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Abstract

This paper surveys the logical and mathematical foundatio@atgfOBJ, which is a suc-
cessor of the famous algebraic specification language OBJ but adds to it several new prim-
itive paradigms such as behavioural concurrent specification and rewriting logic.

We first give a concise overview @fafeOBJ. Then we focus on the actual logical foun-
dations of the language at two different levels: basic specification and structured specifi-
cation, including also the definition of t@afeOBJ institution. We survey some novel or
more classical theoretical concepts supporting the logical foundatidbafe©BJ, point-
ing out the main results but without giving proofs and without discussing all mathematical
details. Novel theoretical concepts include tubherent hidden algebriormalism and its
combination with rewriting logic, anrothendieck(or fibred) institutions However for
proofs and for some of the mathematical details not discussed here we give pointers to
relevant publications.

The logical foundations a€afeOBJ are structured by the conceptiostitution More-
over, the design d€afeOBJ emerged from its logical foundations, and institution concepts
played a crucial@le in structuring the language design.
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1 Introduction

CafeOBJ is anexecutabléndustrial strength algebraic specification language which

is a modern successor of OBJ and incorporates several new algebraic specification
paradigms. Its definition is given in [13FafeOBJ is intended to be mainly used

for system specification, formal verification of specifications, rapid prototyping, or
even programming. We give below a brief overview of its most important features.

1 On leave from the Institute of Mathematics of the Romanian Academy.
2 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292pAN
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Equational Specification and Programming.

Equational specification and programming is inherited from OBJ [29, 19] and con-
stitutes the basis of the language, the other features being somehow built on top of
it. As with OBJ,CafeOBJ is executablgby term rewriting), which gives an ele-

gant declarative way of functional programming, often referredlgsbraic pro-
gramming? As with OBJ,CafeOBJ also permits equational specification modulo
several equational theories such as associativity, commutativity, identity, idempo-
tence, and combinations between all these. This feature is reflected at the execution
level by term rewritingnodulosuch equational theories.

Behavioural Specification.

Behavioural specification [23, 24, 14, 31] provides a novel generalisation of or-
dinary algebraic specification. Behavioural specification characterises how objects
(and systemd)ehavenot how they are implemented. This new form of abstraction
can be very powerful in the specification and verification of software systems since
it naturally embeds other useful paradigms such as concurrency, object-orientation,
constraints, nondeterminism, etc. (see [24] for details). Behavioural abstraction is
achieved by using specification with hidden sorts and a behavioural concept of
satisfaction based on the idea of indistinguishability of states that are observation-
ally the same, which also generalises process algebra and transition systems (see
[24]). CafeOBJ behavioural specification paradigm is basedcoherent hidden
algebra(abbreviated ‘CHA) of [14], which is both a simplification and extension

of classical hidden algebra of [24] in several directions, most notably by allowing
operations with multiple hidden sorts in the arity. Coherent hidden algebra comes
very close to the “observational logic” of Bidoit and Hennicker [31].

CafeOBJ directly supports behavioural specification and its proof theory through
special language constructs, such as

¢ hidden sorts (for states of systems),

e behavioural operations (for direct “actions” and “observations” on states of sys-
tems),

e behavioural coherence declarations for (non-behavioural) operations (which may
be either derived (indirect) “observations” or “constructors” on states of sys-
tems), and

e behavioural axioms (stating behavioural satisfaction).

The advanced coinduction proof method receives suppdtaiieOBJ via a de-
fault (candidate) coinduction relation (denoted). In CafeOBJ, coinduction can
be used either in the classical hidden algebra sense [24] for proving behavioural

3 Although this paradigm may be used as programming, from the applications point of
view, this aspect is secondary to its specification side.



equivalence of states of objects, or for proving behavioural transitions (which ap-
pear when applying behavioural abstraction to rewriting logic). However, until the
time this paper was written, the latter has not been yet explored sufficiently, espe-
cially practically.

Besides language construdBafeOBJ supports behavioural specification and ver-
ification by several methodologi¢s.CafeOBJ currently highlights a methodol-

ogy for concurrent object composition which features high reusability not only of
specification code but also of verifications [13, 33]. Behavioural specification in
CafeOBJ may also be effectively used as an object-oriented (state-oriented) alter-
native for classical data-oriented specifications. Experiments seem to indicate that
an object-oriented style of specification even of basic data types (such as sets, lists,
etc.) may lead to higher simplicity of code and drastic simplification of verification
process [13].

Behavioural specification is reflected at the execution level by the concéyat- of
havioural rewriting[13, 14] which refines ordinary rewriting with a condition en-
suring the correctness of the use of behavioural equations in proving strict equali-
ties.

Rewriting Logic Specification.

Rewriting logic specification i€afeOBJ is based on a simplified version of Mese-
guer'srewriting logic (abbreviated as ‘RWL’) [36] specification framework for con-
current systems which gives a non-trivial extension of traditional algebraic speci-
fication towards concurrency. RWL incorporates many different models of concur-
rency in a natural, simple, and elegant way, thus gi@ageOBJ a wide range of
applications. Unlike Maude [3], the curre@afeOBJ design does not fully sup-
portlabelledRWL which permits full reasoning about multiple transitions between
states (or system configurations), but provides proof support for reasoning about
the existenceof transitions between states (or configurations) of concurrent sys-
tems via a built-in predicate (denoted>) with dynamic definition encoding into
equational logic both the proof theory of RWL and the user defined transitions
(rules). At the level of the semantics, this amounts to the fact thaCtieOBJ

RWL models are preorders rather than categories.

From a methodological perspecti@afeOBJ develops the use of RWL transitions
for specifying and verifying the properties déclarative encoding of algorithms
(see [13]) as well as for specifying and verifying transition systems.

4 This is still an open research topic, the current methodologies may be developed further
and new methodologies may be added in the future.



Module System.

The principles of theCafeOBJ module system are inherited from OBJ which
builds on ideas first realized in the language Clear [1], most notably institutions
[21, 17].CafeOBJ module system features

e several kinds of imports,
e sharing for multiple imports,
e parameterised programming allowing
- multiple parameters,
- views for parameter instantiation,
- integration ofCafeOBJ specifications with executable code in a lower level
language
e module expressions.

However, the concrete design of the language revises the OBJ view on importation
modes and parameters [13].

Type System and Partiality.

CafeOBJ has a type system that allows subtypes basedrder sorted algebra
(abbreviated ‘OSA) [27, 22]. This provides a mathematically rigorous form of
runtime type checking and error handling, giviGgfeOBJ a syntactic flexibil-

ity comparable to that of untyped languages, while preserving all the advantages of
strong typing.

At this moment the concrete order sortedness formalism is still open at least at the
level of the language definitiol€afeOBJ does not directly do partial operations

but rather handles them by using error sorts and a sort membership predicate in the
style of membership equational log{@bbreviated ‘MEL’) [37]. The semantics of
specifications with partial operations is given by MEL.

Logical semantics.

CafeOBJ is a declarative language with firm mathematical and logical foundations

in the same way as other OBJ-family languages (OBJ, Eqlog [25d8}PS[26],

Maude [36]) are. The mathematical semantic€afeOBJ is based on state-of-the-

art algebraic specification concepts and results, and is strongly based on category
theory and the theory of institutions [21, 12, 10, 17]. The following are the princi-
ples governing the logical and mathematical foundatiorSaieOBJ:

P1. there is an underlying logic® in which all basic constructs and features of

5 Here “logic” should be understood in the modern relativistic sense of “institution” which



the language can be rigorously explained.

