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e.1 Introdu
tionThis is a paper both about algebrai
 spe
i�
ation and veri�
ation foundationsand methodologies. It belongs to a modern trend in algebrai
 spe
i�
ation, 
alledbehavioural spe
i�
ation. There are several formalisms for behavioural spe
i�
a-tion, our resear
h lies within the so-
alled hidden algebra [10, 9℄ formalism. Thisstyle of spe
i�
ation is obje
t-oriented as opposed to the data-oriented 
lassi
alalgebrai
 spe
i�
ation style. It has been argued that behavioural abstra
tionmight be pra
ti
ally very e�e
tive for spe
ifying and verifying large systems (ingeneral software, but not only). The main reasons for this are the simpli
ity ofthe obje
t-oriented style of spe
i�
ation (whi
h is mainly due to the behaviouralabstra
tion me
hanism in whi
h the stri
t equality between the states of obje
tsplays a se
ondary rôle, the primary equality being observational2 ) 
ontrastingto the somehow tedious and low-level te
hniques required by the data-orientedapproa
h. In fa
t, it 
an be said that behavioural spe
i�
ation realizes algebrai
spe
i�
ation as a true spe
i�
ation paradigm.This work builds on 
lassi
al hidden algebra whi
h was started several yearsago by Joseph Goguen. We extend 
lassi
al hidden algebra formalism by a re-arrangement of the basi
 
on
epts. This re-arrangement of the hidden algebra1 First version of this paper appeared as Te
hni
al Report IS-RR-98-0017F, JapanAdvan
ed Institute for S
ien
e and Te
hnology, ISBN 0918-7553, June 1998.2 Two states of an obje
t are observationally equal (or equivalent) if and only if anyappli
ation on any string of \methods" gets the same values for the \attributes".



formalism permits an extension to novel 
on
epts whi
h bring new pra
ti
alstrength to the spe
i�
ation and veri�
ation methodologies. The main novel 
on-
ept, whi
h 
onstitutes the 
ore of this work, is that of behavioural 
oheren
e,whi
h is essentially a property of preservation of behavioural stru
tures. We de-�ne this 
on
ept and study its main denotational and 
omputational3 properties,and also show how the extension of hidden algebra with behavioural 
oheren
estill a

ommodates the 
oindu
tion proof method advo
ated by 
lassi
al hiddenalgebra. The emphasis of this paper is however on the methodologies related tobehavioural 
oheren
e. We present the basi
 methodologies of behavioural 
o-heren
e by means of examples a
tually run under the CafeOBJ system, in
ludingmany proofs with the system exiled to appendi
es.Our extended hidden algebra formalism 
onstitutes the semanti
 foundationfor the behavioural spe
i�
ation paradigm as realized in the new obje
t-orientedalgebrai
 spe
i�
ation language CafeOBJ [6℄. In fa
t, all 
on
epts de�ned hereare faithfully re
e
ted by the CafeOBJ formal de�nition and were introdu
ed ina rather 
on
ise form in [6℄ whi
h 
ontains the formal de�nition and semanti
sof the CafeOBJ. Therefore, this paper serves also as an introdu
tion to advan
edbehavioural spe
i�
ation with CafeOBJ. Other important publi
ations on be-havioural methodologies for algebrai
 spe
i�
ation in CafeOBJ in
lude a generalsurvey [7℄ presenting both the basi
 methodologies and the obje
t 
ompositionones, and [13℄ whi
h fo
uses on the obje
t 
omposition methodology. In this 
on-text let us also mention that our extended hidden algebra formalism is highly
onvergent to the so-
alled \observational logi
" of Bidoit and Henni
ker [12℄.Finally, let us enumerate several pra
ti
al methodologi
al bene�ts of be-havioural 
oheren
e. The use of behaviourally 
oherent \methods" and \at-tributes" for obje
t spe
i�
ation may result in big simpli�
ations at the veri-�
ation stage, while keeping smooth 
omputational 
hara
teristi
s. Behavioural
oherent \methods" and \attributes" 
an be also used e�e
tively in a denota-tional rôle. Another important appli
ation area is that of \hidden" 
onstru
torson the states of obje
ts, this methodology being parti
ularly e�e
tive for spe
-ifying obje
t non-determinism in a simple and elegant way. It should be notedthat this use of behavioural 
oheren
e puts hidden algebra beyond the powerof other behavioural spe
i�
ation formalisms, su
h as the so-
alled \
o-algebra"[14℄.1.1 Basi
 Algebra Con
epts, Notations, and TerminologyIn this se
tion we review the basi
 
on
epts, notations, and terminology, whi
h
onstitute now the folklore of algebrai
 spe
i�
ation. Although the hidden alge-bra formalism a

ommodates well (and even gets more power from) the order-sorted approa
h (see [3℄), for reasons of simpli
ity of presentation, we developall formal de�nition and results in a many-sorted framework.4Given a sort set S, an S-indexed (or sorted) set A is a family fAsgs2Sof sets indexed by the elements of S. In this 
ontext, a 2 A means that a 2 Asfor some s 2 S. Similarly, A � B means that As � Bs for ea
h s 2 S, and an S-indexed (or sorted) fun
tion f : A! B is a family ffs : As ! Bsgs2S . Also,we let S� denote the set of all �nite sequen
es of elements from S, with [℄ the3 In
luding a spe
ial 
on
ept of term rewriting emerging from our approa
h.4 This will not prevent us to use sub-sorting in the examples.



empty sequen
e. Given an S-indexed set A and w = s1:::sn 2 S�, we let Aw =As1 � � � � �Asn ; in parti
ular, we let A[℄ = f?g, some one point set. Also, for anS-sorted fun
tion f : A! B, we let fw : Aw ! Bw denote the fun
tion produ
tmapping a tuple of elements (a1; : : : ; an) to the tuple (fs1(a1); : : : ; fsn(an)).A (n S-sorted) signature (S;�) is an S��S-indexed set � = f�w;s j w 2S�; s 2 Sg; we often write just � instead of (S;�). Note that this de�nitionpermits overloading, in that the sets �w;s need not be disjoint. Call � 2 �[℄;s a
onstant symbol of sort s. A signature morphism � from a signature (S;�)to a signature (S0; �0) is a pair (f; g) 
onsisting of a map f : S ! S0 of sortsand an S� � S-indexed family of maps gw;s : �w;s ! �0f�(w);f(s) on operationsymbols, where f� : S� ! S0� is the extension of f to strings5. We may write�(s) for f(s), �(w) for f�(w), and �(�) for gw;s(�) when � 2 �w;s.A �-algebra A 
onsists of an S-indexed set A and a fun
tion A� : Aw ! Asfor ea
h � 2 �w;s; the set As is 
alled the 
arrier of A of sort s. If � 2�[℄;s then A� determines a point in As whi
h may also be denoted A� . A �-homomorphism from one �-algebra A to another B is an S-indexed fun
tionh : A! B su
h that hs(A�(a)) = B�(hw(a))for ea
h � 2 �w;s and a 2 Aw. (When n = 0, this 
ondition just says thatf(A�) = B� .) A �-homomorphism h : A ! B is a �-isomorphism i� ea
hfun
tion hs : As ! Bs is bije
tive (i.e., one-to-one and onto, in an older termi-nology).Given a many sorted signature �, an S-indexed set X will be 
alled a setof variable symbols if the sets Xs are disjoint from ea
h other and from allof the sets �w;s. Given a set X of variable symbols, we let �(X) denote thesignature formed by adding the elements of X to � as new 
onstants, and we letT�(X) denote T�(X) viewed as a �-algebra. It is 
alled the �-term algebraor free �-algebra generated by X , and has the property that if � : X !A is an valuation, i.e., a (S-sorted) fun
tion to a �-algebra A, then thereis a unique extension of � to a �-homomorphism �� : T�(X) ! A. (Stri
tlyspeaking, the usual term algebra is not free unless the 
onstant symbols in �are mutually disjoint; however, even if they are not disjoint, a 
losely relatedterm algebra, with ea
h 
onstant annotated by its sort, is free.) Also, we letT� denote the initial term �-algebra T�(;), noting that this means there is aunique �-homomorphism T� ! A for any �-algebra A. Call t 2 T� a ground�-term. When the unique �-homomorphism T� ! A is surje
tive, we 
all A area
hable algebra. Thus, ea
h element of a rea
hable algebra 
an be denoted bya ground term. The �-terms (modulo renaming of the variables) 
an be regardedas derived operations by de�ning the arity ar(t) for terms t by the followingpro
edure:- 
onsider the set var(t) of all variables o

