
On the Existence of Translations of Structured Specifications

Răzvan Diaconescu

Simion Stoilow Institute of Mathematics of the Romanian Academy

Abstract

We provide a set of sufficient conditions for the existence of translations of structured specifications across
specification formalisms. The most basic condition is the existence of a translation between the logical
systems underlying the specification formalisms, which corresponds to the unstructured situation. Our
approach is based upon institution theory and especially upon a recent abstract approach to structured
specifications in which both the underlying logics and the structuring systems are treated fully abstractly.
Hence our result is applicable to a wide range of actual specification formalisms that may employ different
logics as well as different structuring systems, and is very relevant within the context of the fastly developing
heterogeneous specification paradigm.

1. Introduction

Formal specification is an important paradigm that assist the development and maintenance of complex
software systems; some argue that it is indispensable in the case of critical systems. Complex software
systems involve very large specifications that cannot be developed and maintained in the absence of adequate
structuring or modularisation. On the other hand, with the recent advance of the heterogeneous specification
paradigm, there is a growing interest in the theory of translations between different specification formalisms.
While this theory is quite developed at the level of translations between the underlying logics, which
corresponds to the unstructured case, very little has been done for the structured specifications level. In my
opinion, one reason for that situation lies in the fact until [5] structuring has been always treated concretely
by making a choice of a particular set of structuring operators. With that kind of commitment the only
variation between specification formalisms that is possible to consider is at the level of the underlying logic.
This is a limitation since actual specification systems may involve modularisation constructs that cannot
always be traced back to an apriori fixed set of core structuring operators.

The theory of abstractly structured specifications (ASS) of [5] provides a flexible approach to structuring
systems and within that framework in [2] the author defines an adequate concept of translation of ASSs
that is based upon the concept of comorphism from institution theory [10]. In my opinion, apart from the
definition of the concept, the most important contribution of [2] consists of a minimalistic axiomatisation of
the concept. In this work we build on the concept of translation of [2] and take a step forward by giving a set
of general conditions, widely applicable, for the existence of translations of ASSs.

In the first part of the paper we recall very briefly general concepts of institution theory, and then we
recall the main concepts from the theory of ASSs of [5] and also introduce a couple of new concepts required
by our work. An important argument presented in the form of an example shows that the semantic normal

Email address: Razvan.Diaconescu@imar.ro (Răzvan Diaconescu)

Preprint submitted to Information Processing Letters August 19, 2014

forms of [5], which play an important role in our main result, is significantly more general than its syntactic
counterpart from the literature (e.g. [15]). The final technical section starts by recalling the concept of
translation of ASSs of [2] and continues with the development of the main result of this paper, namely the
existence of translations of ASSs. The general theory is illustrated by a relevant example displaying both
concrete logics and concrete sets of structuring operators.

2. Institutions and Comorphisms

Institutions [1, 9] formalize the intuitive notion of logical system, including the syntax, semantics and the
satisfaction between them and have been used intensively in computer science (e.g. [15]) and logic (e.g. [3]).

Definition 2.1 (Institutions). An institution I = (SignI, SenI,ModI, |=I) consists of

1. a category SignI, whose objects are called signatures,

2. a functor SenI : SignI → Set (to the category of sets), giving for each signature a set whose elements
are called sentences over that signature,

3. a functor ModI : (SignI)op → CAT (from the opposite of SignI to the category fo categories) giving
for each signature Σ a category whose objects are called Σ-models, and whose arrows are called
Σ-(model) homomorphisms, and

4. a relation |=I
Σ
⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI|, called Σ-satisfaction,

such that for each morphism ϕ : Σ→ Σ′ in SignI, the satisfaction condition

M′ |=IΣ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M′) |=IΣ ρ

holds for each M′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).
We denote the reduct functors ModI(ϕ) by �ϕ and the sentence translations SenI(ϕ) by ϕ(). When there

is no danger of ambiguity, we may skip the superscripts from the notations of the entities of the institution;
for example, SignI may be denoted simply by Sign. A I-theory is any pair (Σ, E) such that Σ ∈ |Sign| and
E ⊆ Sen(Σ). For theory (Σ, E) we let Mod(Σ, E) denote the full subcategory of Mod(Σ) whose objects are
the models satisfying all sentences of E and let E• denote the set of sentences satisfied by all models of
Mod(Σ, E).