P2. provide an integrated, cohesive, and unitary approach to the semantics
of specification in-the-small and in-the-large.

P3. develop all ingredients (concepts, results, etc.) at the highest appropriate
level of abstraction.

CafeOBJ is a multi-paradigm language. Each of the main paradigms implemented
in CafeOBJ is rigorously based on some underlying logic; the paradigms resulting
from various combinations are based on the combination of logics. The structure of
these logics is shown by the followir@afeOBJ cube where the full arrows mean
embedding between the logics, which correspond to institution embeddings (i.e., a
strong form of institution morphisms of [21, 17]) (the orientation of arrows goes
from “more complex” to “less complex” logics in the style of the original definition

of institution homomorphism [21]).

The mathematical structure represented by this cube is that ioldered institu-
tion[12]. TheCafeOBJ institution is aGrothendiecKor fibred) institution[12] ob-
tained by applying a Grothendieck construction to this cube (i.e., the indexed insti-
tution). The dotted arrows represent the institution homomorphism [21]. Note that
by employing other logical-based paradigms @seOBJ cube may be thought as

a hyper-cube (see [13] for details).

1.1 Summary of the paper

The first part of this paper is dedicated to the foundations of basic specifications.
The main topic of this part is the definition of HOSRWL, the hidden order sorted
rewriting logic institution, which embeds all other institutions of tGafeOBJ

cube. In this way, the HOSRWL institution contains the mathematical foundations
for all basic specificatio@afeOBJ constructs.

provides a mathematical definition for a logic (see [21]) rather than in the more classical
sense.



The second part of the paper presents the novel concept of Grothendieck institution
(developed in [12]) which constructs ti@afeOBJ institution from theCafeOBJ
cube.

The last section contains the definitions of the main mathematical concepts for
structuring specification i€afeOBJ.

The main concepts of the logical foundationsGzfeOBJ are illustrated with sev-
eral examples, includin@afeOBJ code. We assume familiarity witGafeOBJ
including its syntax and semantics (see [13] or several papers such as [15]).

Terminology and Notations

This work assumes some familiarity with basic general algebra (in its many-sorted
and order-sorted form) and category theory. Relevant background in general alge-
bra can be found in [20, 28, 38] for the many-sorted version, and in [27, 22] for
the order-sorted version. For category theory we generally use the same notations
and terminology as Mac Lane [34], except that composition is denoted by “;” and
written in the diagrammatic order. The application of functions (functors) to argu-
ments may be written either normally using parentheses, or else in diagrammatic
order without parentheses, or, more rarely, by using sub-scripts or super-scripts.
The category of sets is denotedSas, and the category of categorfessCat. The
opposite of a categor® is denoted byC°P. The class of objects of a categdfyis
denoted by|C|; also the set of arrows i€ having the objeca as source and the
objectb as target is denoted &5a,b). A preorderis a small category witht most

one arrow between each two objectspieorder functoris just a functor between
preorders. The category of preorders is denoteitriey

Indexed categories [39] play an importadlke in this work. [40] constitutes a good
reference for indexed categories and their applications to algebraic specification.
An indexed categorj40] is a functorB: 1°P — Cat; sometimes we denot(i) as

Bi (or B') for an indexi € |I| andB(u) asB" for an index morphismu € |. The
following ‘flattening’ construction providing the canonical fibration associated to
an indexed category is known under the name ofGnethendieck constructign

and plays an importantle in mathematics and in particular in this paper. Given
an indexed categor: 1°°P — Cat, let B! be theGrothendieck categorpaving

(i,Z), with i € |I] andZ € |B;|, as objects andu, ¢): (i,%) — (i, Z'), withu e

1(i,i") and¢: = — 3'BY, as arrows. The composition of arrowsBhis defined by

(U, 0); (U, ¢') = (U, 03(¢'BY)).

& We steer clear of any foundational problem related to the “category of all categories”;
several solutions can be found in the literature, see, for example [34].



2 Foundations of Basic Specifications

At the level of the basic specifications, semantic€afeOBJ is concerned with
the semantics of collections of specification stateméaseOBJ modules can be
flattened to suchasic specificationy an obvious induction process on the module
composition structure. I€afeOBJ we can have several kinds of specifications,
the basic kinds corresponding to the baSafeOBJ specification/programming
paradigms:

- equational specifications,

- rewriting specifications,

- behavioural specifications, and

- behavioural rewriting specifications.

The membership of a basic specification to a certain class is determined by the
CafeOBJ convention that each basic specification should be regarded as imple-
menting the simplest possible combination of paradigms resulting from its syntac-
tic content.

2.1 Loose and Tight Denotation

The key concept of specification in-the-small is gaisfaction relatiorbetween

the models and the sentences of a given specification, which is also the key notion
of the abstract concept of institution. Each kind of specification has its own concept
of satisfaction, and Section 2.2 surveys them briefly.

Each class of basic specifications has an underlying logic irfCafeOBJ cube.
Specifications can be regarded as finite sets of sentences in the underlying logic.
This enables us to formulate the principle of semantic€afeOBJ specification
in-the-small:

(S) Each basic specification determines a theory in the corresponding
institution. The denotation [SP] of a basic specification SPis the class of
models MoD(TSP) of its corresponding theory TSP if loose , and it is the
initial model Oysp of the theory;, if tight .

A basic specification can have either loose or initial denotation, and this can be di-
rectly specified by the uset.afeOBJ does not directly implement final semantics,
however final models play an importaigie for the loose semantics of behavioural
specifications (see [14, 9]).

Initial model semantics applies only to non-behavioural specification, and is sup-
ported by the following result:



Theorem 1 Let T be a theory in either MSA, OSA, RWL, or OSRWL. Then the
initial model Ot exists.

This very important result appears in various variants and can be regarded as a
classic of algebraic specification theory. The reader may wish to consult [28] for
MSA, [27, 22] for OSA, [36] for RWL, and although, up to our knowledge, the
result has not yet been published, it is also valid for OSRWL.

Because of the importance of the construction of the initial model we briefly recall
it here. Letz be the signature of the theory consisting of a%et sorts (which is a
partial order in the order-sorted case) and a ranked&(pget of operation symbols
(possibly overloaded). Thesorted seTs of Z-terms is the leas$-sorted set closed
under:

- each constantis Z&term (thatis2; s C Ts s), and
- 0(t1...th) € Teswhenevelo € X5, s, sandtj € Ty s fori e {1,...,n}.

The operations ix can be interpreted ofy in the obvious manner, thus making it
into aZz-algebra @. If T is equational, then its ground part (i.e., the set of pairs of
terms without variables representing the set of the ground equatidnsoa con-
gruence=t on Os. Then & is the quotient /=, whose carriers are equivalence
classes ot-terms undee=t. If T is a pure rewriting theory thenyQs a preorder
model” whose carriergOr)s are preorders of-terms with the preorder relation
given by the existence of a rewrite sequence (using the rul€3. &finally, rewrite
theories including equations require the combination between the above two con-
structions.

