion of Σ-models such that B |= (∀χ)ρ′. Let A′ be any χ-expansion of A. Since χ lifts
inclusions, there exists an inclusion A′ ↪→ B′ of Σ′-models such that B′¹χ = B. Hence B′ |= ρ′. Since ρ′ is preserved
by sub-models we have that A′ |= ρ′. 2

The results of Propositions 4.1, 4.2, 4.4, and 4.3 are collected by the following consequence.

Corollary 4.1. Let D be a class of signature morphism in I that satisfies the conditions of Prop. 3.1 and such that
each signature morphism inD lifts direct products and inclusions. If each sentence of I is preserved by direct products
and sub-models then each sentence of ∀DC(Φ, α, γ) is also preserved by direct products and sub-models.

The conclusion of Cor. 4.1 says that the class of models of any set of sentences in ∀DC(Φ, α, γ) is a quasi-variety.
At this moment we may apply a general result on existence of initial models in quasi-varieties. Before recalling this
result in the variant presented in [4] we need also to recall a couple of technical concepts.

Definition 4.8 (Epic inclusion system). An inclusion system is epic when each abstract surjection is epimorphism.

Example 4.6. Since homomorphisms with surjective carrier functions are epimorphisms, it follows that each of the
inclusion systems of Ex. 4.1 is epic.

Definition 4.9 (Co-well powered inclusion system). Given an inclusion system, a quotient representation of any ob-
ject A is an abstract surjection A → B. A quotient of A is an isomorphism class of quotient representations. An
inclusion system is co-well powered when each of its objects has a set of quotients.

Example 4.7. In general all non-trivial inclusion systems in ‘concrete categories’, i.e. for which there exists a faithful
functor to Set, the quasi-category of sets and functions, enjoy the property of co-well-powered. This is the case of
all inclusion systems of Ex. 4.1. For example, the quotients of a total algebra are in a bijective correspondence to the
congruences on that algebra, which are less than the binary relations on the algebra, which obviously form a set.

The following result is well known in the general categorical approaches to quasi-varieties. The variant presented
below comes from [4].

Proposition 4.5. In any category with direct products and with a designated epic and co-well powered inclusion
system, each quasi-variety has an initial object.

Corollary 4.2. In addition to the conditions of Cor. 4.1 we suppose that the inclusion systems of the categories
of models are epic and co-well-powered. Then each set of sentences in ∀DC(Φ, α, γ) admits an initial model. In
particular, this property of initial semantics holds in all institutions of Ex. 3.8 apart of those derived from HA.

5. Proof theoretic aspects

In this section we show how Birkhoff calculus for conditional equations can be used as a sound calculus for
institutions with sentences conditioned by Boolean terms, i.e. institutions of the form ∀DC(Φ, α, γ). We need the
following rather technical concept that relates abstract quantifiers to the concrete quantifiers in ALG.

Definition 5.1 (Quantifier translatability). Let (Φ, α, γ) be a quasi-Boolean encoding of an institution I. A signa-
ture morphism χ : Σ → Σ′ in I is translatable by (Φ, α, γ) when Φ(χ) is an extension of Φ(Σ) with a finite sets of
variables and there exists a finite set ∆(χ) of equations on the sort B of Φ(Σ′) such that:

– γΣ′(M′) |=ALG
Φ(Σ′) ∆(χ) for each Σ′-model M′, and

– for each Σ-model M and for each Φ(χ)-expansion A′ of γΣ(M) if A′ |=ALG
Φ(Σ′) ∆(χ) then there exists a χ-expansion

M′ of M such that A′ = γΣ′(M′).
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Example 5.1. Let the signature Σ′ extends Σ with a finite set of variables in ALG, PDL, POA, or in HA. Then
the signature extension χ : Σ → Σ′ is translatable by the corresponding quasi-Boolean encodings of Examples 3.1,
3.2, 3.3, 3.5 and 3.6 by letting ∆(χ) be empty. In the case of a signature extension with a finite set X of total
variables in PA, this is translatable by the corresponding quasi-Boolean encodings of Examples 3.4 and 3.6 by letting
∆(χ) = {x e© x = true | x ∈ X}.
Proposition 5.1. For any quasi-Boolean encoding (Φ, α, γ) of an institution I and for any signature morphism
χ : Σ→ Σ′ such that

– χ is translatable by (Φ, α, γ), and

– γχ : Mod(χ); γΣ ⇒ γΣ′ ; Mod(Φ(χ)) is identity.