The literature shows myriads of logical systems from computing or from mathematical logic captured as
institutions. In fact, an informal thesis underlying institution theory is that any logic based on satisfaction
between sentences and models of any kind may be captured by the above definition. Below we recall very
briefly a couple of them that we will use in our examples.

Example 2.1 (Many-sorted First-Order Logic). In the institution FOL of many-sorted first-order logic with
equality the signatures consist of sorts and typed functions and predicate symbols. The arities of functions
are finite strings of sorts. Signature morphisms map symbols such that arities are preserved. Models are
first-order structures interpreting sorts as sets, function symbols as functions, and predicate symbols as
relations. The sentences are first-order formulas formed from atomic predicate sentences and equations by
iteration of logical connectives (∧,∨,¬ etc.) and (first-order) quantifiers ∀,∃. Sentence translation means
replacement of the translated symbols. Model reduct means reassembling the models components according
to the signature morphism. Satisfaction is the usual Tarskian satisfaction of a first-order sentence in a
first-order structure that is defined by induction on the structure of the sentences. Detailed definitions of
variants of this rather common institution, that differ only slightly, can be found in very many places in the
literature, e.g. [9, 15, 3].

2

Example 2.2 (Partial Algebra). The institution PA of partial algebra is similar to FOL but functions can also
be partial and there are no predicates. Equations evaluate to false if some component term involves some
undefinedness or if they evaluate to different values.

Example 2.3 (Institutions of Theories). For any institution I the institution of its theories Ith has finite
theories (Σ, E) (with Σ any I-signature and E ⊆ SenI(Σ)) as signatures. In Ith the (Σ, E)-sentences are just
the Σ-sentences in I and the (Σ, E)-models are the Σ-models that satisfy all sentences in E. The satisfaction
relation of Ith is inherited from I.

The notion of comorphism [11, 16, 17, 10] represents one of the most important kind of structure
preserving mappings between institutions and provides an adequate formalisation of the informal concept of
logic translation.

Definition 2.2 (Comorphisms). An institution comorphism (Φ, α, β) : I → I′ consists of

1. a functor Φ : Sign→ Sign′,

2. a natural transformation α : Sen⇒ Φ; Sen′, and

3. a natural transformation β : Φop; Mod′ ⇒ Mod

such that the following satisfaction condition holds

M′ |=′Φ(Σ) αΣ(e) iff βΣ(M′) |=Σ e

for each signature Σ ∈ |Sign|, for each Φ(Σ)-model M′, and each Σ-sentence e.

Example 2.4 (Encoding PA into FOL). Let us briefly recall the emblematic case of the encodings of PA
into FOL. There are several such encodings (details may be found in the literature, e.g. [12, 13, 3, 4]). All of
them of them are theoroidal, i.e. they appear as comorphisms PA → FOLth. Perhaps the best known one
encodes partial functions as total fucntions by adding for each sort an unary relation symbol standing for the
defined values, the target presentations consisting of Horn sentences. In general one may think about logic
encodings as being formalised as theoroidal comorphisms.

Definition 2.3 (Amalgamation for comorphisms [3]). For any comorphism (Φ, α, β) : I → I′ we say that a
signature morphism ϕ1 : Σ → Σ1 in I has weak model (Φ, β)-amalgamation when for each Σ1-model M1
and each Φ(Σ)-model M′ with M1�ϕ1 = βΣ(M′) there exists a Φ(Σ1)-model M′1 such that βΣ1(M′1) = M1 and
M′1�Φ(ϕ1) = M′.

Example 2.5. It is easy to check that in the case of the theoroidal comorphism PA → FOLth that encodes
partial functions as total functions mentioned at Ex. 2.4, each injective signature morphism has weak model
(Φ, β)-amalgamation.