Example 2 Consider the followingCafeOBJ specification of non-deterministic
natural numbers:

mod! NNAT {
protecting(NAT)
[ Nat < NNat ]
op _|_ : NNat NNat -> NNat {assoc}
trans M:Nat | N:Nat => M .
trans M:Nat | N:Nat => N .

}

The denotation oNNATIs initial and consists [of the isomorphism class] of one
model, Qyar, the initial model. The main carrier ofyfyr is a preorder of non-
empty lists of natural numbers with the deletion sequences as the preorder relation.
_| _gets interpreted as a preorder functor which concatenates lists of numbers, and
composes in parallel (“horizontally”) deletion sequences.

" A restricted form of rewriting model; see the subsection “Models” of Section 2.2 for the
definition.



2.2 Hidden Order Sorted Rewriting Logic Institution

We devote this section to the definition of the HOSRWL institution (defined for the
first time in [9] in the many sorted version HRWL) which embedsGaifeOBJ

cube institutions. We recall here that the behavioural specification part of HOS-
RWL is based on the ‘coherent hidden algebra’ of [14]. The deep understanding of
HOSRWL requires further reading on its main components ([36] for RWL and [14]
for CHA) as well as their integration [9].

Signatures
Definition 3 A HOSRWlsignatureis a tuple(H,V, <, Zb), where

e (H,<) and(V, <) are disjoint partially ordered sets dfiddensorts andvisible
sorts, respectively,

e X isa(HUV,<)-order-sorted signature,

e 3P C 5 is a subset obehavioural operationsuch thaio e z\?v,s hasexactlyone
hidden sort in w.

Notice that we may simplify the notatiofH,V, <, ) to just (H,V,<,3) , or
justZ, when no confusion is possible.

Also notice that theCafeOBJ RWL signatures are just ordinary algebraic (MSA)
signatures; our approach is thus rather different from the original definition of RWL
signatures [36] adding structural equations in the definition of the signature.

From a methodological perspective, the operatiorz®inave object-oriented mean-
ing,o0 € ZS’\,’S is thought of as aaction (or “method” in a more classical jargon) on
the space (type) of statessfs hidden, and thought of as antiservation (or “at-
tribute” in a more classical jargon) #is visible. The last condition says that the
actions and observations act on (states of) single objects.

Definition 4 A HOSRWLsignature morphism®: (H,V,<,3,5P) — (H/ v/ <’
,Z’,Z’b) is an order-sorted signature morphisfthl UV, <,%) — (H' UV’ <" Y)
such that

(M1) ®(V)C V' and®d(H) C H’,
(M2) d(=°) = 3P andd~1(='P) C =P,
(M3) if ®(h) < d(K) for any hidden sorts i € H, then h< 1.

These conditions say that hidden sorted signature morphisms preserve visibility and
invisibility for both sorts and operations, and the C CD(Zb) inclusion together
with (M3) expresses the encapsulation of classes (in the sense that no new actions



(methods) or observations (attributes) can be defined on an importedclaisy-

ever, these conditions apply only to the case when signature morphisms are used as
module imports (the so-calldwbrizontalsignature morphisms); when they model
specification refinement this condition might be dropped (this case is c&ifédal
signature morphism).

Proposition 5 HOSRWL signatures and signature morphisms (with the obvious
composition) form a category denotedSigntOSRWL,

Sentences

In HOSRW.L there are several kinds of sentences inherited from the v&@afa®BJ
cube institutions.

Definition 6 Consider a HOSRWL signatufel,V, <, %, ). Then a(strict) equa-
tion is a sentence of the form

(W)t =t if C

where X is 8 H UV )-sorted set of variables, t’ are Z-terms with variables X, and
C is a Boolear? (-sorted)z-term,
a behavioural equations a sentence of the form

(VX)t ~ t'if C,

a (strict) transitionis a sentence of the form
(VX)t => t' if C,

and abehavioural transitionis a sentence of the form
(VX)t ~>t'if C

where Xt,t’,C have the same meaning as for strict equations.

All these sentences are here defined in the conditional form. If the condition is
missing (which is equivalent to saying that it is always true), then we get the un-
conditional versions of sentences. Notice also that our approach to conditional sen-
tences is slightly different from other approaches in the literature in the sense that
the condition is a Boolean term rather than a finite conjunction of formulae. Our

8 Without it the Satisfaction Condition fails; for more details on the logical and computa-
tional relevance of this condition see [23].

9 We implicitly assume the existence of a Boolean 8wl together with the ordinary
Boolean operations and equations specifying a Boolean datB@Qs.

10



approach is more faithful to the concrete levelG#feOBJ and is also more gen-

eral. This means that a finite conjunction of formulae can be translated to a Boolean
term by using some special semantic predicates (suelr d8r semantic equality
and==> for the semantic transition relation, @afeOBJ). We do not discuss here

the full details of this approach, we only mention that the full rigorous treatment of
such conditions can be achieved within the so-catledstraint logic[11], which

can however be regarded as a special case of an abstract categorical form of plain
equational logic [6, 5, 11].

Equational attributes such as associativity (A), commutativity (C), identity (1), or
idempotence (Z) are just special cases of strict equations. However, the behavioural
part of HOSRWL has another special attribute calbethavioural coherencfl 3,

14] which is regarded as a sentence:

Definition 7 Let(H,V, <,>,>) be a signature. Then
o coherent
is abehavioural coherenceleclaration fora, whereo is any operatior.

Definition 8 Given a signature morphisd: (H,V, <,,5°) — (H",V/, </, Z’,Z’b)

the translation of sentences is defined by replacing all operation symbols>3from
with the corresponding symbols (W8 from %’ and by re-arranging the sort of the
variables involved accordingly to the sort mapping giverstby

Fact 9 If we denote the set of sentences of a signattre/, <,%,>°) by
SenOSRWL(H v < 5 5P) and the sentence translation corresponding to a signa-
ture morphisnib by SenHOSRWL @), then we get a sentence functor

SCHHOSRWL: SignHOSRWL_> Set.

Models

Models of HOSRWL argreorder modelsvhich are (algebraic) interpretations of

the signatures int@re (the category of preorders) rather tharSet (the category

of sets) as in the case of ordinary algebras. Thus, ordinary algebras can be regarded
as a special case of preorder models with discrete carriers. On the other hand, if we
ignore the order sorted aspect, the HOSRWL preorder models are a special case of
Meseguer RWL models [36] which have at most one arrow between elements. In
the case of preorder models, the arrows between elements aretratigitions

Definition 10 Given a HOSRWL signatur@d,V, <, 3°), a HOSRWLlmodelM
interprets:

e each sort s as a preorder Mand each subsort relation< s’ as a sub-category
relation Ms C My, and

11



e each operatioro € Z,ys as a preorder functor M: My, — Ms, where M, stands
for Mg, x ... x Mg, forw=s;...s,.

Notice that eack-termt: w — sgets an associated preorder fundir M,y — Mg
by evaluating it for each assignment of the variables occurrirtgaiith elements
from the corresponding carriers Bf.

Model homomorphisms in HOSRWL follow an idea of [31] by refining the ordinary
concept of model morphism and reforming the hidden algebra [23, 24] homomor-
phisms by taking adequate care of the behavioural structure of models. We need
first to define the concept dkehavioural equivalence

Definition 11 Recall that a~-contextc[z] is anyZ-term ¢ with a marked variable
z occurring only once in c. A contexiztis behaviouraliff all operations abové®
z are behavioural.