For each Σ-model M and each Σ-sentence H⇒C in C(Φ, α, γ) we have that

M |=Σ (∀χ)H⇒C if and only if γΣ(M) |=ALG
Φ(Σ) (∀X)(

∧
∆(χ)) ∧ (H =true)⇒ (αΣ′(C) = true)

where X is the finite set of variables extending Φ(Σ) to Φ(Σ′).

Proof. For showing the implication from the left to the right we consider A′ any Φ(χ)-expansion of γΣ(M) such that
A′ |=ALG

Φ(Σ′)
∧

(∆(χ))∧ (H =true). Because χ is translatable there exists a χ-expansion M′ of M such that A′ = γΣ′(M′).
Hence γΣ′ (M′) |=ALG

Φ(Σ′) (H = true). From the hypothesis it follows that M′ |=Σ′ C and by the the Encoding Condition
for (Φ, α, γ) that γΣ′ (M′) |=ALG

Φ(Σ′) (αΣ′(C) = true). This means A′ |=ALG
Φ(Σ′) (αΣ′(C) = true).

For showing the implication from the right to the left let M′ be any χ-expansion of M. Let us assume that
γΣ′(M′) |=ALG

Φ(Σ′) (H = true). Because χ is translatable we have that γΣ′ (M′) |=ALG
Φ(Σ′) ∆(χ). Because γχ is identity we

have that γΣ′(M′)¹Φ(χ) = γΣ(M′¹χ) = γΣ(M). By applying the hypothesis it follows that γΣ′ (M′) |=ALG
Φ(Σ′) αΣ′ (C) = true

which by the Encoding Condition for (Φ, α, β) means M′ |=Σ′ C. 2

Note that when χ is a signature extension with constants in ALG, PDL, POA, or HA, and with total constants in
PA, for all quasi-Boolean encodings of Ex. 3.1-3.6 we have that γχ is identity.

Notation 5.1. Within the framework of Prop. 5.1 by α∗
Σ′((∀χ)H ⇒ C) let us denote the conditional Φ(Σ)-equation

(∀X)(
∧

∆(χ)) ∧ (H =true)⇒ (αΣ′(C) = true).

The following is an immediate consequence of Prop. 5.1.

Corollary 5.1. Let (Φ, α, γ) be a truth injective quasi-Boolean encoding of an institution I such that:

– I has pushouts of signatures and weak model amalgamation, and

– I has a designated classD of signature morphisms satisfying the conditions of Prop. 3.1 such that

– each morphism χ inD is translatable by (Φ, α, γ) and γχ is identity.

Then for any sets E and E′ of Σ-sentences in ∀DC(Φ, α, γ) and for each set Γ of conditional Φ(Σ)-equations that is
satisfied by γΣ(M) for any Σ-model M, we have that

α∗Σ(E) ∪ Γ |=ALG
Φ(Σ) α

∗
Σ(E′) implies E |=∀DC(Φ,α,γ)

Σ
E′.

Since α∗
Σ
(E), α∗

Σ
(E′), and Γ are sets of conditional equations, by the soundness of Birkhoff calculus for conditional

equations we may replace the semantic consequence relation |=ALG
Φ(Σ) in Cor. 5.1 by the entailment relation `eq

Φ(Σ) deter-
mined by Birkhoff calculus.3 In this way, Birkhoff calculus for conditional equations, with all its rather developed
execution techniques, such as rewriting, may serve as a sound calculus for the institutions ∀DC(Φ, α, γ). The provabil-
ity power of this import of equational calculus depends on choosing Γ as complete as possible. This idea is illustrated
by the following couple of examples.

