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Răzvan Diaconescu

Simion Stoilow Institute of Mathematics of the Romanian Academy

Abstract

We define and develop the concept of quasi-variety for models of hybrid logics and we apply this for
determining initial semantics for classes of hybrid logics theories. The hybrid logic is considered here in a
very general sense, internal to abstract institutions (in the sense of the so-called institution theory of Goguen
and Burstall). This means our result is applicable to a wide variety of hybrid logics including for example
those resulting from the various kinds of combinations between conventional hybrid logics and various
other logical systems.

1. Introduction

Hybrid logics [7] are a brand of modal logics that provides appropriate syntax for the possible worlds
semantics in a simple and very natural way through the so-called nominals. This has several advantages
from the point of view of logic and formal specification. For example it has been argued [10] that hybrid
logics allow a more uniform proof theory than non-hybrid modal logics. Also in specifications of dynamic
systems the possibility of explicit reference to specific states of the model is a very necessary feature.

Historically, hybrid logic was introduced in [32] and further developed in works such as [4, 10, 31] etc.
Moreover recently hybrid logic has been developed [30] at an abstract institution theoretic level. Institution
theory [20] is a categorical abstract model theory that arose about three decades ago within specification
theory as a response to the explosion in the population of logics in use there, its original aim being to
develop as much computing science as possible in a general uniform way independently of particular logical
systems. This has now been achieved to an extent even greater than originally thought, as institution theory
became the most fundamental mathematical theory underlying algebraic specification theory (in its wider
meaning), also being increasingly used in other areas of computer science. Moreover, institution theory
constitutes a major trend in the so-called ‘universal logic’ (in the sense envisaged by Jean-Yves Béziau [6])
which is considered by many a true renaissance of mathematical logic.

The development in [30], which extends the previous work on institution-independent possible worlds
semantics of [19] to nominals and multi-modalities, abstracts away the details, both at the syntactic and the
semantic levels, that are independent of the very essence of the hybrid logic idea. This has several benefits.
One is a general benefit of institution theoretic developments, namely that the theoretical development is
not hindered by logical details that are often irrelevant. Another benefit is the applicability of the results to
a wide variety of concrete instances, many of which could be regarded as combinations between concrete
versions of hybrid logics with other logical systems. Such combinations meet the influential Goguen thesis
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(see [21]): the combinations of computing paradigms are based upon the combinations of the underlying
logical paradigms.

Initial semantics [23, 25] is one of the oldest, most notorious, and most developed formal specification
methodologies. In its conventional forms it directly supports execution through rewriting, thus achieving a
high level of integration between the specification and the formal verification levels. The initial semantics
methodology has spread much beyond its original context, that of traditional equational specification, to a
variety of modern more sophisticated logical contexts. Moreover initial semantics plays the foundational
role in logic programming (there known as ‘least Herbrand models’) [27]. One of the main methods to
establish initial semantics is that of the so-called ‘quasi-varieties’ (i.e. classes of models closed under ‘sub-
models’ and products) that were first systematically studied in [28]; in their algebraic version they also play
an important role in general or universal algebra [24]. General institution theoretic approaches to initial
semantics and quasi-varieties that are computing science motivated may be found in [14, 35] and they are
related to general approaches to quasi-varieties from categorical model theory (e.g. [3]).

The generality of our approach to hybrid logics requires the general approach to quasi-varieties men-
tioned above. While in general the concept of product of models is fairly straightforward, the concept of
‘sub-model’ needs much more consideration. As the reader will see by herself in this paper, this is very
much the case for hybrid logics where establishing an appropriate concept of sub-model is the most difficult
part of the whole enterprise to define a concept of quasi-variety for hybrid logics models. In [3, 35] the
concept of sub-model is usually handled through the categorical concept of ‘factorisation system’, while
works such as [14, 33] prefer the so-called ‘inclusion systems’ of [18] which are a variant of the former that
essentially requires a uniqueness property for the respective factorizations. Here we also prefer the latter.

Contributions and structure of the paper.

The paper is structured as follows:

1. The first preliminary section of the paper is devoted to the brief presentation of general institution
theoretic notions that are needed by our work.

2. The second preliminary section recalls the process of ‘hybridization’ of institutions of [30], upgrades
it with the concept of constrained models, and develops proofs that have been omitted in [30]. In
brief, this means that given a ‘base’ institution I, considered abstractly, we build a class of ‘hybrid’
institutions on top of the syntax, the semantics and the satisfaction relation of I by adding the features
that constitute the essence of hybrid logics. The end result is a class of institutions.

3. The third technical section is devoted to preservation results along homomorphisms of models in
‘hybridized’ institutions and it has a rather technical scope.

4. The fourth technical section introduces the concept of sub-model for hybridized institutions by de-
veloping inclusion systems for models of hybridized institutions on top of abstract inclusion systems
for the models of the base institution. This contains the most technically difficult part of our work.
Within this context it also develops results on preservation by sub-models.

5. The fifth technical section develops the construction of products of models in hybridized institutions
on top of (presumed) products of models of the base institution. Its second part is devoted to results
on preservation by products in hybridized institutions.

6. The last technical section applies the abstract quasi-variety theorem of [14] through the results of the
previous sections in order to derive a general result on existence of initial semantics for hybridized
institutions.
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2. Institutions

Institution theory is a categorical abstract model theory, hence it is heavily based upon category theory,
though the level of category theory involved is rather elementary. We assume the reader is familiar with
basic notions and standard notations from elementary category theory; e.g., see [26] for an introduction to
this subject. Here we recall very briefly some of them. By way of notation, |C| denotes the class of objects
of a category C, C(A,B) the set of arrows with domain A and codomain B, and composition is denoted
by “;” and in diagrammatic order. The category of sets (as objects) and functions (as arrows) is denoted
by Set, and CAT is the category of all categories.1 The opposite of a category C (obtained by reversing
the arrows of C) is denoted Cop. An initial object 0C in C is an object such that for each other object
A ∈ |C| there exist an unique arrow 0C → A. A (direct) product of a family {Ai | i ∈ I} of objects in C
consist of a family of arrows, called projections {pi : A → Ai | i ∈ I} such that for any family of arrows
{fi : B → Ai | i ∈ I} there exists an unique arrow f : B → A such that for each i ∈ I , f ; pi = fi.

Institutions have been defined by Goguen and Burstall in [11], the seminal paper [20] being printed after
a delay of many years. Below we recall the concept of institution which formalises the intuitive notion of
logical system, including syntax, semantics, and the satisfaction between them.

Definition 2.1 (Institution). An institution (SignI ,SenI ,ModI , (|=IΣ)Σ∈|SignI |) consists of

• a category SignI whose objects are called signatures,

• a functor SenI : SignI → Set giving for each signature a set whose elements are called sentences
over that signature,

• a functor ModI : (SignI)op → CAT, giving for each signature Σ a category whose objects are
called Σ-models, and whose arrows are called Σ-(model) homomorphisms, and

• a relation |=IΣ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI |, called the satisfaction relation,

such that for each morphism ϕ : Σ→ Σ′ ∈ SignI , the satisfaction condition

M ′ |=IΣ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M ′) |=IΣ ρ (1)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

Notation 2.1. It should be noted that the superscripts in SignI , SenI , ModI , |=I may be often omitted, and
that given a signature morphism ϕ, Sen(ϕ) and Mod(ϕ) may usually be denoted by ϕ and �ϕ, respectively.