Given a model M, two elements (of the same sort s) a aactaalledbehaviourally
equivalent denoted avs @ (or just a~ &) iff 11

Mc(a) = Mc(@)
for all visible behavioural contexts c.

Remark that the behavioural equivalence {$HaUV)-sorted equivalence relation,
and on the visible sorts the behavioural equivalence coincides with the (strict)
equality relation.

Now we are ready to give the definition of model homomorphism in HOSRWL.

Definition 12 A homomorphismhM — M’ between models of a signatuie¢,V, <
,Z,2P) is a (HUV)-sorted categorical relatioh® between the preorder carriers
such that (for each sort s):

e for all a € Mg there exists ‘ac M (where a and acan be either both transitions
or both elements) such that a &,

e foralla e Mg, if a hsd then (a R b’ if and only if d ~5b'),

e foralla,bc Mgand d € M, ifahs @ and a~sb then b g &, and

e for each operatioro € X, for all a € My, and & € M, a hy & (component-
wise) implies M(a) hs M/ (&).

10 Meaning thatzis in the subterm determined by the operation.

1 Notice that this equality means an equality between funckdgs,, — Mg, Where

c: wisw, — S with wy,wp € (HUV)* ands' € V.

12 This is a relation between the sets of elements together with a relation between the sets of
transitions, such that this couple of relations commute with the domain functions, codomain
functions, and transition composition functions.

12



Notice that when there are no hidden sorts (i.e., we are in some non-behavioural part
of HOSRWL), this concept of model homomorphism coincides with the rewriting
model homomorphism.

For a given signaturgH,V, <, ¥), we denote its category of models byod™OSRWL
Notice that any signature morphis#n. (H,V, <,3,5°) — (H',v',g/,z',z’b) de-
termines anodel reduct functoMobp(®): Mob(H', V', <3 Z’b) —MOoD(H,V, <
,Z,2P) in the usual way (by renaming the sorts of the carriers and the interpreta-
tions of the operations accordingly to the mapping of sorts and operations given by

®). Therefore we have a contravarianodel functor
MoDHOSRWL. §jgnHOSRWL _, C4¢0P,

Satisfaction

The satisfaction relation between sentences and models is the crucial concept of an
institution (see Definition 20).

Definition 13 Consider a model M of a signatuél,V, <, %, °). Then Msatisfies
an equationi.e., ME (VX)t = t’ if C,if and only if

Mt(0) = My (8) whenever M(8) is true

for all valuationsB: X — M. (Notice that we implicitly assume the standard (initial)
interpretation by M of the built-in data tyd@OOL)

M satisfies a behavioural equationi.e.,M = (VX)t ~ t’ if C, if and only if
M:(8) ~ My(8) wheneverMc(8) is true

for all valuations9: X — M.

M satisfies a transition i.e., M = (VX)t => t’ if C, if and only if for each

valuationf: X — M there exists the transitiav (8) — My (8) wheneveiMc(0) is

true.

M satisfies a behavioural transitioni.e.,M = (VX)t ~ >t" if C,if and only if

for each appropriate visible behavioural conteand for each valuatio®: X — M

there exists the transitidv¢(M;(8)) — M¢(My(0)) wheneveMc(0) is true.

Finally, M satisfies a coherence declaratign.e.,M |= (o coherent ), if and only
if o preserves the behavioural equivalencévbn.e.,

Mg(a) ~ Mg(d) if a~a (component-wise)

for alla,a € My,.

13



Notice that the behavioural coherence of both the behavioural operations and of
operations of a visible rank is trivially satisfied.

Example 14 Consider the followingCafeOBJ behavioural specification of non-
deterministic natural numbers:

mod* NNAT-HSA {
protecting(NAT)
*[ NNat ]*
op [] : Nat -> NNat
op _|_ : NNat NNat -> NNat
bop -> : NNat Nat -> Bool
vars S1 S2 : NNat
vars M N : Nat
eq [M] > N =M == .
eq S1 | S2 ->N=S1->Nor S2 -> N .
}

The non-deterministic natural numbeisands; are behaviourally equivalent if and
only if

s1 — n istrue if and only if s, — n is true
for all natural numbers.
Notice that for all model$1 of NNAT-HSA

M |= (|- coherent )

This situation where the operations which are neither behavioural nor data type
operations (i.e. with visible rank) are automatically coherent is rather natural and
occurs very often in practice, and this corresponds to the so-aaileetence con-
servative methodologyf [14].

The definition of the satisfaction relation between sentences and models completes
the construction of the HOSRWL institution:

Theorem 15 (SignHOSRWL gepHOSRWL )\ o pHOSRWL 1y 5 an institution.

For the definition of institution see Definition 20 given below. We omit here the
proof of this result which is rather long and tedious and follows the same pattern as
proofs of similar results, also reusing some of them.

At the end of the presentation of the HOSRWL institution we give a brief example
of a CafeOBJ specification in HOSRWL.:

Example 16 Consider a behavioural specification of sets of non-deterministic nat-
ural numbers:

14



mod* SETS {

protecting(NNAT)

*[ Set ]*

op empty : -> Set

op add : NNat Set -> Set {coherent}
op U_: Set Set -> Set {coherent}
op _& : Set Set -> Set {coherent}
op not : Set -> Set {coherent}

bop _in_ : NNat Set -> Bool

vars E E’ : NNat

vars S S1 S2 : Set

eq E in empty = false .

eq E in add(E', S) = (E == E’) or (E in S) .
eq Ein S1 U S2 (E in S1) or (E in S2) .
eq E in S1 & S2 (E in S1) and (E in S2) .
eq E in not(S1) = not (E in S1) .

whereNNATis the RWL specification of non-deterministic natural numbers of Ex-
ample 2. Models oSETS interpret the non-deterministic naturdiSNATby the

initial model Qyar and the hidden so$et and its related operations in various
ways. One possible way is to interpi®ét as sets of non-deterministic naturals.
Another way would be to interpr&et as a pair between a Boolean element and

a list of non-deterministic naturals, with the Boolefatse playing the role of
negation and with a corresponding interpretation of the operations. There are also
many other ways to interpret the loose partSETS Notice that each model of
SETSsatisfies the usual set theory rules (such as commutativity and associativity
of union and intersection, De Morgan laws, etc.) opghaviourally not necessar-

ily in the strict sense. For example, the behavioural commutativity of the union

beq S1 U S2 = S2 U S1 .

is a consequence of the specificat®&BTS While the former model satisfies it
strictly, the latter does not when interpreting the union as list concatenation.

Specifications in full HOSRWL naturally occur in the case of a behavioural speci-
fication using concurrent (RWL) data types. However the practical significance of
full HOSRWL is still little understood. The real importance of the HOSRWL insti-
tution is its initiality in theCafeOBJ cube. We will see below that the existence
of all possible combinations between the main logics/institutionSafeOBJ is
crucial for the good properties of tl@@afeOBJ institution.

15



2.3 Operational vs. Logical Semantics

The operational semantics underlies the execution of specifications or programs.
As with OBJ, theCafeOBJ operational semantics is based on rewriting, which in
the case of proofs is used without directly involving the user defined transitions
(rules) as rewrite rules but rather involving them via the built-in semantic transition
predicate==>. 13 For executions of concurrent systems specified in rewriting logic,
CafeOBJ uses both the user-defined transitions and equations.