3. Abstractly structured specifications

Definition 3.1 (Structured institutions [5]). Given two institutions I = (Sign, Sen,Mod, |=) and I′ =

(Sign′, Sen′,Mod′, |=′), we say that I′ is (I, sig)-structured when

– sig : Sign′ → Sign is a functor,

– for each I′-signature Σ′ we have Sen(sig(Σ′)) = Sen′(Σ′), and for each I′-signature morphism ϕ′ we
have Sen(sig(ϕ′)) = Sen′(ϕ′),

3

– for each I′-signature Σ′ we have that Mod′(Σ′) is a full subcategory of Mod(sig(Σ′)) such that for each
I′-signature morphism ϕ′ : Σ′1 → Σ′2 the diagram below commutes,

Mod′(Σ′1) ⊆
// Mod(sig(Σ′1))

Mod′(Σ′2)

Mod′(ϕ′)

OO

⊆
// Mod(sig(Σ′2))

Mod(sig(ϕ′))

OO
(1)

– for each I′-signature Σ′, each Σ′-model M′ and each Σ′-sentence ρ we have that

M′ |=′Σ′ ρ if and only if M′ |=sig(Σ′) ρ.

From a specification theoretic perspective, the I′-signatures may be referred to as (I, sig)-specifications.

In [5] several examples are presented in some detail; here let us just mention them rather briefly.

1. The Sannella-Tarlecki approach [14, 15] is covered by considering the structured specifications formed
from finite I-theories by iteration of some building operators. These structured specifications play
the role of the I′-signatures, whilst their denotations give the structuring functor sig and the model
functor of I′. Then the most common such set of building operators consists of unions, translations,
and derivations as the signatures of I′.

basic. Each finite theory (Σ, E) is a specification such that sig(Σ, E) = Σ and Mod′(Σ, E) = Mod(Σ, E).

union. For any specifications SP1 and SP2 such that sig(SP1) = sig(SP2) we can take their union SP1∪

SP2 with sig(SP1∪SP2) = sig(SP1) = sig(SP2) and Mod′(SP1∪SP2) = Mod′(SP1)∩Mod′(SP2).

trans. For any specification SP and signature morphism ϕ : sig(SP)→ Σ′ we can take its translation
along ϕ denoted by SP? ϕ and such that sig(SP? ϕ) = Σ′ and Mod′(SP? ϕ) = {M′ ∈ Mod(Σ′) |
M′�ϕ ∈ Mod′(SP)}.

deriv. For any specification SP′ and any signature morphism ϕ : Σ → sig(SP′) we can take its
derivation along ϕ denoted by ϕ 2 SP′ and such that sig(ϕ 2 SP′) = Σ and Mod′(ϕ 2 SP′) =

{M′�ϕ | M′ ∈ Mod′(SP′)}.

However the literature discusses many other possible sets of specifications building operators (see
[15, 6], etc.) required by various modularisation constructs. All of them can be given semantics in the
style of basic, union, trans, deriv above.

2. In the case of the Goguen-Burstall approach [9, 8] in the role of the I′-signatures one considers the
theories (Σ, E) closed under semantic consequence (i.e. E = E•). Then sig(Σ, E) = Σ.

3. One may also consider quotients of specifications by algebraic rules, such as commutativity and/or
associativity of the union. A general theory of such quotienting is given in [5].

4. Other formalisms not necessarily rooted within specification theory may also be covered, such as the
module systems for model expansion problems [18].

The following is a common property of structured specifications that holds in all examples mentioned
above.

4

Definition 3.2. When the canonical mapping determined by sig

Sign′(Σ′1,Σ
′
2)→ {ϕ ∈ Sign(sig(Σ′1), sig(Σ′2)) | Mod′(Σ′2)�ϕ ⊆ Mod′(Σ′1)}.

are bijections then we say that I′ inherits the signature morphisms.

Definition 3.3. Let I′ be an institution that is (I, sig)-structured.

– We say that I′ has semantic basic specifications when for each finite I-theory (Σ, E) there exists a
I′-signature SP(Σ, E) such that sig(SP(Σ, E)) = Σ and Mod′(SP(Σ, E)) = Mod(Σ, E).

– For any I-signature morphism ϕ : Ω→ Σ, we say that I′ has semantic ϕ-derivations [7] when for any
I′-signature Σ′ such that sig(Σ′) = Σ there exists a designated I′-signature, denoted ϕ2 Σ′, such that
sig(ϕ2 Σ′) = Ω and Mod′(ϕ2 Σ′) =

{
M′�ϕ | M′ ∈ Mod′(Σ′)

}
.