urring within t,- transform var(t) into a string by �xing an arbitrary order on this set, and- �nally, repla
e the variables in the string previously obtained by their sorts.5 This extension is de�ned by f�([℄) = [℄ and f�(ws) = f�(w)f(s), for w in S� and sin S.



If the arity of a term t is w, then for any �-algebra A we 
an de�ne the in-terpretation of t as derived operation At : Aw ! As by At(a) = ��(t) where� : var(t) ! A is the valuation 
orresponding to the string a 2 Aw.A �-
ontext 
[z℄ is a �-term 
 with a marked variable z o

uring only on
ein 
.A 
onditional �-equation 
onsists of a variable setX , terms t; t0 2 T�(X)sfor some sort s, and terms tj ; t0j 2 T�(X)sj for j = 1; :::;m. Su
h an equation isgenerally written in the form(8X) t = t0 if t1 = t01; :::; tm = t0m :The spe
ial 
ase where m = 0 is 
alled an (un
onditional) equation, writ-ten (8X) t = t0. A ground equation has X = ;. A �-algebra A satis�es a
onditional equation, writtenA j=� (8X) t = t0 if t1 = t01; :::; tm = t0m ;i� for all valuations � : X ! A, we have ��(t) = ��(t0) whenever ��(tj) = ��(t0j)for j = 1; :::;m. Given a set E of (possibly 
onditional) �-equations, we 
all any�-algebra that satis�es E a (�;E)-algebra.A �-
ongruen
e on a �-algebra A is an S-sorted family of relations, �son As, ea
h of whi
h is an equivalen
e relation, and whi
h also satisfy the
ongruen
e property, that given any � 2 �w;s and any a 2 Aw, thenA�(a) �s A�(a0) whenever a �w a0.6 The quotient of A by �, denoted A=�,has 
arriers (A=�)s = As=�s, whi
h inherit a �-algebra stru
ture by de�ningA=��([a1℄; : : : ; [an℄) = [A�(a)℄, where � 2 �w;s and a 2 Aw, where [a℄ denotesthe �-equivalen
e 
lass of a.We now 
onsider the logi
 of many sorted algebra, that is, rules for dedu
-ing new equations from old ones. Given a set E of (possibly 
onditional) �-equations, we de�ne the (un
onditional) �-equations that are derivable fromE re
ursively, by the following rules of dedu
tion:(1) Re
exivity: Ea
h equation (8X) t = t is derivable.(2) Symmetry: If (8X) t = t0 is derivable, then so is (8X) t0 = t.(3) Transitivity: If (8X) t = t0 and (8X) t0 = t00 are derivable, then so is (8X) t =t00.(4) Congruen
e: If (8X) ti = t0i is derivable, where ti; t0i 2 T�(X)si for i =1; :::; n, then for any � 2 �s1:::sn;s, the equation (8X)�(t1; : : : ; tn) = �(t01; : : : ; t0n)is also derivable.(5) Substitutivity: Given (8Y ) t = t0 if t1 = t01; : : : ; tm = t0m in E and given asubstitution � : Y ! T�(X) su
h that (8X) ��(tj) = ��(t0j) is derivable forj = 1; :::;m, then (8X) ��(t) = ��(t0) is also derivable.Given a set E of �-equations, let E
 denote the S-sorted set of pairs (t; t0) ofground �-terms su
h that (8;) t = t0 is derivable from E. Then E
 is a �-
ongruen
e by rules (1){(4). The following 
ompleteness result was �rst provedby Goguen and Meseguer [11℄, although the un
onditional one sorted form isvery well known, going ba
k to Birkho� [2℄ in 1935:6 Meaning ai �si a0i for i = 1; :::; n, where w = s1 : : : sn and a = (a1; : : : ; an).



Theorem1. Given a set E of (possibly 
onditional) �-equations, an un
ondi-tional �-equation is satis�ed by every (�;E)-algebra i� it is derivable from Eusing the rules (1){(5).Goguen and Meseguer [11℄ use the above to prove the following basi
 result:Theorem2. The �-algebra T�;E = T�=E
 is an initial (�;E)-algebra, inthe sense that for any (�;E)-algebra A there is a unique �-homomorphismh : T�;E ! A.Of 
ourse, there are many other initial (�;E)-algebras, but they are all �-isomorphi
 to this one.Now we brie
y re
all some basi
 rewriting 
on
epts and notations. For sim-pli
ity we restri
t the dis
ussion to the un
onditional 
ase. Given a signature �,a �-rule is given by (8) t -> t0where t; t0 are �-terms su
h that var(t0) � var(t). A �-TRS7 is a �nite 
ol-le
tion of �-rules. Given a �xed TRS, then a �-term t0 rewrites (in one step)to the �-term t1 i� there is a TRS-rule (8) t -> t0 su
h that t0 = 
[��(t)℄ andt1 = 
[��(t0)℄ for some �-
ontext (
alled rewrite 
ontext) 
 and some sub-stitution �. This is denoted as t0 ! t1. The transitive-re
exive 
losure of !is denoted as �!. A TRS is (ground) 
on
uent i� for any (ground) term t0,if t0 �! t1 and t0 �! t2, then there exists t3 su
h that t1 �! t3 and t2 �! t3,and it is (ground) terminating i� there are only �nite rewrite 
hains fromany (ground) term t. A term t is in normal form i� there is no rewrite fromt. When the TRS is 
on
uent and terminating, then ea
h term t has a uniquenormal form nf(t) su
h that t �! nf(t).Given a signature morphism � : � ! �0 and a �0-algebra A0, we 
an de�nethe redu
t of A0 to �, denoted �(A0) or A0j�, to have 
arriers A0�(s) for s 2 S,and to have operations �(A0)� for � 2 �w;s de�ned by �(A0)�(m) = A0�(�)(m)for m 2 A0�(w). Also, given a �0-homomorphism h : A01 ! A02, we 
an de�nehj� : A01j� ! A02j� by (hj�)s = h�(s) for s 2 S.Similarly, given a �-equation e of the form (8X) t = t0, we de�ne �(e) to bethe �0-equation (8X 0) �(t) = �(t0), where X 0 is the S0-indexed set, also denoted�(X), with X 0s0 = S�(s)=s0 Xs for s0 2 S0, and where � : T�(X) ! T�0(X0) isthe S-indexed fun
tion de�ned by viewing T�0(X0) as a �(X)-algebra using theredu
t 
onstru
tion given above, and then the initiality of T�(X).An important property of these translations on algebras and equations undersignature morphisms is 
alled the Satisfa
tion Condition, whi
h expresses theinvarian
e of satisfa
tion under 
hange of notation:Theorem3. Given an signature morphism � : � ! �0, a �0-algebra A0, anda �-equation e, then �(A0) j=� e i� A0 j=�0 �(e):7 Abbreviation for term rewriting system.