Since rewriting is a very well known topic in algebraic specification, we do not
insist here on the standard aspects of rewriting. However, the operational semantics
of behavioural specification requires a more sophisticated notion of rewriting which
takes special care of the use of behavioural sentences during the rewriting process,
which we callbehavioural rewriting[13, 14]:

Definition 17 Given a HOSRWL signatu& and az-algebra A, abehaviourally
coherent context forA is anyZ-context ¢z such that all operations above the
marked variable z are either behavioural or behaviourally coherent for A.

Notice that any behavioural context is also behaviourally coherent.

Definition 18 Consider a HOSRWL signatuke a set E of>-sentences regarded

as a TRS (i.e. term rewriting system), and-algebra A satisfying the sentences
in E. If tp is a ground term, then any rewrite step-t t; which uses a behavioural
equation from E and for which the rewrite context has a behaviourally coherent
sub-context for A is called behavioural rewriting step

The following Proposition from [14] ensures the soundness of behavioural rewrit-
ing:

Proposition 19 Under the hypotheses of Definition 18,gift t1 is a behavioural
rewrite step, then A= (V0) to ~ t1. Moreover, if the rewrite context is visible, then
AlE (VO)to = t1.

The completeness of the operational semantics with respect to the logical semantics

is a two-layer completeness going via the important intermediate level of the proof
calculi.

The completeness of the proof calculus is one of the most important class of results
in algebraic specification, for equational logic we refer to [27], and for rewriting

13This means that th€afeOBJ proofs are equational and involve a built-in equation
(t==>t")= true for each user defined transitita>t". See [13] or [16] for more details.
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logic to [36]. In the case of rewriting logic the relationship between the proof cal-
culus and rewriting is very intimate, but for equational logic the completeness of
rewriting can be found, among other many places, in [20, 8].

Notice that hidden logics of th€éafeOBJ cube do not admit a complete (finitary)
proof calculus [2]. However, advanced proof techniques support the verification
process in the case of behavioural specifications, most notabligididen coin-
ductionmethod (see [24] for the original definition, [13, 14] for its realization in
CafeOBJ, and [7] for the details for the case of proving behavioural transitions).

3 The CafeOBJ Institution

In this section we define th€afeOBJ institution, which is a Grothendieck con-
struction on theCafeOBJ cube. The Grothendieck construction for institutions
was introduced and developed by Diaconescu in [12] and generalises the famous
Grothendieck construction for categories [30]. The essence of this Grothendieck
construction is that it constructs a ‘disjoint sum’ of all institutions of @edeOBJ

cube, also introducing theory morphisms across the institution embeddings of the
CafeOBJ cube. Suclextra theory morphismaere first studied in [10]. However,

one advantage of the Grothendieck institutions is that they treat the extra theory
morphisms as ordinary theory morphisms, thus leading to a conceptual simplifica-
tion with respect to [10].

The reader might wonder why one cannot live with HOSRWL only (which em-
beds all theCafeOBJ cube institutions) and we still need a Grothendieck con-
struction on theCafeOBJ cube. The reason for this is that the combination of
logics/institutions realized by HOSRWL collapses crucial semantic information,
therefore a more refined construction which preserves the identity of each of the
CafeOBJ cube institutions, but yet allowing a concept of theory morphism across
the institution embeddings, is necessary. For example, in the case of specifications
with loose semantics without a RWL component, the carriers of the models of these
specifications should be sets rather than preorders, which is not possible in HOS-
RWL. Therefore, such specifications should be given semantics within the appro-
priate institution of theCafeOBJ cube rather than in HOSRWL. Example 39 illus-
trates this argument.

3.1 Institutions

We now recall from [21] the definitions of the main institution concepts:

Definition 20 Aninstitution [0 = (Sign, Sen,M oD, =) consists of
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(1) a categorysign, whose objects are callesignatures

(2) afunctorSen: Sign — Set, giving for each signature a set whose elements are
calledsentencesver that signature,

(3) afunctorMob: Sign°? — Cat giving for each signatur& a category whose
objects are calledz-models and whose arrows are calleB-(mode) mor-
phisms and

(4) arelation=s C [MoD(Z)| x Sen(Z) for eachX € |Sign|, calledX-satisfaction

such that for each morphisgn: < — %’ in Sign, thesatisfaction condition

M =5 Sen(0)() iff MoD($)(n) = e

holds for each e [MoD(Z')| and ec Sen(Z). We may denote the reduct functor
MobD(¢) by _f¢ and the sentence translaticien(¢) by ¢(-).

Definition 21 Letd = (Sign, Sen,M oD, =) be an institution. For any signatui®
the closure of a set E &-sentences is E= {e| E |=5 e} 4. (%,E) is atheoryif
and only if E is closed, i.e., E E®.

Atheory morphismd: (2, E) — (Z',E’) is a signature morphismh: = — ¥’ such
that¢(E) C E’. LetTh(0) denote the category of all theorieslih

For any institutiont], the model functor MD extends from the category of its
signaturesign to the category of its theorié&h([), by mapping a theor{Z,E) to
the full subcategory MD(Z, E) of MoD(Z) formed by the-models which satisfy
E.

Definition 22 A theory morphisn: (Z,E) — (¥',E’) is liberal if and only if the
reduct functor_[¢: Mob(Z',E’) — MoD(Z,E) has a left-adjoin{_)?.

The institution] is liberal if and only if each theory morphism is liberal.
Definition 23 An institution = (Sign, Sen, MOD, |=) is exactif and only if the
model functortMoD: Sign°® — Cat preserves finite limitd] is semi-exactf and

only if MoD preserves pullbacks.

Definition 24 Let O and [0’ be institutions. Then amstitution homomorphism
[ — O consists of

(1) afunctor®: Sign’ — Sign,
(2) a natural transformatiom : ®; Sen = Ser’, and
(3) a natural transformatiofs: Mob’ = ®°P; MoD

14E =5 emeans thaM =5 efor any>-modelM that satisfies all sentenceskn
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such that the followingatisfaction conditiorholds

m [y ax(e) iff Bx(M) s e
for anyX’-model mfrom [’ and anyZ’®-sentence e froml.

Fact 25 Institutions and institution homomorphisms form a category denoted as
Ins.

The following properties of institution homomorphisms were defined in [12] and
play an importantale for Grothendieck institutions:

Definition 26 An institution homomorphisit®, a,p): ' — Ois

¢ an embeddingff ® admits a left-adjoint® (with unit ); an institution embed-
ding is denoted ag®,d,¢,a,B): ' — 0, and is
e liberal iff Bs has a left-adjoinBs, for eachZ’ € |Sigr/|.

An institution embedding®, ®,{,a,B): [ — O is exactif and only if the square
below is a pullback

MoD(Z) Mobe) MoD(Z1)

M OD(ZZ)T TM OD(z1Z)
MoD(ZPD) MoD(Z1PP)
BzmT Tﬁzlm

M OD%ZE) W)M OD’(Z]_E)

where¢: ~ — Z; is any signature morphism i.

3.2 Indexed and Grothendieck Institutions

The following definition from [12] generalises the concept of indexed category [40]
to institutions.

Definition 27 Anindexed institution O is a functorOd: |°P — Ins.