Example 3.1. In all examples of structured institutions mentioned above there is a straightforward way for
semantic basic specifications given by SP(Σ, E) = (Σ, E) but also other ways in which SP(Σ, E) may be also
defined as a properly structured specification (i.e. involving structuring operators such as union, trans).

Any structuring of specifications in the style of [14, 15] that has a deriv operator has adequate semantic
derivations. Quotients of such structurings also have semantic derivations. However note that the ‘hiding
information’ operator of [8] in the Goguen-Burstall approach (defined on the closed theories by ϕ2 (Σ, E) =

(Ω, ϕ−1(E))) does not imply the existence of semantic derivations.

Definition 3.4 (Semantic normal forms [5]). Given a (I, sig)-structured institution I′, a pair (ϕ, E) consisting
of a signature morphism ϕ : sig(Σ′) → Σ and a set of sentences E ⊆ Sen(Σ) is a semantic normal form for
an (I, sig)-specification Σ′ when Mod′(Σ′) = Mod(Σ, E)�ϕ. When E is finite we say that the normal form is
finitary. We say that I′ admits (finitary) semantic normal forms when each (I, sig)-specification has at least
a (finitary) normal form.

Example 3.2. A classic result in specification literature (eg. [15, 3]) is that, under some very mild technical
conditions, each specification structured with basic, union, trans, and deriv has the same signature and class
of models with a normal form specification, ie. a specification of the form ϕ2 (Σ, E) where E is a finite set of
sentences for a signature Σ. These normal forms are syntactic in the sense that they are actual specifications.
However syntactic normal forms obviously imply semantic normal forms.

The following example shows that the concept of semantic normal form is significantly wider than its
syntactic counterpart from [15, 3]. Proper semantic normal forms may occur in the absence of syntactic
normal forms and of a deriv building operator.

Example 3.3. Let us consider the specifications built over FOL with basic, union, trans and inters where
the latter is defined as follows:

inters. For any specifications SP1 and SP2 we can take their intersection SP1 ∩ SP2 with

sig(SP1 ∩ SP2) = sig(SP1) ∩ sig(SP2),1 and
Mod′(SP1 ∩ SP2) = Mod′(SP1)�sig(SP1)∩sig(SP2) ∪Mod′(SP2)�sig(SP1)∩sig(SP2).

1The intersection of FOL-signatures are set theoretic and can be defined component-wise on the sets of sorts first and then on the
sets of operation or relations symbols corresponding to different ranks.

5

Intersection as specification building operator is very relevant in works involving module sharing in a
significant way, such as in [6, 19] where parametrised specifications with sharing are studied. It has also
been mentioned in the respective contexts in [8, 15].

Let us show that these structured specifications have semantic finitary normal forms (ϕ, E) with ϕ

injective FOL-signature morphism. This can be shown by induction on the structure of specifications. For the
induction steps corresponding to basic, union and trans we may refer to the general results in the literature
(eg. [15, 3]), therefore we focus here on the induction step corresponding to inters. Suppose that SP1,SP2
have the semantic normal forms (ϕ1 : sig(SP1) → Σ1, E1) and (ϕ2 : sig(SP2) → Σ2, E2), respectively. We
consider the following pushout square of FOL-signature morphisms.

sig(SP1)

ϕ1

��

sig(SP1) ∩ sig(SP2)
⊇

i1
oo

⊆

i2
//

ϕ

��

sig(SP2)

ϕ2

��

Σ1 θ1

// Σ′ Σ2θ2

oo

Let us show that (ϕ, θ1(E1) ∨ θ2(E2)) is an appropriate semantic normal form for SP1 ∩ SP2 where θ1(E1) ∨
θ2(E2) = {ρ1∨ρ2 | ρ1 ∈ θ1(E1), ρ2 ∈ θ2(E2)}. Here ‘appropriate’ means first that ϕ is injective and second that
θ1(E1)∨ θ2(E2) is finite. While the latter follows immediately from the finiteness of E1 and E2 (cf. induction
hypothesis) the former requires more explanation. Since by the induction hypothesis ϕk are injective, it
follows that ik;ϕk are injective too. By the property of pushouts of FOL-signature morphisms we get that θk

are injective too. Hence ϕ = ik;ϕk; θk is injective.
In this situation the semantic normal form property means that

Mod(Σ1, E1)�ϕ1�i1 ∪Mod(Σ2, E2)�ϕ2�i2 = Mod(θ1(E1) ∨ θ2(E2))�ϕ.