In any institution as above we also use the following notations:

– for anyM⊆ |Mod(Σ)|,M∗ denotes {ρ ∈ Sen(Σ) |M |=Σ ρ for each M ∈M}.
– for any E ⊆ Sen(Σ), E∗ denotes {M ∈ |Mod(Σ)| |M |=Σ ρ for each ρ ∈ E}.
– for any E,E′ ⊆ Sen(Σ), E |= E′ denotes E∗ ⊆ E′∗.
– for any E ⊆ Sen(Σ), Mod(Σ, E) is the full subcategory of Mod(Σ) whose objects are in E∗.

Myriads of logical systems from computing or from mathematical logic have been captured as institu-
tions; in fact, the thesis underlying institution theory that anything that deserves the name ‘logic’ should be
captured by Dfn. 2.1. Below we recall a few of them that will also be used in examples in our paper.

1Strictly speaking, this is only a ‘quasi-category’ living in a higher set-theoretic universe.
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Example 2.1 (FOL, ALG , EQ , REL and PL). Let FOL be the institution of first order logic with equality
in its many sorted form.

Its signatures are triples (S, F, P ) consisting of

• a set of sort symbols S,

• a family F = {Fw→s | w ∈ S∗, s ∈ S} of sets of function symbols indexed by arities (for the
arguments) and sorts (for the results), and

• a family P = {Pw | w ∈ S∗} of sets of relation (predicate) symbols indexed by arities.

Signature morphisms map the three components in a compatible way. This means that a signature morphism
ϕ : (S, F, P )→ (S′, F ′, P ′) consists of

• a function ϕst : S → S′,

• a family of functions ϕop = {ϕop
w→s : Fw→s → F ′ϕst(w)→ϕst(s) | w ∈ S

∗, s ∈ S}, and

• a family of functions ϕrl = {ϕrl
w→s : Pw → P ′ϕst(w) | w ∈ S

∗, s ∈ S}.

Models M for a signature (S, F, P ) are first order structures interpreting each sort symbol s as a set
Ms, each function symbol σ as a function Mσ from the product of the interpretations of the argument sorts
to the interpretation of the result sort, and each relation symbol π as a subset Mπ of the product of the
interpretations of the argument sorts. By |M | we denote {Ms | s ∈ S} and we call it the universe of M
or the carrier set(s) of M . In order to avoid the existence of empty interpretations of the sorts, which may
complicate unnecessarily our presentation, we assume that each signature has at least one constant (i.e.
function symbol with empty arity) for each sort. A model homomorphism h : M → M ′ is an indexed
family of functions {hs : Ms →M ′s}s∈S such that

• h is an (S, F )-algebra homomorphism M → M ′, i.e., hs(Mσ(m)) = M ′σ(hw(m)) for each σ ∈
Fw→s and each m ∈Mw, and

• hw(m) ∈M ′π if m ∈Mπ (i.e. hw(Mπ) ⊆M ′π) for each relation π ∈ Pw and each m ∈Mw.

where hw : Mw →M ′w is the canonical component-wise extension of h, i.e. hw(m1, . . . ,mn) = (hs1(m1), . . . , hsn(mn))
for w = s1 . . . sn and mi ∈Msi for 1 ≤ i ≤ n.

For each signature morphism ϕ : Σ→ Σ′, the reduct M ′�ϕ of a Σ′-model M ′ is defined by (M ′�ϕ)x =
M ′ϕ(x) for each sort, function, or relation symbol x from the domain signature of ϕ.

Sentences are the usual first order sentences built from equational and relational atoms by iterative appli-
cation of Boolean connectives and first order quantifiers. Sentence translations along signature morphisms
just rename the sorts, function, and relation symbols according to the respective signature morphisms. They
can be formally defined by induction on the structure of the sentences. While the induction step is straight-
forward for the case of the Boolean connectives it needs a bit of attention for the case of the quantifiers. For
any signature morphism ϕ : (S, F, P )→ (S′, F ′, P ′),

SenFOL(ϕ)((∀X)ρ) = (∀Xϕ)SenFOL(ϕ′)(ρ)

for each finite block X of variables for (S, F, P ). The variables need to be disjoint from the constants
of the signature, also we have to ensure that SenFOL thus defined is functorial indeed and that there is
no overloading of variables (which in certain situations would cause a failure of the Satisfaction Condi-
tion). These may be formally achieved by considering that a variable for (S, F, P ) is a triple of the form
(x, s, (S, F, P )) where x is the name of the variable and s ∈ S is the sort of the variable and that two
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different variables in X have different names. We often abbreviate variables (x, s, (S, F, P )) by their
name x. Then we let (S, F + X,P ) be the extension of (S, F, P ) such that (F + X)w→s = Fw→s
when w is non-empty and (F + X)→s = F→s ∪ {(x, s, (S, F, P )) | (x, s, (S, F, P )) ∈ X} and we
let ϕ′ : (S, F + X,P ) → (S′, F ′ + Xϕ, P ′) be the canonical extension of ϕ that maps each variable
(x, s, (S, F, P )) to (x, ϕ(s), (S′, F ′, P ′)).

The satisfaction of sentences by models is the usual Tarskian satisfaction defined inductively on the
structure of the sentences.

The institution ALG is obtained from FOL by discarding the relational symbols and their corresponding
interpretations in models. The institution EQ is defined as the sub-institution of ALG where the sentences
are just universally quantified equations (∀X) t = t′. The institution REL is the sub-institution of single-
sorted first-order logic with signatures having only constants and relational symbols.

The institution PL (of propositional logic) is the fragment of FOL determined by signatures with empty
sets of sort symbols.

Example 2.2 (PA). Here we consider the institution PA of partial algebra as employed by the specification
language CASL [5].

A partial algebraic signature is a tuple (S, TF, PF ), where TF is a family of sets of total function
symbols and PF is a family of sets of partial function symbols such that TFw→s ∩ PFw→s = ∅ for each
arity w and each sort s. In order to avoid empty carriers, like in the case of FOL, we assume there exists at
least one total constant for each sort. Signature morphisms map the three components in a compatible way.

A partial algebra is just like an ordinary algebra (i.e. a FOL model without relations) but interpreting the
function symbols of PF as partial rather than total functions. A partial algebra homomorphism h : A→ B
is a family of (total) functions {hs : As → Bs | s ∈ S} indexed by the set of sorts S of the signature such
that hs(Aσ(a)) = Bσ(hw(a)) for each function symbol σ ∈ TFw→s∪PFw→s and each string of arguments
a ∈ Aw for which Aσ(a) is defined.

The sentences have three kinds of atoms: definedness df(t), strong equality t
s
= t′, and existence

equality t e
= t′. The definedness df(t) of a term t holds in a partial algebra A when the interpretation At of

t is defined. The strong equality t s
= t′ holds when both terms are undefined or both of them are defined and

are equal. The existence equality t e
= t′ holds when both terms are defined and are equal.2 The sentences

are formed from these atoms by Boolean connectives and quantifications over total variables (i.e variables
that are always defined).

Recall from [14, 34]:

Definition 2.2 (Internal logic). An institution I has (semantic) conjunctions when for each signature Σ
and any Σ-sentences e1 and e2 there exists a Σ-sentence e such that e∗ = e∗1 ∩ e∗2. Usually e is denoted by
e1 ∧ e2.
I has (semantic) implications when for each e1 and e2 as above there exists e such that e∗ = (Mod(Σ)−

e∗1) ∪ e∗2. Usually e is denoted e1⇒ e2.
I has (semantic) existential D-quantifications for a class D of signature morphisms when for each

(χ : Σ → Σ′) ∈ D when for each Σ′-sentence e′ there exists a Σ-sentence e such that e∗ = Mod(χ)(e′∗).
Usually e is denoted (∃χ)e′.