This theorem was �rst proved in the original version of [8℄, and 
onstitutes thebasi
 axiom of the so-
alled institutions, whi
h have re
ently been emerging asthe mathemati
al stru
ture underlying the modern level of algebrai
 spe
i�
ationtheory.2 Coherent Hidden AlgebraIn this se
tion we extend the hidden algebra formalism for behavioural spe
-i�
ation (as de�ned in seminal papers su
h as [9, 10℄ and abbreviated here asHA). Our extension yields a suitable framework for the development of the novel
on
ept of behavioural 
oheren
e, and also 
orresponds exa
tly to the semanti
sof the behavioural spe
i�
ation paradigm as realized in the algebrai
 spe
i�
a-tion language CafeOBJ [6℄. We refer to this extension as 
oherent hidden algebra(abbreviated CHA).Hidden algebra (formerly 
alled \hidden sorted algebra") was invented byGoguen as an extension of the (order sorted) equational logi
 formalism under-lying the modern theory of abstra
t data types and, generally, 
onstituting thelogi
al foundation for 
lassi
al algebrai
 spe
i�
ation. One of the early paperswhi
h present hidden algebra is [9℄, while the basi
 referen
e for this area mightnow be the survey [10℄. An institution-independent approa
h to HA 
an be foundin [3℄. Hidden algebra extends ordinary algebra with sorts representing states ofobje
ts rather that data elements and also introdu
es a new 
on
ept of satisfa
-tion between models (algebras) and senten
es, 
alled behavioural satisfa
tion.CHA extends HA by introdu
ing expli
it 
on
epts of behavioural operationand behavioural senten
e. Be
ause of behavioural senten
es, CHA does not needa spe
ial notation for behavioural satisfa
tion, that would be treated just as thesatisfa
tion of behavioural senten
es. This has the advantage of a unitary institu-tion for CHA with a unique satisfa
tion relation for both stri
t and behaviouralsenten
es and of allowing stri
t equations on hidden sorts.De�nition 4. A CHA signature is a tuple (H;V;�;�b), where{ H and V are disjoint sets of hidden sorts and visible sorts, respe
tively,{ � is an (H [ V )-sorted signature,{ �b � � is a subset of behavioural operations su
h that ea
h � 2 �bw;shas exa
tly one hidden sort in w.Noti
e that very often we will shorten the notation (H;V;�;�b) to (H;V;�),or just �, when no 
onfusion is possible.From a methodologi
al perspe
tive, the operations in �b have obje
t-orientedmeaning, � 2 �bw;s is thought as an a
tion (or \method" in a more 
lassi
aljargon) on the spa
e (type) of states if s is hidden, and thought as observation(or \attribute" in a more 
lassi
al jargon) if s is visible. The last 
ondition saysthat the a
tions and observations a
t on (states of) single obje
ts.De�nition 5. ACHA signature morphism� : (H;V;�;�b)! (H 0; V 0; �0; �0b)is a signature morphism � ! �0 su
h that(M1) �(V ) � V 0 and �(H) � H 0,



(M2) �(�b) = �0b and ��1(�0b) � �b,These 
onditions say that hidden sorted signature morphisms preserve visibilityand invisibility for both sorts and operations, and the �0b � �(�b) in
lusionexpresses the en
apsulation of 
lasses (in the sense that no new a
tions (methods)or observations (attributes) 
an be de�ned on an imported 
lass)8. However, thislast in
lusion 
ondition applies only to the 
ase when signature morphisms areused as module imports (the so-
alled horizontal signature morphisms); whenthey model spe
i�
ation re�nement this 
ondition might be dropped (this 
aseis 
alled verti
al signature morphism).Now, we turn our attention to models.De�nition 6. Given a CHA signature �, the 
lass of its models 
onsists of all�-algebras A.De�nition 7. Given a CHA signature �, a behavioural 
ontext9 is any �-
ontext 
[z℄ su
h that all operations above z in 
 are behavioural.While ordinary satisfa
tion 
orresponds to reasoning about stri
t equality,behavioural satisfa
tion 
orresponds to reasoning about behavioural equivalen
e,whi
h 
an be regarded as a looser form of equality. Behavioural equivalen
e is themain 
on
ept underlying the behavioural abstra
tion me
hanism of spe
i�
ationsbased on hidden algebra, hen
e it plays a 
entral rôle in CHA.De�nition 8. Given a �-algebra A, two elements (of the same sort s) a and a0are 
alled behaviourally equivalent, denoted a �s a0 (or just a � a0) i�A
(a) = A
(a0)10for all visible behavioural 
ontexts 
.Remark that the behavioural equivalen
e is a (H[V )-sorted equivalen
e relation,and on the visible sorts the behavioural equivalen
e 
oin
ides with the (stri
t)equality relation.The 
on
ept of behavioural equivalen
e leads also to a di�erent notion ofequation and satisfa
tion:De�nition 9. Given a CHA signature �, a behavioural �-equation is a sen-ten
e of the form (8X) t � t0 if t1 �1 t01; : : : ; tm �m t0mwhere ea
h �i is either = or � for all i 2 f1; : : : ;mg, all other symbols havingthe same meaning as for ordinary equations.Now, we are ready to de�ne the notion of satisfa
tion for hidden algebra.8 Without it the Satisfa
tion Condition fails, for more details on the logi
al and 
om-putational relevan
e of this 
ondition see [9℄.9 Noti
e that the CafeOBJ 
on
ept of \behavioural 
ontext" 
orresponds to \visiblebehavioural 
ontext" in the sense of this paper.10 Noti
e that this equality means an equality between fun
tions Aw1w2 ! As0 , where
 : w1sw2 ! s0 with w1; w2 2 (H [ V )� and s0 2 V .