3Thus `eq are the least entailment relations that contain the well known rules of Reflexivity, Symmetry, Transitivity, Congruence and Substitu-
tivity and are closed under Modus Ponens and Generalization.
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Example 5.2. Let us show how deduction in PA can be performed by ordinary Birkhoff calculus for conditional
equations by using the quasi-Boolean encoding of Ex. 3.4. For each PA signature (S ,TF, PF) let Γ(S ,TF,PF) be the
following set of conditional Φ(S ,TF, PF)-equations:

1. (∀X)(X e© X = true)⇒ (σ(X) e©σ(X) = true) for any operation symbol σ ∈ TF.4

2. (∀X,Y)(X e©Y = true)⇒ (X e© X = true).
3. (∀X,Y)(X e©Y = true)⇒ (X = Y).
4. (∀X)(σ(X) e©σ(X) = true)⇒ (X e© X = true) for any operation symbol σ in TF or in PF.

One may easily check that γ(S ,TF,PF)(A) |=ALG
Φ(S ,TF,PF) Γ(S ,TF,PF) for each partial (S ,TF, PF)-algebra A; we omit this check

here.
Now let us consider a concrete PA signature with only one sort s, three unary partial operation symbols τ, σ1, σ2 : s→

s, and one partial constant symbol a :→ s and let us prove the following deduction

{τ(a) e
= τ(a), (∀x)σ1(x) e

= σ2(x)} |=PA {σ1(a) e
= σ2(a)} (4)

by using ordinary Birkhoff calculus for conditional equations. Since the equations involved in deduction (4) are
unconditional this can be considered a deduction in ∀D(Φ, α, γ) where (Φ, α, γ) is the quasi-Boolean encoding of
Ex. 3.4 and D is the class of PA signature extensions with finite sets of total variables. By Cor. 5.1 and by the
soundness of ordinary Birkhoff calculus for conditional equations it is sufficient to prove that

{τ(a) e© τ(a)=true, (∀x)(x e© x=true)⇒ (σ1(x) e©σ2(x)=true)} ∪ Γ(S ,TF,PF) `eq

σ1(a) e©σ2(a)=true (5)

From the 4th axiom scheme in Γ(S ,TF,PF) applied for τ, by the rule of Substitutivity applied for the substitution x 7→ a
we have

Γ(S ,TF,PF) `eq (τ(a) e© τ(a)=true)⇒ (a e© a=true) (6)

From (6) by Modus Ponens we obtain

Γ(S ,TF,PF) ∪ {τ(a) e© τ(a)=true} `eq a e© a=true (7)

From (5) by Substitutivity applied for x 7→ a we have

(∀x)(x e© x=true)⇒ (σ1(x) e©σ2(x)=true) `eq (a e© a=true)⇒ (σ1(a) e©σ2(a)=true) (8)

Then (5) is obtained by Modus Ponens from (7) and (8).

For those readers that are familiar with the institution theoretic concept of ‘persistently liberal simple theo-
roidal comorphism of institutions’, we may note that within the context of Ex. 5.2 the mapping of (S ,TF, PF) to
(Φ(S ,TF, PF),Γ(S ,TF,PF)) is part of a ‘persistently liberal’ simple theoroidal comorphism PA → ALG with γ(S ,TF,PF)
being the left adjoints to the model translation functors of this comorphism. More details about this can be found
in [5]. More on the concept of persistently liberal theoroidal comorphisms can be found in [4, 16, 22, 23]. In fact
all quasi-Boolean encodings of Examples 3.1, 3.2, 3.3, 3.4, and 3.5 (but not those of Ex. 3.6) can be presented as
persistently liberal simple theoroidal comorphisms, and this gives a general method for chosing Γ applicable to many
concrete situations.