In the same style we may extend this list also to other semantic Boolean connectives such as disjunction
(∨), negation (¬), equivalence (⇔) and to semantic universal quantifications ((∀χ)e′).

2Notice that df(t) is equivalent to t
e
= t and that t s

= t′ is equivalent to (t
e
= t′) ∨ (¬df(t) ∧ ¬df(t′)).
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We recall the notions of amalgamation and quantification space that are crucial for what follows. The
former is intensely used in institution theory, whereas the latter concept was first introduced in [15] (but
without a name). The respective definitions below represent a slight adaptation of the definitions from the
literature to the needs of this paper; in this form Dfn. 2.3 and 2.5 have appeared in [30].

Definition 2.3 (Amalgamation property). Given any functor Mod : Signop → CAT a commuting square
of signature morphisms

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2
// Σ′

(2)

is a weak amalgamation square for Mod if and only if, for each Σ1-model M1 and Σ2-model M2 such
that Mod(ϕ1)(M1) = Mod(ϕ2)(M2), there exists a Σ′-model M ′ such that Mod(θ1)(M ′) = M1 and
Mod(θ2)(M ′) = M2. When M ′ is required to be unique, the square is called amalgamation square. The
model M ′ is called an amalgamation of M1 and M2 and when it is unique it is denoted by M1 ⊗ϕ1,ϕ2 M2.

We say that an institution I has the (weak) amalgamation property when each pushout square of signa-
ture morphisms is a (weak) amalgamation square for the model functor ModI .

Most of the institutions formalizing conventional or non-conventional logics have the amalgamation
property [14, 18]. These include our examples FOL, ALG , PL, REL, PA.

Definition 2.4. A sub-functor Mod′ ⊆ Mod : Signop → CAT reflects (weak) amalgamation when each
pushout square in Sign that is a (weak) amalgamation square for Mod is a (weak) amalgamation square
for Mod′ too.

Definition 2.5 (Quantification space). For any category Sign a subclass of arrows D ⊆ Sign is called a
quantification space if, for any (χ : Σ→ Σ′) ∈ D and ϕ : Σ→ Σ1, there is a designated pushout

Σ
ϕ //

χ

��

Σ1

χ(ϕ)
��

Σ′
ϕ[χ]
// Σ′1

with χ(ϕ) ∈ D and such that the ‘horizontal’ composition of such designated pushouts is again a designated
pushout, i.e. for the pushouts in the following diagram

Σ
ϕ //

χ

��

Σ1

χ(ϕ)
��

θ // Σ2

χ(ϕ)(θ)
��

Σ′
ϕ[χ]
// Σ′1 θ[χ(ϕ)]

// Σ′2

ϕ[χ]; θ[χ(ϕ)] = (ϕ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ; θ), and such that χ(1Σ) = χ and 1Σ[χ] = 1Σ′ .
We say that a quantification space D for Sign is adequate for a functor Mod : Signop → CAT when

the designated pushouts mentioned above are weak amalgamation squares for Mod.
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Example 2.3. Within the context of Ex. 2.1 above, the signature extensions χ : (S, F, P ) ↪→ (S, F+X,P ),
where X is a finite block of variables for (S, F, P ) constitute a quantification space for SignFOL that is also
adequate for ModFOL. Given signature morphism ϕ : (S, F, P )→ (S1, F1, P1), then

– χ(ϕ) : (S1, F1, P1) ↪→ (S1, F1 +Xϕ, P1) where Xϕ as defined in Ex. 2.1, and

– ϕ[χ] is the canonical extension of ϕ that maps each (x, s, (S, F, P )) to (x, ϕst(s), (S1, F1, P1)) (it
corresponds to ϕ′ of Ex. 2.1).

It is easy to note that these define pushout squares fulfilling the properties of Dfn. 2.5. The adequacy for
ModFOL follows from the fact that ModFOL preserves all finite limits (see [14]).

Other quantification spaces for SignFOL that are also adequate for ModFOL may be obtained as follows:

1. In the example above we consider infinite blocks of variables instead of finite ones.
2. We consider blocks of second order variables of the form (x, (w, s), (S, F, P )) (function variables)

or of the form (x,w, (S, F, P )) (relation variables) where w ∈ S∗ and s ∈ S. Then to any blockX of
second order variables it corresponds a signature extension χ : (S, F, P )→ (S, F +Xop, P +Xrl)
where X is split as Xop ∪Xrl with Xop being the function variables and Xrl the relation variables,
and where F +Xop and P +Xrl extend in the obvious way the definition of F +X from Ex. 2.1.

Note that these definitions may also apply to REL and ALG . Similar definitions may also be developed in
PA.

3. Hybridized Institutions

In this section we present the institution-independent construction of hybrid logics that has already been
introduced in [30] as an extension of the previous work [19]. Here we include proofs that have been omitted
in [30] and we refine the semantics of hybrid logics with the concept of constrained models that is treated
fully abstractly as a sub-functor of the non-constrained model functor.

Let us consider an institution I = (SignI , SenI ,ModI , (|=IΣ)Σ∈|SignI |) with a designated quantification
space DI ⊆ SignI . This will be referred to as the base institution. Below we introduce a method to enrich
I with modalities and nominals, defining a suitable semantics for the enrichment. Moreover, it is shown
that the outcome still defines a class of institutions, the so-called hybridizations of I.

The category ofHI-signatures:
The category of I-hybrid signatures, denoted by SignHI , is defined as the following direct (cartezian)

product of categories:

SignHI = SignI × SignREL.

The REL-signatures are denoted by (Nom,Λ), where Nom is a set of constants called nominals and Λ
is a set of relational symbols called modalities; Λn stands for the set of modalities of arity n. For any
χ ∈ SignHI by χ|I and χ|REL we denote the projections of χ to SignI and SignREL, respectively. General
category theory entails:

Proposition 3.1. The projection SignHI → SignI lifts small co-limits.

The existence of co-limits of signatures is one of the properties of institutions of key practical relevance
for specification in-the-large (see [20]).

Corollary 3.1. SignHI has all small co-limits that SignI has.
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HI-sentences:

Let us fix a quantification space DHI for SignHI such that for each χ ∈ DHI its projection χ|I to
SignI belongs to DI . The quantification space DHI is a parameter of the hybridization process. When-
ever DHI consists of identities only we say the hybridization is quantifier-free. Note that a quantifier-free
hybridization does not necessarily mean the absence of ‘local’ quantification, i.e. placed at the level of the
base institution I.