De�nition 10. Given a CHA signature � and a �-algebra A, a behaviouralequation (8X) t � t0 if t1 �1 t01; : : : ; tm �m t0m is satis�ed (also denoted byj=) by A i���(t) � ��(t0) whenever ��(ti) �i ��(t0i) for all i 2 f1; : : : ;mgfor all valuations � : X ! A.Note that the CHA satisfa
tion generalizes the HA behavioural satisfa
tion[10, 9℄ sin
e the satisfa
tion of (8X) t � t0 if t1 � t01; : : : ; tm � t0m 
orrespondsexa
tly to the HA behavioural satisfa
tion of(8X) t = t0 if t1 = t01; : : : ; tm = t0m.De�nition 11. Given a CHA signature � and a �-algebra A, a hidden 
on-gruen
e is an equivalen
e relation � on A whi
h is identity on visible sorts andis a �b-
ongruen
e.The following result 
onstitutes the foundations for the 
oindu
tion [10℄proof method for hidden algebra. We do it here again, sin
e the CHA formalismis an extension of HA.Theorem12. Given a CHA signature � and a �-algebra A, the behaviouralequivalen
e relation on A is the largest hidden 
ongruen
e on A.Proof. Consider a hidden 
ongruen
e � on A. We have to prove that for anyelements a; a0 of the same sort h, a �h a0 implies a �h a0, i.e., A
(a) = A
(a0) forall visible behavioural 
ontexts 
. We prove this by indu
tion on the length ofthe 
ontext 
. We may assume that h is hidden, otherwise the 
on
lusion followsdire
tly from the de�nition of hidden 
ongruen
es.If the length of 
[z℄ is 1, then 
[z℄ is just of the form �(t; z) where � : vh! s(with v 2 V � and h 2 H) is a visible sorted behavioural operation and t 2(T�(X))v is a v-tuple of terms. Be
ause � is a �b-
ongruen
e, we have thatA
(x; a) = A�(At(x); a) � A�(At(x); a0) = A
(x; a0) for any valuation x 2Aar(t). Be
ause � is a hidden 
ongruen
e and the sort of � is visible we havethat A�(At(x); a) = A�(At(x); a0), thus A
(x; a) = A
(x; a0) for all x 2 Aar(t)follows. Therefore A
(a) = A
(a0) as fun
tions Aar(t) ! As.If the length of 
 is greater than 1, then there exists a visible behavioural
ontext 
0 : wh0 ! s (with h0 2 H; s 2 V , and w 2 (H [ V )� of length smallerthan the length of 
 and a behavioural operation � : vh ! h0 (with v 2 V �and h 2 H), su
h that 
[z℄ = 
0[�(t; z)℄ for t 2 (T�(X))v a v-tuple of terms.Therefore, for all x 2 Aar(t) and y 2 Aw, A
(y; x; a) = A
0(y;A�(At(x); a))and A
(y; x; a0) = A
0(y;A�(At(x); a0)). Be
ause � is a hidden 
ongruen
e,A�(At(x); a) �h0 A�(At(x); a0), and by the indu
tion hypothesis we get A
(a) =A
(a0) as fun
tions Aar(t);w ! As.3 Behaviourally Coherent Operations3.1 The De�nitionDe�nition 13. Given a CHA signature � and a hidden �-algebra A, an op-eration � 2 � � �b is behaviourally 
oherent for A i� it preserves the



behavioural equivalen
e relation on A, i.e., if and only ifA�(a) �s A�(a0) if a �w a0for all a; a0 2 Aw, where � 2 (� ��b)w;s.Noti
e that the operations having only visible sorts in the arity are triviallybehaviourally 
oherent for any �-algebra A, so we will omit them from ourarguments.Corollary 14. If all operations in ���b are behaviourally 
oherent, then � isa �-
ongruen
e.Corollary 15. Given a CHA signature � and a �-algebra A for whi
h all op-erations in � ��b are behaviourally 
oherent, there exists another �-algebra A(
alled the behavioural image of A) su
h thatA j= (8X) t � t0 i� A j= (8X) t = t0for all behavioural �-equations (8X) t � t0.Proof. By Corollary 14, � is a �-
ongruen
e. Let A be the quotient algebraA=�, and [ ℄ : A! A be the 
orresponding quotient algebra morphism.First assume A j= (8X) t = t0. Let � : X ! A be an arbitrary valuation. Byhypothesis we have that (�; [ ℄)�(t) = (�; [ ℄)�(t0), whi
h means [��(t)℄ = [��(t0)℄,therefore ��(t) � ��(t0). This 
on
ludes that A j= (8X) t � t0.Conversely, let A j= (8X) t � t0 and 
onsider and arbitrary valuation� : X ! A. There exists a valuation � : X ! A su
h that �; [ ℄ = �. We havethat ��(t) = (�; [ ℄)�(t) = [��(t)℄ = [��(t0)℄ = ��(t0), whi
h 
on
ludes the proof ofA j= (8X) t = t0.This result has a spe
ial signi�
an
e, sin
e it 
an be generalized to any kind ofsenten
es. In this way, given a 
on
ept of senten
e (whi
h need not be equational,it 
an be Horn 
lause, full �rst order, se
ond order, et
.) we 
an de�ne on top of ita 
on
ept of behavioural senten
e with a 
orresponding notion of (behavioural)satisfa
tion. This idea has been fully exploited in [3℄ for developing an institution-independent theory of behavioural spe
i�
ation generalizing the 
on
rete hiddenalgebra. We have all reasons to believe that this 
an be further developed in orderto in
orporate CHA.Related to above, it might be interesting to brie
y present the 
on
ept ofbehavioural image of an algebra from a 
ategori
al perspe
tive.Proposition16. Consider a hidden signature (H;V;�;�b), and let �0 be itssub-signature without the non-behavioural operations having at least one hid-den sort in the arity. Given a �-algebra A, we may 
onsider the unique �0-homomorphism h to the �nal �0-algebra in the sub-
ategory of �0-algebras A0with A0j�v = Aj�v (whi
h always exists [3, 10℄), where �v is the maximal visiblesub-signature �v � �. We fa
tor h as e; i where e is surje
tive and i is an in-
lusion. Then, denote the image (target) of e as A0. A0 is an algebra whi
h is thequotient under behavioural equivalen
e of the redu
t Aj�0 . If all operations from� � �b are behaviourally 
oherent for A, then the quotient A0 
an be uniquelyexpanded to a �-algebra A whi
h is a quotient of A. Then A is the behaviouralimage of A.



3.2 Sound Dedu
tionIn this se
tion we show that in the presen
e of behavioural 
oheren
e, equationaldedu
tion is sound for behavioural equivalen
e. This 
onstitutes the basis for theexe
ution of languages implementing CHA; the next se
tion is devoted to theterm rewriting-based operational semanti
s of CHA.Theorem17. Given a set E of (possibly behavioural) equations for a hiddensignature �, the 
lass of (�;E)-algebras for whi
h all operations in � ��b arebehaviourally 
oherent is in
luded in the 
lass of (�;E)-algebras for whi
h theordinary equational dedu
tion rules are sound for behavioural equations.Proof. First we will show that all equational dedu
tion rules besides Congruen
eare sound anyway. For Base this is obvious, and the soundness of rules (1){(3) follow immediately from the fa
t that behavioural equivalen
e is indeed anequivalen
e relation. We 
on
entrate now on the Substitutivity rule.Consider an algebra A, and a behavioural equation (sin
e for ordinary equa-tions the argument holds by the soundness of ordinary equational logi
) (8Y ) t �t0 if t1 � t01; : : : ; tm � t0m in E. Assume that for some substitution � : Y !T�(X), (8X) ��(tj) � ��(t0j) is true for j 2 f1; : : : ;mg . We have to prove that(8X) ��(t) � ��(t0) is also true. Pi
k up an arbitrary valuation  : X ! A.Then for all j 2 f1; : : : ;mg we have that  �(��(tj)) �  �(��(t0j)) whi
h means(�; �)�(tj) � (�; �)�(t0j) for all j 2 f1; : : : ;mg. Be
ause A j= (8Y ) t �t0 if t1 � t01; : : : ; tm � t0m, it follows that (�; �)�(t) � (�; �)�(t0), thus �(��(t)) �  �(��(t0)).Now, we fo
us on Congruen
e. We show that Congruen
e is sound wheneverall operations from � � �b are 
oherent. Assume (8X) ti � ti is true inA for i = 1; :::; n. We have to prove that (8X) �(t1; : : : ; tn) � �(t01; : : : ; t0n)is also true in A. Consider a valuation  : X ! A. Then  �(ti) �  �(t0i) fori = 1; :::; n. Be
ause � is 
oherent for A, we have that A�( �(t1); : : : ;  �(tn)) �A�( �(t01); : : : ;  �(t0n)). By the homomorphism property of  �, we have that �(�(t1; : : : ; tn)) �  �(�(t01; : : : ; t0n)).Corollary 18. Given a set E of (possibly behavioural) equations for a hiddensignature �, the 
lass of rea
hable (�;E)-algebras for whi
h all operations in���b are behaviourally 
oherent is exa
tly the 
lass of rea
hable (�;E)-algebrasfor whi
h the ordinary equational dedu
tion rules are sound for behavioural sen-ten
es.Proof. Consider a rea
hable (�;E)-algebra A. We will show that if Congruen
eis sound, then all operations in � � �b are behaviourally 
oherent. Considersu
h an operation � : w ! s and a; a0 2 Aw. Ea
h 
omponent of either a ora0 
an be denoted by a ground term, therefore let a = At and a0 = At0 , witht; t0 2 (T�)w. Then A j= (8;) t � t0 (noti
e that this is a �nite 
onjun
tion ofbehavioural equalities indexed by w). Now, we have only to apply the hypothesisfor Congruen
e for �, i.e., A j= (8;) �(t) � �(t0), whi
h means A�(a) � A�(a0).This Corollary 
onstitutes the foundations for 
omputing with behaviourally
oherent operations. The following se
tion is devoted to this issue.