The CafeOBJ cube is an indexed institution where the index catedoiy the
8-element lattice corresponding to the cube (i.e., the elements of the lattice corre-
spond to the nodes of the cube and the partial order is given by the arrows of the
cube).

Definition 28 TheGrothendieck institution* of an indexed institutiorid: 1°° —
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Ins has

(1) the Grothendieck categoBjgn’ as its category of signatures, whéign: 1°° —
Cat is theindexedcategory of signatures of the indexed institution

(2) Mob?: (Sign®)°P — Cat as its model functor, where _
e MoD!((i, Z)) = MoD/(Z) for each index i |I| and signatureZ  [Sign'|,

and

o MOD*({u, 9)) = BY;MoD' () for each(u, ¢): (i, =) — (i’, '),

(3) Sen’: Sign* — Set as its sentence functor, where '
o Sen*((i, Z)) = Sen'(Z) for each index E |I| and signaturez € [Sign'|, and
o Sen*((u,$)) = Sen'(¢);a, for each(u, ): (i, Z) — (i’, '),

(4) m ):fm e iff m=% e for each index & |1/, signatures € Sign'|, model me
IMoDf((i, Z))|, and sentence e Sen*((i, ).

where' = (Sign',MoD', Sen', |=') for each index E |I| and 0¥ = (®Y, Y, BY) for
u € | index morphism.

For the category minded readers we mention that [12] gives a higher level charac-
terisation of the Grothendieck institution as a lax colimit in the 2-catefyzs{with
institutions as objects, institution homomorphisms as 1-cells, and institonozh
ificationsas 2-cells; see [12] for details) of the corresponding indexed institution.
This means that Grothendieck institutions are inte@athendieck objects in

Insin the same way as Grothendieck categories are Grothendieck objécas. in

For the fibred category minded readers, [12] also introduces the alternative formu-
lation of fibred institutionand shows that there is a natural equivalence between
split fibred institutions and Grothendieck institutions.

We would also like to mention that the concept of extra theory morphism [10]
across an institution homomorphid — O (with all its subsequent concepts) is
recovered as an ordinary theory morphism in the Grothendieck institution of the
indexed institution given by the homomorphigith— [ (i.e., which hass — e as

its index category).

Now we are ready to define the institution@afeOBJ:

Definition 29 TheCafeOBJ institution is the Grothendieck institution of ti&afeOBJ
cube.

15 From [12], a Grothendieck object in a 2-category is a lax colimit of a 1-functor to that
2-category.

20



3.3 Properties of th€afeOBJ Institution

In this section, we briefly study the most important institutional properties of the
CafeOBJ institution: existence of theory colimits, liberality (i.e. free construc-
tions), and exactness (i.e. model amalgamation).

Proposition 30 The institution homomorphisms of tGafeOBJ cube are all em-
beddings.

Sketch of Proof: The forgeful functors between the categories of the signatures
of the CafeOBJ institutions are as follows:

e The forgetful functors along the order sorted dimension forget the ordinary sorts,
i.e., asignaturéeS <,X) gets mapped t(S ). The left-adjoints to these functors
map a signaturéS, ¥) to the discrete order sorted signat(g—=,%).

e The forgetful functors along the RWL dimension are all identities, so they triv-
ially admit left-adjoints.

e The forgetful functors along the behavioural dimension forget the hidden sorts
and the operations involving the hidden sorts. Thus, a signéilii 3, 5°) gets
mapped to(V,ZV) whereZ" is the set of operations il having only visible
sorts in the rank (that is, involving only visible sorts). The left-adjoints to these
functors map a signatur&, ) to the behavioural signatur@, S 2, 0).

This makes th&€afeOBJ cube arembedding-indexed institutiqof. [12]). As we
will see below, this property of th€afeOBJ cube plays an importandle for the
properties of th&€CafeOBJ institution.

Theory Colimits.

The existence of theory colimits is crucial for any module system in the Clear-OBJ
tradition. Let us recall the following result from [12]:

Theorem 31 Let O: 1°P — Ins be an embedding-indexed institution such that | is
J-cocomplete for a small category J. Then the category of theﬁméﬁlﬁ) of the
Grothendieck institutior)* has J-colimits if and only if the category of signatures
Sign' is J-cocomplete for each indexill |.

Corollary 32 The category of theories of tli&afeOBJ institution is small cocom-
plete.

Notice that the fact that the lattice of institutions of tBafeOBJ cube is com-
plete (as a lattice) means exactly that the index category o€#ieOBJ cube is
(small) cocomplete, which is a precondition for the existence of theory colimits in
the CafeOBJ institution. In the absence of the combinations of logics/institutions
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of the CafeOBJ cube (such as HOSRWL), the possibility of theory colimits in the
CafeOBJ institution would have been lost.

Liberality.

Liberality is a desirable property in relation to initial denotations for structured
specifications. In the case of loose denotations liberality is not necessary. Since
the behavioural specification paradigm involves only loose denotations, in the case
of the CafeOBJ institution, we are therefore interested in liberality only for the
non-behavioural theories. Recall the following result from [12]:

Theorem 33 The Grothendieck institutiofl* of an indexed institutioril: 1°P —
Ins is liberal if and only if00' is liberal for each index & |I| and each institution
homomorphisnil is liberal for each index morphismail.

Corollary 34 In the CafeOBJ institution, each theory morphism between non-
behavioural theories is liberal.

This corollary is obtained from the theorem above by restricting the index category
to the non-behavioural square of tGafeOBJ cube, and from the corresponding
liberality results for equational and rewriting logics (see [32] for a general liberality
result which instantiate to th@afeOBJ equational and rewriting logic$).

Exactness.

Firstly, let us extend the well known exactness results for equational logic [17] to
the CafeOBJ cube:!’

Proposition 35 All institutions of theCafeOBJ cube are semi-exact.

Notice that the exactness of the hidden (behavioural) logics can be deduced directly
from the exactness of the equational and rewriting logics because the models of the
hidden logics are essentially just ordinary algebras or preorder models.

As shown in [10] and [12], in practice exactness is a property hardly achieved at the
global level by the Grothendieck institutions. In [12] we give a necessary and suf-
ficient set of conditions for (semi-)exactness of Grothendieck institutions. One of
them is the exactness of the institution embeddings, which fails for the embeddings
from the non-RWL institutions into the RWL institutions of tkafeOBJ cube as
shown by the following:

16 For the liberality of Meseguer RWL the reader might look into [35].
17 For the exactness of rewriting logics we may refer to Hendrik Hilberdink coming Oxford
DPhil thesis; [32] is a condensed version of some parts of it.
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Fact 36 The embedding of MSA into RWLnist exact.

Proof: We do a proof by contradiction. Let us assume that the embedding of MSA
into RWL is exact. For the signature homomorphigrof Definition 26 we choose

the unique signature homomaorphigm 0 — %, from the empty signatur@ to an
arbitrary but fixed signaturg;.

The pullback square of Definition 26 gets simplified to the fact that the category
MobRWL(3;) is the product of the categories dRWL(0) and MobMSA(Zy).

But MobRWL(0) is the terminal category, thus we deduce thaadt™V/-(Z;) and
MobMSA(31) are isomorphic, which is obviously wrong.

In the absence of a desired global exactness property faZdfesOBJ institution,

we need a set of sufficient conditions for exactness for practically significant partic-
ular cases. In [10] we formulate a set of such sufficient conditions, but this problem
is still open.