The following simple example shows how ordinary Birkhoff calculus for conditional equations can be used to
perform deductions with sentences conditioned by Boolean terms, that in the conventional unencoded framework are
not Horn sentences.

4If X = {x1, . . . , xn} then X e© X denotes the finite conjunction (x1 e© x1) ∧ . . . ∧ (xn e© xn).
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Example 5.3. Within the framework of Ex. 3.6 applied to PDL (i.e. Ex. 3.2) let us consider a PDL signature Σ that
has two predicate symbols p and q with arity zero. Let ΓΣ be the set of Boolean algebra equations on the sort B. Cf.
Ex. 3.6 it is clear that for any Σ-model M we have that γΣ(M) |=ALG ΓΣ. Let us show that

{p, p© ∨© q© ⇒ q} |= q.

By Cor. 5.1 and by the soundness of ordinary Birkhoff calculus for conditional equations it is sufficient to show that

ΓΣ ∪ { p© =true, ( p© ∨© q© =true)⇒ ( q© =true)} `eq q© =true. (9)

By the rules of Reflexivity and Congruence we have that

p© = true `eq p© ∨© q© = true∨© q© . (10)

We also have

ΓΣ `eq true∨© q© = true. (11)

From (10) and (11) by the rule of Transitivity we obtain that

ΓΣ ∪ { p© = true} `eq p© ∨© q© = true. (12)

Finally, (9) is obtained from (12) by Modus Ponens.

Acknowledgement. The author is grateful to the anonymous referees for their suggestions that have led to several
improvements in the original draft of this work. A technical remark of one of them implied a series of significant
technical adjustments.

6. Conclusions and Future Research

Based upon the novel concept of quasi-Boolean encoding that we have introduced in this paper, we have provided
rigorous logical foundations for the formal specification and verification practice of using sentences conditioned by
Boolean-valued terms. The generality of our institution theoretic approach leads to wide applicability of our results to
various logic based specification environments. The main results of our paper include a general theorem on existence
of initial semantics and a general result allowing the import of ordinary Birkhoff calculus for conditional equations as
a sound proof calculus for institutions with universally quantified sentences conditioned by Boolean terms.

The work developed in this paper leads to a series of open problems as follows:

1. Find a general set of sufficient conditions with good applicability for importing ordinary Birkhoff calculus for
conditional equations as a complete proof calculus for the institutions ∀C(Φ, α, γ).

2. Study of important model theoretic properties of the institutions ∀C(Φ, α, γ) that are most relevant for specifi-
cation theory, such as interpolation and definability.

3. Use the theoretical framework introduced here to provide clear full foundations for the OTS/CafeOBJverification
method, and extract a series of methodological guidelines supporting and correcting the current practice in-
volved in the OTS/CafeOBJverification method.
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[5] Răzvan Diaconescu. An encoding of partial algebras as total algebras. Information Processing Letters, 2009. DOI:10.1016/j.ipl.2009.09.008.

To appear in print.
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[9] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for modularisation. In Gerard Huet and Gordon Plotkin, editors,

Logical Environments, pages 83–130. Cambridge, 1993. Proceedings of a Workshop held in Edinburgh, Scotland, May 1991.
[10] Kokichi Futatsugi, Joseph Goguen, and Kazuhiro Ogata. Verifying design with proof scores. In Bertrand Meyer and Jim Woodcock, editors,

Verified Software: Theories, Tools, Experiments, volume 4171 of Lecture Notes in Computer Science, pages 227–290. Springer, 2008.
[11] Joseph Goguen. Types as theories. In George Michael Reed, Andrew William Roscoe, and Ralph F. Wachter, editors, Topology and Category

Theory in Computer Science, pages 357–390. Oxford, 1991. Proceedings of a Conference held at Oxford, June 1989.
[12] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for specification and programming. Journal of the Association for

Computing Machinery, 39(1):95–146, 1992.
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