This can be established easily from the Satisfaction Condition and from the fact that θk, being injective, are
also conservative, ie. for each Σk-model Mk there exists a Σ′-model M′ such that Mk = M′�θk .

This example can be easily generalised by replacing FOL with an abstract institution with disjunctions
and with an inclusion system [8, 3] for the category of the signatures that enjoys adequate properties and by
replacing the class of the injective signature morphisms with an abstract class ofD of signature morphisms
which together with an abstract class for the morphisms involed in trans satisfies some appropriate technical
conditions.

4. Translations of abstractly structured specifications

The following concept has been introduced in [2] as a formalisation of the informal notion of translation
of ASSs.

Definition 4.1 (Structured comorphism). We say that a comorphism (Φ′, α′, β′) : I′1 → I
′
2 is ((Φ, α, β), sig1, sig2)-

structured, where (Φ, α, β) : I1 → I2 is a comorphism, when

– sig1 : Sign′1 → Sign1 and sig2 : Sign′2 → Sign2 are functors such that the following diagram commutes,

Sign′1
Φ′
//

sig1

��

Sign′2
sig2

��

Sign1 Φ
// Sign2

(2)

6

– I′1 is (I1, sig1)-structured and I′2 is (I2, sig2)-structured, and

– for each I′1-signature Σ′1, α′
Σ′1

= αsig1(Σ′1) and β′
Σ′1

is the restriction of βsig1(Σ′1):

Mod′2(Φ′(Σ′1))
β′

Σ′1
//

⊆

��

Mod′1(Σ′1)

⊆

��

Mod2(Φ(sig1(Σ′1)))
βsig1(Σ′1)

// Mod1(sig1(Σ′1))

(3)

The following result of [2] provides a minimal set of axioms for the concept of structured comorphism.
This gives an economical way for proving structured comorphisms.

Proposition 4.1. Given institutions I′1 that is (I1, sig1)-structured and I′2 that is (I2, sig2)-structured,
functors Φ,Φ′ such that the square (2) commutes, the following are equivalent:

1. there exists a comorphism (Φ′, α′, β′) : I′1 → I
′
2 that is ((Φ, α, β), sig1, sig2)-structured, and

2. for each I′1-signature Σ′1, we have that

βsig1(Σ′1)(Mod′2(Φ′(Σ′1))) ⊆ Mod′1(Σ′1).(4)

The following is the main result of the paper and gives a set of sufficient conditions for the lifting of a
comorphism between base institutions to a structured comorphism.

Proposition 4.2. Let I′1 and I′2 be (I1, sig1), resp. (I2, sig2)-structured institutions such that

1. I′1 has finitary semantic normal forms (ϕ, E) with ϕ ∈ D forD a class of I1-signature morphisms,

2. I′2 inherits the signature morphisms,

3. I′2 has semantic basic specifications.

Any comorphism (Φ, α, β) : I1 → I2 such that

4. I′2 has Φ(ϕ)-derivations for any ϕ ∈ D, and

5. any morphism inD has weak (Φ, β)-amalgamation

determines a ((Φ, α, β), sig1, sig2)-structured comorphism (Φ′, α′, β′) : I′1 → I
′
2.

Proof. Let Σ′1 be a I′1-signature and let (σ1 : sig1(Σ′1)→ Σ1, E1) be a finitary normal form for Σ′1. We define

Φ′(Σ′1) = Φ(σ1) 2 SP(Φ(Σ1), α(E1)).

For any I′1-signature morphism θ′1 : Σ′1 → Ω′1 such that Φ′(Ω′1) is defined on the basis of selecting
(ω1 : sig1(Ω′1) → Ω1,T1) as a normal form for Ω′1, since I′2 inherits the signature morphisms, in order
to define Φ′(θ′1) it suffices to show that Φ(sig1(θ′1)) satisfies the condition

Mod′2(Φ′(Ω′1))�Φ(sig1(θ′1)) ⊆ Mod′2(Φ′(Σ′1)).