Let ∆ = (Σ,Nom,Λ). The set of sentences SenHI(∆) is the least set such that

• Nom ⊆ SenHI(∆);

• SenI(Σ) ⊆ SenHI(∆);

• ρ ? ρ′ ∈ SenHI(∆) for any ρ, ρ′ ∈ SenHI(∆) and any ? ∈ {∨,∧,⇒},
• ¬ρ ∈ SenHI(∆), for any ρ ∈ SenHI(∆),

• @iρ ∈ SenHI(∆) for any ρ ∈ SenHI(∆) and i ∈ Nom;

• [λ](ρ1, . . . , ρn), 〈λ〉(ρ1, . . . , ρn) ∈ SenHI(∆), for any λ ∈ Λn+1, ρi ∈ SenHI(∆), i ∈ {1, . . . , n};
• (∀χ)ρ, (∃χ)ρ ∈ SenHI(∆), for any ρ ∈ SenHI(∆′) and χ : ∆→ ∆′ ∈ DHI ;

Translations ofHI-sentences:

Let ϕ = (ϕSig, ϕNom, ϕMS) : (Σ,Nom,Λ)→ (Σ′,Nom′,Λ′) be a morphism ofHI-signatures.
The translation SenHI(ϕ) is defined as follows:

• SenHI(ϕ)(i) = ϕNom(i);

• SenHI(ϕ)(ρ) = SenI(ϕSig)(ρ) for any ρ ∈ SenI(Σ);

• SenHI(ϕ)(ρ ? ρ′) = SenHI(ϕ)(ρ) ? SenHI(ϕ)(ρ′), ? ∈ {∨,∧,⇒};
• SenHI(ϕ)(¬ρ) = ¬SenHI(ϕ)(ρ);

• SenHI(ϕ)(@iρ) = @ϕNom(i)SenHI(ρ);

• SenHI(ϕ)([λ](ρ1, . . . , ρn)) = [ϕMS(λ)](SenHI(ρ1), . . . ,SenHI(ρn));

• SenHI(ϕ)(〈λ〉(ρ1, . . . , ρn)) = 〈ϕMS(λ)〉(SenHI(ρ1), . . . ,SenHI(ρn));

• SenHI(ϕ)((∀χ)ρ) = (∀χ(ϕ))SenHI(ϕ[χ])(ρ).

• SenHI(ϕ)((∃χ)ρ) = (∃χ(ϕ))SenHI(ϕ[χ])(ρ).

The following result may be obtained by recursion on the structure of the sentences by straightforward
calculations (omitted here), the part corresponding to the quantifiers relying crucially upon the properties
expressed in Dfn. 2.5.

Proposition 3.2. SenHI is a functor SignHI → Set.

HI-models:

The (Σ,Nom,Λ)-models are pairs (M,R) where

• R is a (Nom,Λ)-model in REL;

• M is a function |R| → |ModI(Σ)|.
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The carrier set |R| forms the set of the states of (M,R); {Rn | n ∈ Nom} represents the interpretations of
the nominals Nom, whereas relations {Rλ | λ ∈ Λn, n ∈ ω} represent the interpretation of the modalities
Λ. We denote M(s) simply by Ms.

A (Σ,Nom,Λ)-model homomorphism h : (M,R)→ (M ′, R′) consists of a pair aggregating

• a (Nom,Λ)-model homomorphism in REL, hst : R → R′; i.e., a function hst : |R| → |R′| such
that for i ∈ Nom, R′i = hst(Ri); and, for any s1, . . . , sn ∈ |R|, λ ∈ Λn, and (s1, . . . , sn) ∈ Rλ,
(hst(s1), . . . , hst(sn)) ∈ R′λ.

• a natural transformation hmod : M ⇒ M ′ ◦ hst,3 i.e. hmod is a |R|-indexed family of Σ-model
homomorphisms hmod = {(hmod)s : Ms → M ′hst(s) | s ∈ |R|}. In the text sometimes we may
abbreviate (hmod)s by hs.

The composition ofHI-model homomorphisms is defined canonically as

h;h′ = (hst;h
′
st, hmod; (h′mod ◦ hst)).

Fact 3.1. Let ∆ be any HI-signature. Then ∆-models together with their homomorphisms constitute a
category, denoted ModHI(∆).

Reducts ofHI-models:
Let ∆ = (Σ,Nom,Λ) and ∆′ = (Σ′,Nom′,Λ′) be two HI-signatures, ϕ = (ϕSig, ϕNom, ϕMS) a

morphism between ∆ and ∆′ and (M ′, R′) a ∆′-model. The reduct of (M ′, R′) along ϕ, denoted by
ModHI(ϕ)(M ′, R′), is the ∆-model (M,R) such that

• R is the (ϕNom, ϕMS)-reduct of R′; i.e.

– |R| = |R′|;
– for any n ∈ Nom, Rn = R′ϕNom(n);

– for any λ ∈ Λ, Rλ = R′ϕMS(λ);

and

• for any s ∈ |R|, Ms = ModI(ϕSig)(M ′s).

For any h′ : (M ′1, R
′
1)→ (M ′2, R

′
2) its ϕ-reduct is (h′st, h

′
modModI(ϕ)).

Fact 3.2. ModHI is a functor (SignHI)op → CAT.

Theorem 3.1. A pushout square ofHI-signature morphisms is a (weak) amalgamation square (for ModHI)
if the underlying square of signature morphisms in I is a (weak) amalgamation square.

Proof. Given a pushout of HI-signature morphisms like in Dfn. 2.3, the amalgamation (M ′, R′) of
(M1, R1) and (M2, R2) is defined as follows:

• R′ is an amalgamation ofR1 andR2 is REL; this is because the projection functor SignHI = SignI×
SignREL → SignREL preserves pushouts, hence the underlying square of signature morphisms in
REL is pushout.

3Where M ′ ◦ hst is an alternative notation for hst;M
′, more convenient in this context.
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• Let |R| be the carrier set of R1, R2 and R (by definition of reduct note all of them share the same
carrier set). ThenM ′ : |R| → |ModI(Σ′)| is the function determined by the (weak) pullback property
of the result of applying the functor |ModI(−)| to the underlying square of signature morphisms in
I.

2

Corollary 3.2. If DI is adequate for ModI then DHI is adequate for ModHI .

Proof. Any designated square Sq in the quantification space DHI is a pushout by definition and since the
projection functor SignHI = SignI × SignREL → SignI preserves pushouts it follows that the underlying
square Sq0 of Sq consisting of I signature morphisms is also a pushout. Because of this and also because
DHI |I ⊆ DI it follows that Sq0 is isomorphic (as pushout co-cone) to a designated square in the quan-
tification space DI , which by the adequacy property of DI with respect to ModI is a weak amalgamation
square. Hence Sq0 is a weak amalgamation square, which by Thm. 3.1 implies that Sq is adequate for
ModHI . 2

Constrained models:
Often the semantics of modal and hybrid logics may include various additional constraints on the mod-

els. The following definition captures abstractly this situation.

Definition 3.1. A constrainedHI-model functor is a sub-functor Mod′ ⊆ ModHI such that it reflects weak
amalgamation. The models in Mod′ are called constrainedHI-models.

Informally, the meaning of Dfn. 3.1 is that in the case of pushout squares of signature morphisms any
two constrained models that can be amalgamated admit a constrained amalgamation.

The following result, which is an immediate consequence of Cor. 3.2, Dfn. 3.1 and Dfn. 2.4, applies
often in concrete situations, including all the examples in our paper.

Corollary 3.3. If DI is adequate for ModI then DHI is adequate for any constrained HI-model functor
Mod′.