4 Foundations of Structured Specifications

In this section we survey the mathematical foundations ofGaeOBJ module
composition system, which follows the principles of the OBJ module system which
are inherited from earlier work on Clear [1]. Consequently, GlaéeOBJ module
system is institution-independent (i.e., can be developed at the abstract level of
institutions) in the style of [17]. In the actual case @&afeOBJ, the institution-
independent semantics is instantiated to @aeOBJ institution. The following
principle governs the semantics of programming in-the-largeafe OBJ:

(L) For each structured specification we consider the theory correspond-
ing to its flattening to a basic specification. The structuring constructs
are modelled as theory morphisms between appropriate theories. The
denotation [SPF] of a structured specification is determined from the de-
notations of the components recursively via the structuring constructs in-
volved.

The general structuring mechanism is constitutedrimdule expressionsvhich
are iterations of several basic structuring operations, such as (multiple) imports,
parameters, instantiation of parameters by views, translations, etc.
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4.1 Module Imports

Module imports constitute the most primitive structuring construct in any module
composition system. The concept of module import in the institution-independent
semantics oCafeOBJ is based on the mathematical notionmglusion system

Module imports are modelled as inclusion theory morphisms between
the theories corresponding to flattening the imported and the importing
modules.

Inclusion systemwere first defined in [17] for the institution-independent study of
structuring specification$Veak inclusion systemgere introduced in [4], and they
constitute a simplification of the original definition of inclusion systems of [17].
We recall the definition of inclusion systems:

Definition 37 (I, E) is aweak inclusion systenfor a categoryC if 7 and ‘£ are
two sub-categories with/| = | E| = |C| such that

(1) I is a partial order, and
(2) every arrow f inC can be factored uniquely as=f e;iwithec Eand i€ I.

The arrows ofI are calledinclusions and the arrows ofE are called surjec-
tions. 1 The domain (source) of the inclusion i in the factorisation of f is called
theimage of f and denoted atm(f). Aninjection is a composition between an
inclusion and an isomorphism.

A weak inclusion syster1, £) is aninclusion systeniff I has finite least upper
bounds (denoted) and all surjections are epics (see [17]).

The inclusion system for the category of theories of@lade OBJ institution is ob-
tained by lifting the inclusion system for its category of signatures (see [17, 4]). The
weak inclusion system for the category of signatures is obtained from the canon-
ical inclusion systems of the categories of signatiifesf the CafeOBJ cube in-
stitutions by using the following result from [12] (which appeared previously in a
slightly different form in [10]):

Theorem 38 Let B: 1°P — Cat be an indexed category such that

18 Surjections of some weak inclusion systems need not necessarily be surjective in the
ordinary sense.

19 For example, in the simplest case of the MSA signaturemaunsion(S,3) — (S,%') is

given byS— S andZy;s — X}, (as ordinary set-theoretic inclusions) for eack S* and

seS (f,9): (§%) — (8,Y) is surjectioniff S = f(S) andZ), y = U{9(Zws) | (W) =

w and f(s) = s'}, for eachw/,s. This example is originally developed in [17] and can be
easily extended to the other more compleafe OBJ cube institutions.
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| has a weak inclusion systefi', £'),

B' has a weak inclusion systefii, £') for each index E |1|,

BY preserves inclusions for each inclusion index morphismiti, and

BY preserves inclusions and surjections and lifts inclusions uniquely for each
surjection index morphisma £'.

Then, the Grothendieck categorytias an inclusion systemBu, Z:Bt) where(u, ¢)
IS

e inclusioniff both u and¢ are inclusions, and
e surjectioniff both u and$ are surjections.

In the case of th&€afeOBJ institution, this result is applied for the indexed cat-
egory of signatures of th€afeOBJ cube (see Proposition 30 for details on the
structure of the indexed category of signatures ofGaé&OBJ cube).

Example 39 Consider the following module import:
mod* TRIV { [ Elt ] }

mod* NTRIV {
protecting(TRIV)
op |_ : EIt ElIt -> Elt {assoc}
trans M:Elt | N:Elt => M .
trans M:EIt | N:Elt => N .

}

Module TRIV gets a MSA loose theory, which has all sets as its denotation. Mod-
ule NTRIV gets a RWL loose theory, which has as denotations preorders with an
interpretation of |_ as an associative binary preorder functor, and which satisfy the
couple of choice transitions NTRIV. The module importRIV — NTRIV corre-
sponds to an injective extra theory morphigif!’ — TNTRIV across the forgetful
institution morphism RWL— MSA.

More formally, the inclusion signature morphism underlying!’ — TNTRIV can

be represented dsi, ¢) whereu is the institution morphism RWEk-> MSA and¢

is the signature inclusioa™V — u(Z"TRIV) (whereZ™1!V is the MSA signature

of TRIV, "RV js the RWL signature oNTRIV, andu(Z"™*V) is the reduct of
SNTRIV to an MSA signature). Notice thatis an inclusion since th€afeOBJ cube
admits a trivial inclusion system in which all arrows are inclusions, that the reduct
from RWL signatures to MSA signatures is an identity, and B4tV — sVTRIV js

an inclusion of MSA signatures.

An interesting aspect of this example is given by its model theory. The denotation

of this module import is the model reduct functorod(TY™V) — Mop(T™IV)
in the CafeOBJ institution. From Definition 28, this meam,.,; MobM34(¢),
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which means a two level reduction. The first lev@4:y, means getting rid of

the transitions of the carrier (i.e. making the carrier discrete) of the model and
regarding the interpretation of_ as a function rather than a functor. The second
level, MODMSA(¢), is a reduction internal to MSA which forgets the interpretation
of _|_. It is very important to notice that the correct denotation for this module
import can be achieved only in the framework of tbafeOBJ institution, the fact

that this is a Grothendieck institution being crucial. None of the institutions of the
CafeOBJ cube (such as RWL for example) would have been appropriate to give
the denotation of this example.

We denote the partial order of module importsPyBy following the OBJ tradi-

tion, we can distinguish between three basic kinds of impprtdecting, extend-

ing, andusing. At the level of the language, these should be treated just as semantic
declarations which determine the denotation of the importing module from the de-
notation of the imported module.

Definition 40 Given a theory morphism: T — T’, and a model M of T, aex-
pansion ofM along ¢ is a model M of T’ satisfying the following properties:

e M'[y = M iff the expansion iprotecting

e there is aninjective?® model homomorphism M- M’[y iff the expansion is
extending

e there is an arbitrary model homomorphism-MM'] iff the expansion isising,
and

e M’ is free over M?! with respect tap iff the expansion ifree.

Definition 41 Fix an import SPRISP and let T and T be the theories correspond-
ing to SP and SPrespectively. Then

[SP] = {M’ | M =T', M is an expansion of the same kind as the importation
mode involved of some modeld[SH] (and in addition free if SAs initial) }.

Multiple imports are handled by a lattice structure on imports. The existence of
(finite) least upper bounds (callsdmsin [17]) of module imports corresponds to
the weak inclusion system of theory morphisms being a proper inclusion system.
In [18] we lift sums from inclusion systems for ordinary theory morphisms to ex-
tra theory morphisms. The (finite) greatest lower bounds (catiensectiony are
defined as the pullback of the sums.