By the definition of derivations and by the selected normal forms, this means that for any M2 ∈ Mod2(Φ(Ω1), α(T1))
we have to show that

M2�Φ(ω1)�Φ(sig1(θ′1)) ∈ Mod2(Φ(Σ1), α(E1))�Φ(σ1).(5)

7

We have that

βsig1(Σ′1)(M2�Φ(ω1)�Φ(sig1(θ′1)))
= βΩ1(M2)�ω1�sig1(θ′1) (by the naturality of β)
∈ Mod1(Ω1,T1)�ω1�sig1(θ′1) (by the Satisfaction Condition of (Φ, α, β))
= Mod′1(Ω′1)�sig1(θ′1) (since (ω1,T1) is a normal form for Ω′1)
⊆ Mod′1(Σ′1) (because θ′1 : Σ′1 → Ω′1, cf. (1))
= Mod1(Σ1, E1)�σ1 (since (σ1, E1) is a normal form for Σ′1).

Hence there exists M1 ∈ Mod1(Σ1, E1) such that M1�σ1 = βsig1(Σ′1)(M2�Φ(ω1)�Φ(sig1(θ′1))). By the amalgamation
property of the square A© there exists N2 ∈ Mod2(Φ(Σ1)) such that N2�Φ(σ1) = M2�Φ(ω1)�Φ(sig1(θ′1)) and
βΣ1(N2) = M1. By the Satisfaction Condition of (Φ, α, β) it follows that N2 |= α(E1). This completes the
proof of (5).

Mod2(Φ(Ω1))
�Φ(ω1)

//

βΩ1
��

Mod2(Φ(sig1(Ω′1)))
�Φ(sig1(θ′1))

//

βsig1(Ω′1)

��

Mod2(Φ(sig1(Σ′1)))

βsig1(Σ′1)

��

A©

Mod2(Φ(Σ1))
�Φ(σ1)

oo

βΣ1
��

Mod1(Ω1)
�ω1

// Mod1(sig1(Ω′1))
�sig1(θ′1)

// Mod1(sig1(Σ′1)) Mod1(Σ1)
�σ1

oo

Now, by virtue of Prop. 4.1 it remains only to show the relation (4). This holds by the following
calculations.

βsig1(Σ′1)(Mod′2(Φ′(Σ′1)))
= βsig1(Σ′1)(Mod2(Φ(Σ1), α(E1))�Φ(σ1)) (since (σ1, E1) is a normal form for Σ′1)
⊆ βΣ1(Mod2(Φ(Σ1), α(E1)))�σ1 (by the naturality of β)
⊆ Mod1(Σ1, E1)�σ1 (by the Satisfaction Condition of (Φ, α, β))
= Mod′1(Σ′1) (since (σ1, E1) is a normal form for Σ′1).

From the conditions of Prop. 4.2 only 1. and 4. are substantial, the rest are just technical conditions.
According to the discussion in Ex. 3.1 the third condition underlying Prop. 4.2 provides space for considering
different ways for structuring the result of the translation according to the structuring of I′2, thus leading in
fact to various different translations.

The following example is meant to illustrate how Prop. 4.2 may be applied in actual situations.

Example 4.1. Let us consider the specifications over PA (partial algebra) as underlying logic and that
are structured by basic, union, trans (by any signature morphism) and inters (cf. Ex. 3.3); let this is I′1
of Prop. 4.2. We consider the theoroidal comorphism PA → FOLth of Ex. 2.4 in the role of (Φ, α, β) of
Prop. 4.2. We take now I′2 to be the institution of the specifications over FOLth that are structured by basic,
union, trans (by any signature morphism) and deriv (by injective signature morphisms). I′1 has finitary
semantic normal forms (ϕ, E) with ϕ injective, like in Ex. 3.3. That I′2 inherits the signature morphism is
obvious as, according to [15, 3] morphisms between structured specifications SP1 → SP2 are defined as
the signature morphisms χ : sig(SP1) → sig(SP2) such that Mod(SP2)�χ ⊆ Mod(SP1). The third condition
underlying Prop. 4.2 can be fulfilled in various ways, leading to various different translations. The most
straightforward way is SP(Σ, E) = (Σ, E), however this corresponds to having the result of the translation
always in normal form. Alternatively SP(Σ, E) can be chosen to be a specification structured by basic, union,
and trans. The next condition of Prop. 4.2 is obvious and the last one holds according to Ex. 2.5.