3.3 Behavioural RewritingThe operational semanti
s of CHA requires a more sophisti
ated notion of rewrit-ing whi
h takes spe
ial 
are of the use of behavioural senten
es during the rewrit-ing pro
ess.The following de�nition extends the 
on
ept of behavioural 
ontext withbehaviourally 
oherent operations.De�nition 19. Given a CHA signature � and a �-algebra A, a behaviourally
oherent 
ontext for A is any �-
ontext 
[z℄ su
h that all operations above11the marked variable z are either behavioural or behaviourally 
oherent for A.Noti
e that any behavioural 
ontext is also behaviourally 
oherent.Proposition20. Consider a CHA signature �, a set E of �-senten
es regardedas a TRS, and a �-algebra A satisfying the senten
es in E. If t0 is a groundterm and for any rewrite step t0 ! t1 whi
h uses a behavioural equation from E,the rewrite 
ontext has a visible behaviourally 
oherent sub-
ontext for A, thenA j= (8;) t0 = t1. If the rewrite 
ontext is behaviourally 
oherent for A, thenA j= (8;) t0 � t1.Proof. We prove only the �rst 
ase; the proof of the se
ond 
ase follows bya similar argument. There exists a behavioural equation (8X) t � t0 in Esu
h that t0 = 
[��(t)℄ and t1 = 
[��(t0)℄ for some rewrite 
ontext 
 and somevaluation � : X ! T�. Let 
0 be a visible behavioural 
oherent sub-
ontext of 
,this means 
[z℄ = 
00[
0[z℄℄ for some other rewrite 
ontext 
00. Denote the unique�-homomorphism T� ! A by h. Therefore At0 = A
00(A
0(h(��(t)))) and At1 =A
00(A
0(h(��(t0)))). Be
ause A satis�es the senten
es in E, we also have thath(��(t)) � h(��(t0)). Be
ause 
0 is a visible behaviourally 
oherent 
ontext forA, by indu
tion on its length, we 
an prove that A
0(h(��(t))) = A
0(h(��(t0))).Then At0 = At1 , whi
h means A j= (8;) t0 = t1.This 
ondition on rewriting was �rst introdu
ed in [6℄, under the name ofbehaviourally 
oherent 
ontext 
ondition and it is implemented by theCafeOBJ rewriting engine. It 
an be visualized by the following �gure:
A

B

CHere A is the top position of the term to be redu
ed (represented by the bigtriangle), and C is the position of the sub-term (represented by the white triangle)to whi
h the rule is applied. The rewriting 
ontext is represented by the wholegray area, and the behaviourally 
oherent sub-
ontext by the dark gray area(with the top at B). The 
ondition says that the sort of the operation at positionB is visible, and that on the path between B and C there are no operations whi
hare non-behavioural and not 
oherent.11 Meaning that z is in the subterm determined by the operation.



4 Behavioural Coheren
e MethodologiesIn this se
tion we dis
uss several spe
i�
ation methodologies for behavioural
oheren
e. We use the CafeOBJ notation for behavioural spe
i�
ation.4.1 The Conservative MethodologyConsider the following parameterized spe
i�
ation of a bu�er obje
t with twomethods (take and put) and two attributes (get and empty?).We start by spe
ifying the elements of the bu�er:mod! TRIV+(X :: TRIV) {op err : -> ?Elt}The (initial denotation) module TRIV+ is parameterized by the (loose denotation)built-in module TRIV whi
h has only one sort Elt. The system also provides thebuilt-in error super-sort ?Elt. The denotation of TRIV+ 
onsists of all sets (asinterpretation for Elt) plus an new element err of sort ?Elt but outside theinterpretation of Elt. In this spe
i�
ation, the sort Elt stands for the elementsof the bu�er, and err is an error value. TRIV be
omes a parameter of (the belowspe
i�
ation) BUF1, one 
an instantiate the elements of the bu�er to any 
on
reteset. Now, we 
an spe
ify the bu�er obje
t:mod* BUF1 { prote
ting(TRIV+)*[ Buf ℄*op init : -> Bufop put : Elt Buf -> Buf {
oherent}bop get_ : Buf -> ?Eltbop take_ : Buf -> Bufop empty? : Buf -> Bool {
oherent}var E : Eltvar B : Bufeq empty?(init) = true .
eq empty?(take B) = true if empty?(B) .eq empty?(put(E, B)) = false .
eq empty?(B) = true if (get B) == err .b
eq take put(E, B) = put(E, take B) if not empty?(B) .b
eq take(put(E, B)) = B if empty?(B) .
eq get B = err if empty?(B) .
eq get put(E, B) = E if empty?(B) .
eq get put(E, B) = get B if not empty?(B) .}The states of the bu�er obje
t are represented by the hidden sort Buf and thereare only two behavioural operations (denoted by the keyword bop). The keywordseq, 
eq, and b
eq stand for (stri
t) un
onditional equations, (stri
t) 
onditionalequations, and 
onditional behavioural equations, respe
tively.Noti
e that the predi
ate empty? (whi
h 
he
ks the emptiness of the bu�er)is spe
i�ed as a Boolean-valued operation by using the built-in Boolean datatype BOOL having one sort Bool with two 
onstants (true and false) and theusual Boolean operations. The denotation of the BOOL data type 
onsists ofthe initial algebra (more pre
isely, of the isomorphism 
lass of initial algebras)