20 Under a suitable concept of ‘injectivity’.
21 Which means tha!’ is the free object oveM with respect to the model reduct functor
_[¢: MoD(T’) — MoD(T).
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T T+T

TAT T/

In practice, one of the important properties of the sum-intersection square is to be a
pushout besides being a pullback square. This result for the inclusion system of ex-
tra theory morphisms together with the details of its construction are given in [18].
All these can be easily translated to the conceptual famework of the Grothendieck
institutions 22

4.2 Parameterisation

Parameterization is an important feature of all module systems of modern specifi-
cation or programming languages. GafeOBJ the mathematical concept of pa-
rameterised modules is based iojections(in the sense of Definition 37) in the
category of theories of theafeOBJ institution:

Parameterised specifications SR(X :: P) are modelled as injective the-
ory morphisms from the theory corresponding to the parameter P to the
theory corresponding to the body SP. Views are modelled as theory mor-
phisms.

The denotatiolff SH] of the body is determined from the denotation of the parameter
accordingly to the parameterisation mode involved as in the case of module imports
(Definition 41).

We distinguish two opposite approaches on parameteatsagedand anon-shared

one. In the ‘non-shared’ approach, the multiple parameters are mutually disjoint
(i.e., ImX) Alm(X’) = 0 for X and X’ two different parameters, where (X)

means the image of the parameter into the body theory and we denote its intersec-
tions, or greatest lower bounds, by and they are also disjoint from any module
importsTo < T (i.e., Im(X) A Tp = 0). In the ‘shared’ approach this principle is re-
laxed to being disjoinbutside common importse., Im(X) AlIm(X’) = S, ax T1 A

Stax T1 for X and X’ two different parameters and (X) A To = Y1, ax ATo for

all To<JT. The ‘non-shared’ approach has the potentiality of a much more pow-
erful module system, while the ‘shared’ approach seems to be more convenient to

22 The construction of the inclusion system for Grothendieck institution relies on the con-
struction of finite limits in Grothendieck (fibred) categories.
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implement (see [13] for details). THeafeOBJ definition gives the possibility of
the whole range of situations between these two extremes by giving the user the
possibility to control the sharing.

Example 42 This is an example adapted from [13]. Consider the (double param-
eterised) specification of a ‘power’ operation on monoids, where powers are ele-
ments of another (abstract) monoid rather than natural numbers.

mod* MON {
protecting(TRIV)
op nil : -> Elt

op _;_ : Elt Elt -> EIt {assoc id: nil}
}
mod* MON-POW (POWER : MON, M : MON)
{
op _~_ : EltM EIt.POWER -> EIt.M
vars m m' : EltM
vars p p’ . EI.POWER
eq(m;:m)y p =(m"p;m"°p.
eq m”~ (p;p)=MmM" p);(m”p).
eq m " nil = nil .
}

The diagram definingION-POWé

TRIV—~MON

MON-POW

OWER
TRIV ——~MON

whereMON-POWonsists of two copies dfilONabelled byMandPOWERespec-
tively, plus the power operation together with the 3 axioms defining its action. This
meansTRIV is not shared, since the power monoid and the base monoid are al-
lowed to have different carriers. The denotatidON-POY\Vconsists of all pro-
tecting expansions (with interpretations_6f) to MON-POWf non-shared amal-
gamations of monoids corresponding to the two parameters.
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In the ‘shared’ approach, the parameterisation diagram is

MON
/ \
TRIV = MON-POW
\ POWER
MON

In this case, the denotatidiMON-POYVconsists of all two different monoid struc-
tures orthe same seplus an interpretation of _ satisfying the ‘power’ equations.

In CafeOBJ such sharing can be achieved by the user by means of the command
share which has the effect of enforcing that the modules declared as shared are
includedrather than ‘injected’ in the body specification. In this case we have just
to specify

share(TRIV)

The following defines parameter instantiation by means of the pushout technique
for the case of single parameters. This definition can be naturally extended to the
case of multiple parameters (for details about instantiation of multiple parameters
in CafeOBJ see [13]).

Definition 43 Let SRX :: P) be a parameterised module and &t 7 TSPpe its
representation as theory morphism. Lefi” — T be a view. Then the instantiation
TSP(v) is given by the following pushout of theory morphisms in GadeOBJ
institution:

TP— X . sP
v V(X)
T X(v) =T (V)



in the ‘non-shared’ approach, and by the following co-limit

TATSP
<
p TP—>X TSP
v v(X)
v
T >TSP(v)

in the ‘shared’ approach.

Example 44 Consider the followingCafeOBJ view interpreting the monoid struc-
ture by the natural numbers with addition:

view nat-plus from MON to NAT {
sort Elt -> Nat,
op _,_ > _*+_,

op nil >0

}

We instantiateMON-POWyY MON-POW(POWER <= nat-plus, M) for ob-
taining monoids with natural powers. The theory pushout corresponding to this
instantiation can be represented by:

TN FONER . THON-POV(pQWER, M)
nat—plus nat—plus(POWER)
MON—POW !
NAT s - —
T PDWER(nat—;IIls) (nat —plus,M)

The semantics of parameter instantiation relies on preservation properties of con-
servative extensions by pushouts of theory morphisms. Recall the concept of con-
servative theory morphism from [17]:

Definition 45 A theory morphismd: T — T’ is conservativeif and only if any
model M of T has a protecting expansion alang

Example 46 In the case of Example 420OWER(nat-plus) is conservative
because the theory morphisROWERs conservative. The denotation BfON-
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POW(nat-plus,M) thus consists of all monoids with natural powers.

Preservation of conservative extensions in Grothendieck institutions is a signifi-
cantly harder problem than in ordinary institutions. Such technical results for Gro-
thendieck institutions have been obtained in [18] but within the conceptual frame-
work of extra theory morphisms.

5 Conclusions and Future Work

We surveyed the logical foundations@afeOBJ which constitute the origin of the
concrete definition of the language [13]. Some of its main features are:

simplicity and effectiveness via appropriate abstractness,

cohesiveness,

flexibility,

it provides support for multi-paradigm integration,

it provides support for the development of specification methodologies, and
it uses state-of-the-art methods in algebraic specification research.

We defined th&€afeOBJ institution, overviewed its main properties, and presented
the main mathematical concepts and results underlying basic and structured speci-
fication inCafeOBJ.

Besides theoretical developments, future workQafeOBJ will mainly concen-

trate on specification and verification methodologies, especially the object-oriented
ones emerging from the behavioural specification paradigm. This includes refin-
ing the existing object composition methodology based on projection operations
[33, 15, 13] but also the development of new methodologies and careful identifica-
tion of the application domains most suitable to certain specification and verifica-
tion methodologies.

The development ofafeOBJ has been an interplay process among language de-
sign, language and system implementation, and methodology development. Al-
though the language design is based on solid and firm mathematical foundations, it
has been greatly helped by the existence of a running system, which gave the possi-
bility to run various relevant examples, thus giving important feedback at the level
of concrete language constructs and execution commands. The parallel develop-
ment of methodologies gave special insight on the relationship between the various
paradigms co-existing i@afeOBJ with consequences at the level of design of the
language constructs.

We think that the interplay among mathematical semantic desi@afgdOBJ, the
system implementation, and the methodology development has been the most im-
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portant feature ofCafeOBJ design process. We believe this promises the sound
and reasonable development of a practical formal specification method around
CafeOBJ.
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