The Satisfaction Relation:
Given a constrained model functor Mod′ ⊆ ModHI , for any (M,R) ∈ |Mod′(Σ,Nom,Λ)| and for any

s ∈ |R| we define:

• (M,R) |=s i iff Ri = s; when i ∈ Nom,

• (M,R) |=s ρ iff Ms |=I ρ; when ρ ∈ SenI(Σ),

• (M,R) |=s ρ ∨ ρ′ iff (M,R) |=s ρ or (M,R) |=s ρ′,

• (M,R) |=s ρ ∧ ρ′ iff (M,R) |=s ρ and (M,R) |=s ρ′,

• (M,R) |=s ρ⇒ ρ′ iff (M,R) |=s ρ implies that (M,R) |=s ρ′,

• (M,R) |=s ¬ρ iff (M,R) 6 |=sρ,

• (M,R) |=s @jρ iff (M,R) |=Rj ρ,

• (M,R) |=s [λ](ρ1, . . . ρn) iff (M,R) |=si ρi for some 1 ≤ i ≤ n for any (s, s1, . . . , sn) ∈ Rλ,
λ ∈ Λn+1,
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• (M,R) |=s 〈λ〉(ρ1, . . . ρn) iff (M,R) |=si ρi for any 1 ≤ i ≤ n for some (s, s1, . . . , sn) ∈ Rλ,
λ ∈ Λn+1,

• (M,R) |=s (∀χ)ρ iff (M ′, R′) |=s ρ for any (M ′, R′) such that Mod′(χ)(M ′, R′) = (M,R), and

• (M,R) |=s (∃χ)ρ iff (M ′, R′) |=s ρ for some (M ′, R′) such that Mod′(χ)(M ′, R′) = (M,R).

We write (M,R) |= ρ iff (M,R) |=s ρ for any s ∈ |R|.

The Satisfaction Condition:

Theorem 3.2. Assume DI is adequate for ModI . Let ∆ = (Σ,Nom,Λ) and ∆′ = (Σ′,Nom′,Λ′) be two
HI-signatures and ϕ : ∆ → ∆′ a morphism of signatures. Given a constrained model functor Mod′ ⊆
ModHI , for any ρ ∈ SenHI(∆), (M ′, R′) ∈ |Mod′(∆′)|, and s ∈ |R|

Mod′(ϕ)(M ′, R′) |=s ρ if and only if (M ′, R′) |=s SenHI(ϕ)(ρ). (3)

Proof. Let us denote Mod′(M ′, R′) = ModHI(M ′, R′) by (M,R). The proof is by recursion on the
structure of the sentence ρ:

1. ρ = i for some i ∈ Nom:

(M,R) |=s i iff Ri = s (by definition of |=s)
iff (M ′, R′) |=s ϕNom(i) (by definition of the reduct, R′ϕNom(i) = Ri)

iff (M ′, R′) |=s SenHI(ϕ)(i) (by definition of SenHI(ϕ)).

2. ρ ∈ SenI(Σ):

(M,R) |=s ρ iff ModI(ϕSig)(M ′s) = Ms |=I ρ (by definition of |=s)

iff M ′s |= SenI(ϕSig)(ρ) (by the Satisfaction Condition in I)

iff (M ′, R′) |=s SenI(ϕSig)(ρ) (by definition of |=s)

iff (M ′, R′) |=s SenHI(ϕ)(ρ) (by definition of SenHI(ϕ)).

3. ρ = ξ ∨ ξ′ for some ξ, ξ′ ∈ SenHI(∆):

(M,R) |=s ξ ∨ ξ′ iff (M,R) |=s ξ or (M,R) |=s ξ′ ( by definition of |=s)

iff (M ′, R′) |=s SenHI(ϕ)(ξ) or (M ′, R′) |=s SenHI(ϕ)(ξ′) (by induction hypothesis)
iff (M ′, R′) |=s SenHI(ϕ)(ξ ∨ ξ′) (by definition of |=s).

The proofs for the cases when ρ = ξ ∧ ξ′, ρ = ξ⇒ ξ′, ρ = ¬ξ, etc. are analogous.
4. ρ = @iξ for some ξ ∈ SenHI(∆), i ∈ Nom:

(M,R) |=s @iξ iff (M,R) |=Ri ξ (by definition of |=s)

iff (M ′, R′) |=Ri SenHI(ϕ)(ξ) (by induction hypothesis)

iff (M ′, R′) |=R′
ϕNom(i) SenHI(ϕ)(ξ) (since by reduct definition, Ri = R′ϕNom(i))

iff (M ′, R′) |=s @ϕNom(i)SenHI(ϕ)(ξ) (by definition of satisfaction for @)

iff (M ′, R′) |=s SenHI(ϕ)(@iξ) (by definition of SenHI(ϕ)).
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5. ρ = [λ](ξ1, . . . , ξn), for some ξ1, . . . , ξn ∈ SenHI(∆), λ ∈ Λn+1:

(M,R) |=s [λ](ξ1 , . . . , ξn) iff for any (s, s1, . . . , sn) ∈ Rλ, (M,R) |=si ξi for some 1 ≤ i ≤ n
(by definition of |=s)

iff (M ′, R′) |=si SenHI(ϕ)(ξi) for any (s, s1, . . . , sn) ∈ ϕMS(R′λ) and some 1 ≤ i ≤ n
(induction hypothesis and reduct definition entail Rλ = R′ϕMS(λ))

iff (M ′, R′) |=s [ϕMS(λ)]SenHI(ϕ)(ξ1, . . . , ξn)
(by definition of |=s)

iff (M ′, R′) |=s SenHI(ϕ)([λ](ξ1, . . . , ξn))

(by definition of SenHI(ϕ)).

The proof for the case when ρ = 〈λ〉(ξ1, . . . , ξn), for some ξ1, . . . , ξn ∈ SenHI(∆), λ ∈ Λn+1 is
analogous.

6. ρ = (∀χ : ∆→ ∆1)ξ:

(M,R) |=s (∀χ)ξ iff for all (M1, R1) such that Mod′(χ)(M1, R1) = (M,R), (M1, R1) |=s ξ
(by definition of satisfaction for (∀χ)ξ)

iff for all (M ′1, R
′
1) such that Mod′(χ(ϕ))(M ′1, R

′
1) = (M ′, R′),

Mod′(ϕ[χ])(M ′1, R
′
1) |=s ξ (by Cor. 3.3, DHI is adequate for Mod′)

iff for all (M ′1, R
′
1) such that Mod′(χ(ϕ))(M ′1, R

′
1) = (M ′, R′),

(M ′1, R
′
1) |=s SenHI(ϕ[χ])(ξ) (by induction hypothesis)

iff (M ′, R′) |=s (∀χ(ϕ))SenHI(ϕ[χ])(ξ)

(by definition of satisfaction for (∀χ(ϕ))SenHI(ϕ[χ])(ξ))

iff (M ′, R′) |=s SenHI(ϕ)((∀χ)ξ)

(by definition of SenHI(ϕ)).

The proof for the case when ρ = (∃χ : ∆→ ∆1)ξ is analogous.

2

Note that in the quantifier-free situation, i.e. when DHI is trivial, the adequacy assumption of Thm. 3.2
is not needed, and moreover the reflection condition for the constrained model functor is also not needed.

Corollary 3.4 (The Satisfaction Condition). (SignHI ,SenHI ,Mod′, |=′) is an institution.

Let us call the institution (SignHI , SenHI ,Mod′, |=) a hybridization of I. The hybridization (SignHI ,SenHI ,ModHI , |=HI
), that does not constrain models, is denoted HI and is called the free hybridization of I. Note that in gen-
eral, because of the quantifiers, the satisfaction relation |=′ of a hybridization with properly constrained
models is not necessarily the restriction of |=HI , the satisfaction relation of HI. Also hybridizations of
institutions constitute an example of the general notion of stratified institution of [2].