interpreting the sort Bool as a set with only two elements, 
orresponding to theinterpretations of the 
onstants true and false.12An interesting point of this spe
i�
ation is that one method (put) and oneattribute (empty?) of the bu�er obje
t are de
lared as behaviourally 
oherentoperations rather than behavioural operations. One important pra
ti
al 
onse-quen
e of this is that the de�nition13 of the behavioural equivalen
e relationgets drasti
ally simpli�ed, while the denotation of the spe
i�
ation remains un-
hanged. This is supported by the following proposition:Proposition21. For ea
h BUF1-model M , the operations put and empty? arebehaviourally 
oherent.Proof. We �rst prove that empty? is behaviourally 
oherent. We have thus toshow that Mempty?(b) = Mempty?(b0) whenever b �Buf b0. From b �Buf b0 wededu
e thatMget(b) =Mget(b0). If both of them areMerr, thenMempty?(b) =Mempty?(b0) = Mtrue by the last equation on empty?. Otherwise, both ofthem are di�erent than Merr, whi
h means that Mempty?(b) = Mempty?(b0) =Mfalse by the �rst equation on get and be
ause MBool has only two elements,i.e., the interpretations of true and false.Now, in order to 
omplete the proof of this proposition we use the followinglemma (its proof by using the CafeOBJ system is given in Appendix A.2):Lemma22. The 
oheren
e of empty? implies the 
oheren
e of put.To resume, the operations empty? and put are behaviourally 
oherent in allBUF1-models, hen
e the denotation of BUF1 is the same as the denotation whenboth empty? and put were spe
i�ed as behavioural operations. This suggests the�rst (and in some sense the simplest) use of behavioural 
oheren
e:Some operations 
an be spe
i�ed as behaviourally 
oherent rather thanbehavioural provided their 
oheren
e (with respe
t to the rest of the spe
-i�
ation) 
an be proved. This results in a simpli�
ation of the de�nition ofbehavioural equivalen
e, with potential for simplifying the whole veri�
ationpro
ess related to this spe
i�
ation.Noti
e that re
ently, Bidoit and Henni
ker [1℄ gave pra
ti
ally relevant syn-ta
ti
 suÆ
ient 
onditions for the 
onservative methodology.4.2 The Non-Conservative MethodologyNow, we turn to a more sophisti
ated use of behavioural 
oheren
e. In the pre-vious 
ase, from the semanti
al perspe
tive, the main point was that the 
oher-en
e property held in all models. In other words, in that 
ase the de
laration12 The BOOL data type plays a 
ru
ial rôle for CafeOBJ 
onditional equations sin
etheir 
onditions are in fa
t Bool-sorted terms. This is more general than the 
lassi
alde�nition of 
onditional equations (adopted also by this paper) and allows some formsof negation and dis-equality. Pre
isely speaking, the underlying logi
s of CafeOBJare 
onstrained over the built-in (or pre-de�ned) data type BOOL, and this is fullyexplained by the framework of 
onstraint logi
s [5, 4℄.13 N.B. the behavioural equivalen
e relation remains the same, only its de�nition issimpli�ed.



\f
oherentg" for operations it treated as a pure 
omputational de
laration14with no 
onsequen
e on the denotations. In this se
tion we explore a denotationalrôle for su
h de
larations.The 
oheren
e de
laration for an operation has the e�e
t that the denotationof the spe
i�
ation is restri
ted to those models for whi
h the 
orresponding op-eration is behaviourally 
oherent. Let us look again at the bu�er example. Theabove BUF1 spe
i�
ation leads to non-terminating 
omputations due to the pres-en
e of the last equation on empty? and the �rst equation on get. But theseequations are exa
tly the ones whi
h ensure the 
oheren
e of empty?. The samesituation 
an be a
hieved by dropping the last equation on empty? and by re-stri
ting the 
lass of BUF1-models only to those for whi
h empty? is 
oherent.Noti
e that by dropping the last equation on empty?, there are models for whi
hempty? is not behaviourally 
oherent. Any model M with a bu�er state b whi
hfor whi
h Mget(b) = Merr and with Mempty?(b) = false would be su
h anexample.15So, 
onsider the spe
i�
ation BUF1 minus the last equation on empty?.mod* BUF { prote
ting(TRIV+)*[ Buf ℄*op init : -> Bufop put : Elt Buf -> Buf {
oherent}bop get_ : Buf -> ?Eltbop take_ : Buf -> Bufop empty? : Buf -> Bool {
oherent}var E : Eltvar B : Bufeq empty?(init) = true .
eq empty?(take B) = true if empty?(B) .eq empty?(put(E, B)) = false .b
eq take put(E, B) = put(E, take B) if not empty?(B) .b
eq take(put(E, B)) = B if empty?(B) .
eq get B = err if empty?(B) .
eq get put(E, B) = E if empty?(B) .
eq get put(E, B) = get B if not empty?(B) .}This spe
i�
ation avoids any non-termination, and its denotation is the same asthat of BUF1. Lets denote by Mod(BUF) the denotation of BUF, by Mod(BUF1)the denotation of BUF1, and by Mod(BUF0) the denotation of the spe
i�
a-tion BUF' whi
h is the same as BUF but without any 
oheren
e de
larationsfor operations. We have that Mod(BUF) � Mod(BUF0) as stri
t in
lusion. Also,Mod(BUF) =Mod(BUF1). The stri
tness ofMod(BUF) �Mod(BUF0) shows thatthe 
oheren
e de
larations (in fa
t really only that of empty?) shrink the deno-tation to a smaller 
lass of models, hen
e this is why this methodology is 
alled\non-
onservative".The non-
onservative methodology for behavioural 
oheren
e is strongly sim-ilar to the 
lassi
al use of operation attributes (su
h as asso
iativity (A), 
ommu-tativity (C), identity (I), or idempoten
e (Z)) in ordinary algebrai
 spe
i�
ation.For example, imagine a spe
i�
ation of the data type of natural numbers withthe plus operation de
lared 
ommutative:14 In
reasing the power of behavioural rewriting.15 Though su
h model 
annot be a rea
hable one.



op _+_ : Nat Nat -> Nat {
omm}In the 
ase of the natural numbers su
h de
laration is denotationally redun-dant sin
e the 
ommutativity of + would be satis�ed anyway by the stan-dard (initial) model16 whi
h 
onstitutes the denotation of the natural numbersdata type. Hen
e, this use of \
omm" de
laration is a 
onservative methodol-ogy, the same as \
oherent" de
laration for put. However, the 
omputational
onsequen
es of the \
omm" de
laration are 
ru
ial: by 
omputing modulo 
om-mutativity the non-termination of 
omputations is avoided. The same happensin the 
ase of \
oherent" de
larations, the 
omputation gets more power17.In the 
ase of the 
oheren
e of empty? the similarity is almost perfe
t, sin
e\
oherent" de
laration is used for avoiding non-terminating 
omputations. Onthe side of non-
onservative methodology, imagine a spe
i�
ation of monoidsand a 
ommutativity de
laration for its binary operation:op _;_ : Mon Mon -> Mon {
omm}This de
laration restri
ts the denotation only to the 
ommutative monoids, thushaving a similar denotational e�e
t as the 
oheren
e de
laration for empty?. Inboth 
ases the 
omputational e�e
t is maintained.We may resume the non-
onservative methodology by the following:Behavioural 
oheren
e de
larations for operations restri
t the denotation ofthe spe
i�
ation to the models for whi
h these operations are behaviourally
oherent, also giving more 
omputational power. This usage of 
oheren
ede
larations is similar to the usage of operation attributes (su
h as A,C,AC,I,et
.) in ordinary algebrai
 spe
i�
ation.As in the 
ase of traditional A/C/I/Z attributes, 
oheren
e de
larationsshould be used with some 
are be
ause they might have an undesirable denota-tional impa
t. Abusing them might result in shrinking denotations too mu
h, tothe point of eliminating some desirable models (implementations). In general itis re
ommended to use the 
onservative methodology as mu
h as possible, sin
ethis might simplify a lot the veri�
ation pro
ess without the burden to verify that
ertain implementations satisfy the 
oheren
e de
larations (sin
e in the 
onser-vative 
ase these 
oheren
e properties are supposed to be proved at the abstra
tlevel of the spe
i�
ation). The non-
onservative methodology is re
ommendedfor situations similar to the \
oherent" de
laration for empty?, when the shrinkof the denotation is rather natural and helps with avoiding some 
omputationalproblems.4.3 The Hidden Constru
tor MethodologyThe HA formalism requires that operations on hidden sorts have at most onehidden sort in their arity. This monadi
ity 
ondition is essential for the 
aseof behavioural operations (and in fa
t all hidden sorted operations in HA aremeant as CHA behavioural operations) but may limit the spe
i�
ation power.Behaviourally 
oherent operations 
onstitute the solution to this problem. Sin
e16 This is a standard indu
tion exer
ise in algebrai
 spe
i�
ation introdu
tory texts.17 Due to the easier satisfa
tion of the so-
alled \behaviourally 
oherent 
ontext 
on-dition" 
he
k, see Appendix A.1.