8

We may obtain a translation to specifications over FOL instead of FOLth by composing the obtained
comorphism with the canonical comorphism that maps any FOLth-based specification SP to the FOL-based
specification SP ∪ (Σ, E) where (Σ, E) is the FOLth-signature of SP.

Acknowledgement. This work has been supported by a grant of the Romanian National Authority for
Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0439.

5. Conclusions

We have shown that in the presence of a translation between the underlying logics, in essence if the source
structuring has semantic normal forms and the target structuring has derivations then we can have adequate
translations at the level of abstractly structured specifications. We have argued that semantic normal forms
are a significantly weaker condition than the existence of syntactic normal forms, for example derivations not
being necessary at the source of the translation. Due to the concepts of structured institution and structured
comorphism, our result is highly general as is independent both of the underlying logic and of concrete
choices of structuring operators. The latter means also that the source and the target of the translation do
not have to share their respective structuring systems. These give our main result a rather wide range of
applications.

Bibliography

[1] Rod Burstall and Joseph Goguen. The semantics of Clear, a specification language. In Dines Bjorner, editor, 1979 Copenhagen
Winter School on Abstract Software Specification, volume 86 of Lecture Notes in Computer Science, pages 292–332. Springer,
1980.

[2] Ionuţ Ţuţu. Comorphisms for structured institutions. Information Processing Letters, 113(894–900), 2013.
[3] Răzvan Diaconescu. Institution-independent Model Theory. Birkhäuser, 2008.
[4] Răzvan Diaconescu. An encoding of partial algebras as total algebras. Information Processing Letters, 109(23–24):1245–1251,

2009.
[5] Răzvan Diaconescu. An axiomatic approach to structuring specifications. Theoretical Computer Science, 433:20–42, 2012.
[6] Răzvan Diaconescu and Ionuţ Ţuţu. On the algebra of structured specifications. Theoretical Computer Science, 412(28):3145–

3174, 2011.
[7] Răzvan Diaconescu and Ionuţ Ţuţu. Foundations for structuring behavioural specifications. Journal of Logical and Algebraic

Methods in Programming, 83(3–4):319–338, 2014.
[8] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for modularisation. In Gerard Huet and Gordon

Plotkin, editors, Logical Environments, pages 83–130. Cambridge, 1993. Proceedings of a Workshop held in Edinburgh,
Scotland, May 1991.

[9] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for specification and programming. Journal of the
Association for Computing Machinery, 39(1):95–146, 1992.

[10] Joseph Goguen and Grigore Roşu. Institution morphisms. Formal Aspects of Computing, 13:274–307, 2002.
[11] José Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceedings, Logic Colloquium, 1987, pages 275–329.

North-Holland, 1989.
[12] Till Mossakowski. Different types of arrow between logical frameworks. In F. Meyer auf der Heide and B. Monien, editors,

Proc. ICALP 96, volume 1099 of Lecture Notes in Computer Science, pages 158–169. Springer Verlag, 1996.
[13] Marius Petria and Răzvan Diaconescu. Abstract Beth definability in institutions. Journal of Symbolic Logic, 71(3):1002–1028,

2006.
[14] Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution. Information and Control, 76:165–210, 1988.
[15] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specifications and Formal Software Development. Springer,

2012.
[16] Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors, Recent

Trends in Data Type Specification, volume 1130 of Lecture Notes in Computer Science, pages 478–502. Springer, 1996.
[17] Andrzej Tarlecki. Towards heterogeneous specifications. In D. Gabbay and M. van Rijke, editors, Proceedings, International

Conference on Frontiers of Combining Systems (FroCoS’98), pages 337–360. Research Studies Press, 2000.

9

[18] Shahab Tasharrofi and Eugenia Ternovska. A semantic account for modularity in multi-language modelling of search problems.
In Frontiers of combining systems, volume 6989 of Lecture Notes in Computer Science, pages 259–274, 2011.

[19] Ionuţ Ţuţu. Parameterisation for abstract structured specifications. Theoretical Computer Science, 517:102–142, 2014.

10

	Introduction
	Institutions and Comorphisms
	Abstractly structured specifications
	Translations of abstractly structured specifications
	Conclusions