Base logic versus hybrid logic:

In hybridized institutions, at the level of the sentences of the base institution we may have two sets of
Boolean connectives, those of the hybridization and those of the base institution (when the base institution
has them). The following simple result allows us to ignore the distinction between the Boolean connectives
of a hybridization and those of the base institution. The result also states the general relationship between
the quantification at the base and at the hybridized level.
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Fact 3.3. For any hybridization of I, (SignHI ,SenHI ,Mod′ ⊆ ModHI , |=), let us denote the Boolean
connectives and the quantifiers in the base institution I by ∧© , ∨© ,⇒© , ¬© , and ∀© , ∃© , respectively. For
any (Σ,Nom,Λ)-model (M,R), any s ∈ |R|, and any sentences ρ, ρ′ ∈ SenI(Σ) of the base institution
and for each χ ∈ D

– (M,R) |=s ρ ? ρ′ iff (M,R) |=s ρ ?© ρ′ for ? ∈ {∧,∨,⇒},
– (M,R) |=s ¬ρ iff (M,R) |=s ¬© ρ,

– (M,R) |=s ( ∀©χ)ρ implies (M,R) |=s (∀(χ, 1Nom, 1Λ))ρ, and

– (M,R) |=s (∃(χ, 1Nom, 1Λ))ρ implies (M,R) |=s ( ∃©χ)ρ.

Examples:
A myriad of examples of hybridization may be generated from our definition above by considering

various instances for the three parameters of our hybridization process: (1) the base institution I, (2) the
quantification space DHI , and (3) the constrained models given by Mod′. We present only a few of them
that will be used below in the paper as benchmark examples. Some of the examples below consider also
sub-institutions determined by sub-categories of the category SignHI of the HI-signatures; this does not
imply any additional non-trivial technical considerations.

Example 3.1 (HPL). Applying the quantifier-free version of the hybridization method described above to
PL and fixing Λ2 = {λ} and Λn = ∅ for each n 6= 2, we obtain the institution of the “standard” hybrid
propositional logic (without state quantifiers): the category of signatures is SignHPL = Set × Set with
objects denoted by (P,Nom) and morphisms by (ϕSig, ϕNom); sentences are the usual hybrid propositional
formulas, i.e., modal formulas closed by Boolean connectives, [λ] denoted 2, 〈λ〉 denoted 3, and by the
operator @i, i ∈ Nom; models consists of pairs (M,R) whereR consists of a carrier set |R|, interpretations
Ri ∈ |R| for each i ∈ Nom, and a binary relation Rλ ⊆ |R| × |R|, and for each s ∈ |R|, Ms is a
propositional model, i.e., a function Ms : P → {0, 1} which is equivalent to a subset Ms ⊆ P . Note that
by virtue of Fact 3.3 we do not need to make a distinction between the Boolean connectives at the level of
PL and at the level ofHPL.

The T , S4, and S5 versions of hybrid propositional logic are obtained by constraining the models of
HPL to those models (M,R) for which Rλ is reflexive, preorder, and equivalence, respectively.

When we relax to arbitrary sets of modalities Λ rather than only λ, we obtain the “multi-modal hybrid
propositional logic”.

A challenging issue concerns finding suitable quantification spaces to capture versions of hybrid propo-
sitional logic. One choice is the quantifier-free version presented above in which DHPL consists only if
identities. However, it would be interesting, along the hybridization process, to capture a quantifier such as
E, where Eρ means that “ρ is true in some state of the model” [4]. Considering as a quantification space
the extensions of signatures with nominal symbols, paves the way to express the following properties:

(M,R) |=s ((∀i)i)⇔ ρ iff ρ is satisfied at s iff s is unique in (M,R)

(M,R) |=s (∃i)@iρ iff (M,R) |= Eρ

A block of nominal variables X for a HPL signature (P,Nom) is a finite set of triples of the form
(x, P,Nom). Then DHPL may be defined as consisting of the signature extensions with blocks of nom-
inal variables, i.e. (P,Nom) ↪→ (P,Nom ∪X). For any signature morphism ϕ : (P,Nom)→ (P ′,Nom′)
and X block of nominal variables for (P,Nom) we define Xϕ = {(x, P ′,Nom′) | (x, P,Nom) ∈ X}.
Then χ(ϕ) is the extension (P ′,Nom′) ↪→ (P ′,Nom′ ∪Xϕ) and ϕ[χ] is the canonical extension of ϕ that
maps each (x, P,Nom) to (x, P ′,Nom′).
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When we combine this quantification with the constraints T, S4, S5, etc., then we have to establish
the adequacy condition for the constrained model sub-functor. However in this case this is almost trivial
since we may consider DPL (the quantification space at the level of the base institution) as being trivial and
furthermore it is also immediate that the amalgamation of constrained models is still a constrained model.

Example 3.2 (HFOL,HEQ). Through the application of the hybridization method to FOL by taking as a
quantification space signature extensions both with FOL variables and variables over nominals, one captures
the state-variables quantification of first-order hybrid logic of [9]. Like in the case of HPL, by virtue of
the Fact 3.3 note that we do not need to make a distinction between the Boolean connectives at the level
of FOL and those at the level of HFOL. Moreover, because of the carriers of the FOL models are non-
empty we may easily show that in this case the implications of Fact 3.3 about quantifiers may be turned into
equivalences, hence it is also not necessary to distinguish between quantifiers at the base FOL level and at
the hybridizedHFOL level.

Binding “state variables” to the point of evaluation highly increase the expressive power of an hybrid
logic, which is enabled through the binder operator ↓ (e.g. [7, 9]). This may be achieved by taking i-
extensions χ : (Σ,Nom,Λ) ↪→ (Σ,Nom ] {i},Λ) as a quantification space; in this case (↓ i)ρ may be
defined as (∀χ)(i⇒ ρ).

Let us also mention the quantifier-free hybridization of EQ . The resulting hybrid equational institution
provides a suitable setting for specifying evolving systems in which each state is endowed with a specific
algebra [29].

Example 3.3. LetHREL′ be the hybridization of REL that constraints the models ofHREL to those mod-
els (M,R) such that {Mi | i ∈ |R|} share the same universe (underlying set) and the same interpretation
of the constants. The sharing is also extended to model homomorphisms: for allHREL′ ∆-models (M,R)
and (M ′, R′) a model homomorphism h : (M,R)→ (M ′, R′) in HREL belongs to HREL′ if and only if
hi = hj for all i, j ∈ |R|. It is rather easy to note that the amalgamation of models preserves the sharing,
hence the reflection condition of Dfn. 3.1 is fulfilled.
DHREL′

consists of the signature extensions with FOL variables (for the states), with nominal variables
(in the style of DHPL of Ex. 3.1) and with variables for modalities.

Note that like forHFOL, inHREL′ we also do not need to distinguish between the Boolean connectives
and the quantifiers at the base and at the hybridized level.

Example 3.4. Let HPA′ be a hybridization of PA that constraints the models of HPA to those models
(M,R) such that

• {Mi | i ∈ |R|} share the same universes and the same interpretations of the total function symbols,
i.e. for all i, j ∈ |R|, (Mi)x = (Mj)x for any x sort or total function symbol.