they do not de�ne the behavioural equivalen
e, they are not subje
t to themonadi
ity 
ondition. On the other hand, they 
an be used e�e
tively in be-havioural spe
i�
ations be
ause they preserve the behavioural equivalen
e andthus they have smooth denotational and 
omputational properties. We 
all su
hoperations hidden 
onstru
tors. Hidden 
osntru
tors play a similar rôle inobje
t-oriented algebrai
 spe
i�
ation as 
lassi
al 
onstru
tors play in ordinary(data type oriented) algebrai
 spe
i�
ation.The hidden 
onstru
tor methodology is \orthogonal" to the 
onservative vs.non-
onservative methodologies in the sense that the behavioural 
oheren
e ofa hidden 
onstru
tor might be a 
onsequen
e of the rest of the spe
i�
ation, orits 
oheren
e de
laration might really shrink the denotation of the spe
i�
ation.We illustrate this methodology by the spe
i�
ation of an unreliable bu�erobje
t. This means that there is a \put" method on the bu�er obje
t whi
h isunreliable in the sense that the element whi
h is put into the bu�er might belost.18 We reuse the above \reliable" bu�er obje
t spe
i�
ation, the unreliablebu�er obje
t being thought as a re�nement of the reliable bu�er.mod* UBUF { prote
ting(BUF)*[ Buf < UBuf ℄*op put : Elt UBuf -> UBuf {
oherent}bop take_ : UBuf -> UBufop _|_ : UBuf UBuf -> UBuf {
oherent}op put? : Elt UBuf -> UBuf {
oherent}op get? : Buf ?Elt -> Bool {
oherent}bop get? : UBuf ?Elt -> Boolvar B : Bufvars U1 U2 U : UBufvar E : Eltvar E' : ?Elteq put (E, U1 | U2) = put(E, U1) | put(E, U2) .eq put?(E, U1 | U2) = put?(E, U1) | put?(E, U2) .eq take( U1 | U2) = (take U1) | (take U2) .eq get?( U1 | U2, E') = get?(U1, E') or get?(U2, E') .eq put?(E, U) = U | put(E, U) .eq get?(B, E') = (E' == get B) .}The states of the unreliable bu�er obje
t (represented by the sort UBuf) arethought as a non-deterministi
 extension of the states of the reliable bu�er withthe hidden 
onstru
tor | \building" the non-deterministi
 states of the unreli-able bu�er. The reliable bu�er methods are extended to the unreliable bu�er, anunreliable put method is introdu
ed (put?), and, in the unreliable 
ase, the \get"attribute be
omes a relation (get?) rather than a fun
tion. Noti
e that the lastequation expresses the fa
t that get? is an a
tual extension of get to the unre-liable 
ase, and the equation before the last one expresses the non-deterministi
relationship between the unreliable \put" method and the reliable one. Noti
ealso that get? is spe
i�ed as behavioural operation sin
e it is thought as anextension of a behavioural operation. The 
oheren
e of | , put, put?, and get?(on Buf) 
an be proved from the spe
i�
ation (we leave this as exer
ise to thereader). However, the 
oheren
e of the hidden 
onstru
tor | deserves spe
ial18 These kinds of \unreliable" obje
ts are very useful for proto
ols spe
i�
ation andveri�
ation.



mention. This is a 
onsequen
e of the four (stri
t) equations spe
ifying the be-haviour of | with respe
t to the appli
ation of the \methods" and \attributes"of the unreliable bu�er obje
t. The stri
tness of these four equation is a mat-ter of style rather than of methodology, for this spe
i�
ation we think that theimplementations should stri
tly satisfy those equations.The hidden 
onstru
tor | also has some useful properties, su
h as be-havioural asso
iativity, 
ommutativity, and idempoten
e. The proofs of these
an be seen in Appendix A.3. Also, in Appendix A.4 we present some proofsabout the unreliable bu�er obje
t.The hidden 
onstru
tor methodology 
an be resumed as:Operations on hidden sorts having several hidden sorts in the arity might bee�e
tively used in spe
i�
ations provided they are behaviourally 
oherent.It is re
ommended to use them in 
onjun
tion with a 
onservative method-ology, i.e., their 
oheren
e property is a 
onsequen
e of the rest of thespe
i�
ation.5 Con
lusions and Future WorkWe extended the traditional HA to a more powerful behavioural spe
i�
ationformalism (CHA) whi
h in
ludes expli
it 
on
epts of behavioural operation andbehavioural senten
e and also permits operations with several hidden sorts inthe arity. We de�ned the novel 
on
ept of behaviourally 
oherent operation,studied its basi
 denotational and 
omputational properties, and presented itsbasi
 methodologies via several CafeOBJ examples.Further work will be dedi
ated for testing these methodologies for largerCASE studies. Work in this dire
tion is already under development by theCafeOBJ team.A
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i�
ations 
an be exe
uted. The basi
 exe
u-tion me
hanism of CafeOBJ is term rewriting by interpreting the spe
i�
ationequations as rewrite rules. For verifying behavioural properties in CafeOBJ, onewrites a proof s
ore a

ordingly to some proof method (su
h as 
oindu
tion), butthe basi
 exe
ution is done by rewriting. However, the CafeOBJ rewriting me
h-anism has some spe
ial features related to the spe
ial behavioural spe
i�
ationfeatures of the language.