• for each i, j ∈ |R|, each partial function symbol σ with arity w, and each m ∈ (Mi)w, if both
(Mi)σ(m) and (Mj)σ(m) are defined then (Mi)σ(m) = (Mj)σ(m).

Like in Ex. 3.3 we also require that the model homomorphisms h in HPA′ are such that hi = hj for
all i, j ∈ |R|. It is rather easy to note that the amalgamation of models preserves the sharing, hence the
reflection condition of Dfn. 3.1 is fulfilled.
DHPA′

consists of the signature extensions with PA variables (for the states), with nominal variables
(in the style of DHPL of Ex. 3.1) and with variables for modalities.

Note that like forHFOL andHREL′, inHPA′ we also do not need to distinguish between the Boolean
connectives and the quantifiers at the base and at the hybridized level.

14



Example 3.5. Let HALG ′ be a hybridization of ALG that restricts the signatures to those in which Λ
has only two binary modality symbols ≤ and λ, and that constraints the models to those models (M,R)
for which (|R|, R≤) is a complete lattice and Mi is a sub-algebra of Mj whenever (i, j) ∈ R≤. Model
homomorphisms h : (M,R)→ (M ′, R′) in HALG ′ are such that hi is the restriction of hj for all (i, j) ∈
R≤. The quantification spaceDHALG′

consists of the signature extensions with ALG variables and nominal
symbols variables. We denote [λ] by 2 and 〈λ〉 by 3. Since Λ is fixed we may denote the signatures of
HALG ′ simply by (Σ,Nom), with Σ being an ALG-signature.

The argument that the amalgamation of constrained models yields a constraint model, which represents
the reflection condition of Thm. 3.1, is a bit more complex than in the previous examples. It is an immediate
consequence of the fact that, in the case of a pushout square of ALG signatures like below

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2
// Σ′

the amalgamation of inclusive algebra homomorphisms yields an inclusive algebra homomorphism. Thus
let hk : Ak → Bk be inclusive Σk-algebra homomorphisms for k ∈ {1, 2} . Let (h1 ⊗ h2) : A1 ⊗ A2 →
B1 ⊗ B2 be their (unique) amalgamation (here we apply the amalgamation property for homomorphisms,
a property enjoyed by ALG according to the literature, e.g. [14]). Since this is a homomorphism it suffices
to show that for each sort s, (h1⊗h2)s is an inclusion. By the pushout construction in the category of ALG
signatures there exists k ∈ {1, 2} and sk sort in Σk such that s = θk(sk). Then (h1⊗h2)s = (hk)sk , hence
(h1 ⊗ h2)s is inclusion since (hk)sk is inclusion by hypothesis.

Note that like inHFOL,HREL′,HPA′ we do not need to distinguish between the Boolean connectives
at the level of ALG and at the level of HALG ′, however unlike in the above mentioned cases we do
need to distinguish between quantifiers at the level of ALG and at the level of HALG ′. For example if
we consider Σ consisting of one constant a only, Nom = ∅ and the (Σ,Nom)-model (M,R) such that
|R| = {i, j}, R≤{(i, j)}, Mi a singleton, and Mj having two elements. Then (M,R) 2j (∀x)x = a but
(M,R) |=j ( ∀©x)x = a.

4. Preservation along model homomorphisms

This short section is devoted to preservation of (satisfaction of) senstences along model homomorphisms
in hybridized institutions, and it has only a technical significance.

Definition 4.1 (Preservation along model homomorphisms). In an institution I, a sentence ρ is preserved
along a model homomorphism h : M →M ′ if and only if M |= ρ implies M ′ |= ρ.

Example 4.1. The following preservation results constitute simple exercises and moreover most of them
are also known from the literature (e.g. [14]).

– For any PL signature P , each π ∈ P is preserved by all model homomorphisms.

– In REL the relational atoms π(t1, . . . , tn) and the equational atoms t = t′ are preserved by all model
homomorphisms.

– In REL the negations of equational atoms t 6= t′ are preserved by the injective model homomor-
phisms.
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– In REL a model homomorphism h : M → M ′ is closed when Mπ = h−1(M ′π) for each relational
symbol π of the respective signature. Then in REL the negations atoms ¬π(t1, . . . , tn) are preserved
by all closed model homomorphisms.

– In ALG the equations t = t′ are preserved by all model homomorphisms and the negations of equa-
tions t 6= t′ are preserved by all injective homomorphisms.

– In PA the existence equations t e
= t′ are preserved by all model homomorphisms.

– In PA a model homomorphism h : M → M ′ is closed when for each partial operation symbol
σ ∈ PFw→s of the respective signature and for each m ∈ Mw, M ′σ(hw(m)) is defined implies that
Mσ(m) is also defined. Then in PA the negations of existence equations t 6 e=t′ are preserved by all
injective and closed model homomorphisms.

– In PL, REL, ALG and PA the sentences preserved by a model homomorphism h are closed under
conjunction ∧ and disjunction ∨.

– In PL, REL, ALG and PA if a sentence ρ is preserved by all χ-expansions of h then (∃χ)ρ is
preserved by h. Consequently the sentences preserved by all model homomorphisms are closed
under existential quantifications.

– The universally quantified atoms (∀X)π(t1, . . . , tn) (in REL), (∀X)t = t′ (in ALG , REL), and
(∀X)t

e
= t′ (in PA) are preserved by the surjective homomorphisms.

Definition 4.2 (Local preservation along model homomorphisms). In a hybridization of an institution
I, a sentence ρ is locally preserved along a model homomorphism h : (M,R) → (M ′, R′) if and only
if for each s ∈ |R|, (M,R) |=s ρ implies (M ′, R′) |=h(s) ρ.

Definition 4.3. For any signature morphism ϕ : Σ → Σ′ in an institution and for any Σ-model homomor-
phism h : M → N , we say that ϕ lifts forward (backwards) h when for each ϕ-expansion M ′ (N ′) of M
(N ) there exists a ϕ-expansion h′ : M ′ → N ′ of h.

Proposition 4.1.

1. Each nominal is locally preserved along any homomorphism.
2. For any ρ ∈ SenI(Σ) and any (Σ,Nom,Λ)-homomorphism h : (M,R) → (M ′, R′), if ρ is pre-

served along each hi, i ∈ |R|, then ρ is locally preserved along h.
3. If ρ1 and ρ2 are locally preserved along h then ρ1 ∧ ρ2 and ρ1 ∨ ρ2 are also locally preserved along
h.

4. If ρ is locally preserved along h then @iρ is also locally preserved along h.
5. If ρ is locally preserved along h : (M,R)→ (M ′, R′) and h has the property that for each (h(s), s′) ∈
R′λ there exists s′′ ∈ h−1

st (s′) such that (s, s′′) ∈ Rλ then [λ](ρ) is also locally preserved along h.
6. If ρ is locally preserved along h then 〈λ〉(ρ) is also locally preserved along h.
7. If ρ is locally preserved along all χ-expansions of h : (M,R) → (M ′, R′) and χ lifts forward

(backwards) h then (∃χ)ρ ((∀χ)ρ) is locally preserved along h.

Proof. 1. Let i ∈ Nom. Let us assume (M,R) |=s i, which means s = Ri. Since h(Ri) = R′i it follows
that h(s) = R′i which means (M ′, R′) |=h(s) i.