In CafeOBJ, there is a 
lear distin
tion between the stri
t equality (denotedsynta
ti
ally by eq and supported semanti
ally by the stri
t equality predi
ate==) and the behavioural equivalen
e (denoted synta
ti
ally by beq and supportedsemanti
ally by the behavioural equivalen
e predi
ate =b=). The most basi
 ex-e
ution 
ommand, 
alled redu
e, 
orresponds to redu
ing the input term toa normal form whi
h is thought as stri
tly equal to the input term under thespe
i�
ation, thus it is 
on
eptually linked to ==. There is also a behavioural
ounterpart to this 
ommand, 
alled beh-redu
e, 
on
eptually linked to =b=,but this is mu
h less used in pra
ti
e.19When exe
uting by redu
e or when evaluating the predi
ate == spe
ial 
areshould be taken with respe
t to the use of behavioural equations as rewrite rules.The reason is that they denote behavioural rather than stri
t equality, thustheir appli
ation might dilute the stri
t equality into a behavioural equality.The so-
alled behaviourally 
oheren
e 
ontext 
ondition mentioned in Se
tion3.3 ensures the safety of use of behavioural equalities as rewrite rules.A.2 Proof of Lemma 22In this appendix se
tion we prove that the 
oheren
e of the empty? attributeof the bu�er spe
i�
ation implies the 
oheren
e of the put method. We do thisproof by the CafeOBJ system.We �rst en
ode the behavioural equivalen
e relation in CafeOBJ:mod! BARE-NAT {[ NzNat Zero < Nat ℄op 0 : -> Zeroop s_ : Nat -> NzNat}mod* BUF-BEQ { prote
ting(BUF + BARE-NAT)op _R[_℄_ : Buf Nat Buf -> Bool {
oherent}bop take : Nat Buf -> Bufvar N : Natvars B B1 B2 : Bufeq take(0, B) = B .eq take(s(N), B) = take(N, take B) .eq B1 R[N℄ B2 = get take(N, B1) == get take(N, B2) .}The module BARE-NAT spe
i�es a very simple data type for the natural numbers.The operation take introdu
ed in BUF-BEQ is a se
ond order generalization of themethod take of BUF, whi
h is ne
essary for de�ning the behavioural equivalen
e.The behavioural equivalen
e on Buf is de�ned by the parameterized relationR[ ℄ .The following is the proof s
ore for Lemma 22:open BUF-BEQ .ops b1 b1' b2 b2' : -> Buf .vars B1 B2 : Bufop n : -> Nat .op e : -> Elt .19 There are several reasons for this. One of them is that the 
urrent proof methods forbehavioural equivalen
e rarely require the dire
t use of beh-redu
e or =b=. Anotherreason lies in the inherent in
ompleteness of the evaluation of =b=.



The following are the assumptions 
orresponding to the 
ase when both bu�ersare empty or to the 
ase when both bu�ers are non-empty. These are the only
ases to be 
onsidered be
ause of the 
oheren
e of empty?.beq b1 = b2 .beq b1' = b2' .eq empty?(b2) = true .eq empty?(b2') = false .In the �rst 
ase the proof of the 
oheren
e of put is given by the following redu
-tions (noti
e also the 
ase analysis 
orresponding to the parameter of R[ ℄ ):red put(e, b1) R[0℄ put(e, b2) .red put(e, b1) R[s n℄ put(e, b2) .For the se
ond 
ase, we need to pro
eed by indu
tion. Here is the base 
ase:red put(e, b1') R[0℄ put(e, b2') .For the indu
tive step, we �rst assume the indu
tion hypothesis
q get(take(n, put(e, B1))) == get(take(n, put(e, B2))) = trueif B1 =b= B2 .and we then perform the following redu
tion:red put(e, b1') R[s n℄ put(e, b2') .A.3 Proofs of behavioural ACZ properties of |In order to prove the ACZ of | as behavioural properties, we extend theCafeOBJ en
oding of behavioural equivalen
e from the reliable bu�er obje
t tothe unreliable one.mod* UBUF-BEQ { prote
ting(UBUF + BUF-BEQ)op _R[_,_℄_ : UBuf Nat ?Elt UBuf -> Bool {
oherent}bop take : Nat UBuf -> UBufvar N : Natvar E : ?Eltvars U U1 U2 : UBufeq take(0, U) = U .eq [take℄ : take(s(N), U) = take(N, take U) .eq U1 R[N,E℄ U2 = get?(take(N, U1), E) == get?(take(N, U2), E) .}We then build an environment for proofs:mod* UBUF-PROOF { prote
ting(UBUF-BEQ)ops u u' u'' : -> UBufop n : -> Natop e : -> Eltop e' : -> ?Eltvars U1 U2 U : UBufvar E : Eltvar N : Nat}We need to prove a lemma:



Lemma23. take(N, U1 | U2) = take(N, U1) | take(N, U2)Proof. We prove this by indu
tion on the natural number parameter:open UBUF-PROOF .This is the base 
ase:red take(0, u | u') == take(0, u) | take(0, u') .Now we assume the indu
tion hypothesis:eq take(n, U1 | U2) = take(n, U1) | take(n, U2) .and then do the indu
tion step:red take(s(n), u | u') == take(s(n), u) | take(s(n), u') .
loseNow we 
an pro
eed with the main proof.open UBUF-PROOF .by using Lemma 23:eq take(N, U1 | U2) = take(N, U1) | take(N, U2) .and then prove the ACZ behavioural properties:red (u | u') R[n,e'℄ (u' | u) .red (u | u') | u'' R[n,e'℄ u | (u' | u'') .red u | u R[n,e'℄ u .
loseA.4 Proofs about the Unreliable Bu�erIn this appendix se
tion we prove some (behavioural) properties of the unreliablebu�er. Firstly, we do some testing redu
tion in order to get a feeling abouthow the unreliable bu�er works. We just show the output from the CafeOBJinterpreter:-- opening module UBUF(X.TRIV+).. done._*-- redu
e put?(e1,put?(e2,init))(init | put(e1,init)) | (put(e2,init) | put(e1,put(e2,init))) : UBuf-- redu
e get?(put?(e1,put?(e2,init)),e1)true : Bool-- redu
e get?(put?(e1, put?(e2, init)), e2)true : Bool-- redu
e get?(put?(e1, put?(e2, init)), err)true : Bool-- redu
e get?(put?(e1, put?(e2, b)),err)false : Bool-- redu
e get?(take put?(e1, put?(e2, init)), e1)true : Bool-- redu
e get?(take put?(e1, put?(e2, init)), e2)false : Bool-- redu
e take put(e1, put?(e2, init)) == take put?(e1, put(e2, init))false : Bool-- redu
e take put(e1, put?(e2, init)) =b= take put?(e1, put(e2, init))true : Bool



Now we prove a true 
on
urren
y property between the reliable and unreliable\put" methods. This 
an be formulated asput(e; put?(e; u)) � put?(e; put(e; u))for ea
h unreliable bu�er state u and ea
h element e. Here is the proof:open UBUF-PROOF .We assume a previously proved lemma:eq take(N, U1 | U2) = take(N, U1) | take(N, U2) .and then perform the 
orresponding redu
tions by taking 
are of a small 
aseanalysis:red put(e, put?(e, u)) R[n,e℄ put?(e, put(e, u)) .red put(e, put?(e, u)) R[n,e'℄ put?(e, put(e, u)) .
loseThe rea
hable unreliable bu�er obje
ts are ri
her in properties. For examplethe following 
onstitute a 
omplete axiomatization of the attribute get?. Noti
ethat in the unreliable 
ase the same is not possible for take.mod* UBUF! { prote
ting(UBUF)vars E E' : Eltvar U : UBufeq get?(put(E, U), err) = false .
q get?(put(E, U), E') = get?(U, E')if not(get?(U, err)) or (E =/= E' and get?(U, err)) .
q get?(put(E, U), E) = true if get?(U, err) .
q get?(take U, err) = true if get?(U, err) .b
eq take put(E, U) = put(E, take U) if not get?(U, err) .}We leave the proof of these properties for the rea
hable 
ase to the reader.Now we 
an 
on
entrate to prove a last property for rea
hable unreliablebu�er obje
t models:take put?(e; u) � put?(e; take u) if get?(u; err) is falseWe open the environment for the rea
hable unreliable bu�er obje
t and assumethe hypothesis:open UBUF-PROOF + UBUF! .eq get?(u, err) = false .and then perform the redu
tions:red take put?(e, u) R[n,e℄ put?(e, take u) .red take put?(e, u) R[n,e'℄ put?(e, take u) .
lose