2. Let s ∈ |R| and let (M,R) |=s ρ. Since ρ ∈ SenI(Σ) it follows that Ms |=I ρ. Since hs : Ms →
M ′h(s) preserves ρ it follows that M ′h(s) |=

I ρ, which means (M ′, R′) |=h(s) ρ.
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3. Assume (M,R) |=s ρ1 ∧ ρ2 which means (M,R) |=s ρi for each i ∈ {1, 2}. Then by hypothesis
(M ′, R′) |=h(s) ρi for each i ∈ {1, 2} hence (M ′, R′) |=h(s) ρ1 ∧ ρ2.

If (M,R) |=s ρ1∨ρ2 then there exists i ∈ {1, 2} such that (M,R) |=s ρi. By hypothesis it follows that
(M ′, R′) |=h(s) ρi hence (M ′, R′) |=h(s) ρ1 ∨ ρ2.

4. Assume (M,R) |=s @iρ. This means (M,R) |=Ri ρ. By hypothesis (M ′, R′) |=h(Ri) ρ which
means (M ′, R′) |=R′

i ρ. Hence (M ′, R′) |=h(s) @iρ.
5. Assume (M,R) |=s [λ](ρ1, . . . , ρn). Let any (s′1, . . . , s

′
n) such that (h(s), s′1, . . . , s

′
n) ∈ R′λ. By

hypothesis there exists s1 ∈ h−1(s′1), . . . , sn ∈ h−1(s′n) such that (s, s1, . . . , sn) ∈ Rλ. By our as-
sumption we have that there exists 1 ≤ k ≤ n such that (M,R) |=sk ρk. By hypothesis it follows that
(M ′, R′) |=h(sk) ρk which means (M ′, R′) |=s′k ρk.

6. Assume (M,R) |=s 〈λ〉(ρ), which means (M,R) |=s′ ρ for some (s, s′) ∈ Rλ. By hypothesis
(M ′, R′) |=h(s′) ρ hence (M ′, R′) |=h(s) 〈λ〉(ρ).

7. Assume (M,R) |=s (∃χ)ρ. Then there exists a χ-expansion (M,R) of (M,R) such that (M,R) |=s

ρ. By the lifting condition there exists a χ-expansion h′ : (M,R)→ (M ′, R′) of h. By the hypotheses we
have that (M ′, R′) |=h′(s)=h(s) ρ. This shows (M ′, R′) |=h(s) (∃χ)ρ.

Assume (M,R) |=s (∀χ)ρ. Let (M ′, R′) be any χ-expansion of (M ′, R′). By the lifting condition
there exists a χ-expansion h′ : (M,R) → (M ′, R′) of h. It follows that (M,R) |=s ρ. By the hypothesis
that ρ is locally preserved by h′ it follows that (M ′, R′) |=h(s)=h′(s) ρ. This shows (M ′, R′) |=h(s) (∀χ)ρ.
2

Remark 4.1. In the examples the conditions on forward (backwards) lifting of Prop. 4.1 may be obtained by
the following general methods. We assume a given (Σ,Nom,Λ)-homomorphism h : (M,R)→ (M ′, R′).

1. If χ|I lifts forward each hi, i ∈ |R|, and χ|REL is injective, then χ lifts forward h. Indeed, for any
χ-expansion (M,R) of (M,R) we may build a χ|REL-expansion h′st : R → R′ of hst : R → R′.
Also for each i ∈ |R| = |R| there exists a χ|I-expansion h′i : M i → M ′hst(i) of hi. These define a
χ-expansion h′ : (M,R)→ (M ′, R′) of h.

2. If χ|I lifts backwards each hi, i ∈ |R|, χ|REL is injective, and hst is surjective, then χ lifts backwards
h. Indeed, for any χ-expansion (M ′, R′) of (M ′, R′), we may build a χ|REL-expansion h′st : R→ R′

of hst : R → R′. Also for each i ∈ |R| = |R| there exists a χ|I-expansion h′i : M i → M ′hst(i) of
hi. These define a χ-expansion h′ : (M,R)→ (M ′, R′) of h.

However, in the applications of this methods, in both above cases we have to choose the expansions in
such way that when starting with a Mod′-homomorphism h we end up with the expansions h′ also being
Mod′-homomorphism.

Example 4.2. The last three items of Ex. 4.1 may be derived from the previous items of Ex. 4.1 via the
result of Prop. 4.1 by considering |R| and |R′| singleton sets.

Example 4.3. InHREL′ we fix a signature and consider a variable x for the corresponding REL-signature,
a nominal variable n, and a modality variable λ. Let π be a unary relation symbol in the signature. Let
us show that (∃x, n, λ)@n(π(x)⇒ 〈λ〉n) is locally preserved along any homomorphism h : (M,R) →
(M ′, R′) such that each hi, i ∈ |R|, is closed.

For this we replace ⇒ by its equivalent in terms of ¬ and ∨ and we apply Prop. 4.1 recursively on
the structure of the sentence, with the base case following from Ex. 4.1, namely that ¬π(x) is preserved
along closed homomorphisms in REL. The last recursion step, related to the quantifier, requires more
attention. For this we use the corresponding part of Remark 4.1. Note that the quantification corresponds to
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an inclusive signature morphism that just adds symbols to the original signature. We need to pay attention
to the fact that (M ′, R′) should be a Mod′-model, which means that for any j, k ∈ |R′| we have

1. |M ′j | = |M ′k|, i.e. the possible worlds of M ′ share the same underlying universes, and
2. for each constant c, (M ′j)c = (M ′k)c, i.e. the possible worlds of M ′ share the same interpretations

of the constants.

The former point follows from the fact that the expansions keep the underlying universes unchanged, i.e.
|M ′j | = |M ′j | and |M ′k| = |M ′k|, and because |M ′j | = |M ′k| since (M ′, R′) is a Mod′-model. In order to
fulfill the latter point we have to define for each j ∈ |R′|, i ∈ |R|, (M ′j)x = hi((Mhst(i))x) (the correctness
of this definition follows by the fact that (M,R) is a Mod′-model). In the case of the constants c of the
original signature we use that fact that (M ′, R′) is a Mod′-model in order to get the following equalities:
(M ′j)c = (M ′j)c = (M ′k)c = (M ′k)c.

Now let us show that (∀x, n, λ)@n(π(x)⇒〈λ〉n) is locally preserved along any homomorphism h : (M,R)→
(M ′, R′) such that hst is surjective and each hi, i ∈ |R|, is closed and surjective. Apart of the quantifier step
the argument for this case shares with the argument for the existential variant above. For the quantifier step
we use the backwards lifting part of Remark 4.1. We make sure that the expansion (M,R) is a Mod′-model
as follows:

1. for any i, j ∈ |R|, by the basic model reduct/expansion properties and because (M,R) is a Mod′-
model we have that |M i| = |Mi| = |Mj | = |M j | and that (M i)c = (Mi)c = (Mj)c = (M j)c for
any constant c of the original signature, and

2. since (M ′, R′) is a Mod′-model we have that for any i, j ∈ |R|, h−1
i ((M ′i)x) = h−1

j ((M ′j)x);
therefore we pick a ∈ h−1

i ((M ′i)x) and for each i ∈ |R| we define (M i)x = a.

5. Inclusion systems for models of hybridized institutions

The goal of this section is to establish the concept of sub-model for the models of hybridized institutions
and to develop results about preservation by sub-models. Any proper concept of sub-model comes as part of
a so-called ‘factorization system’; in our case we use the brand of factorization systems known as ‘inclusion
systems’. The structure of the section is as follows:

1. We review briefly the concepts from the theory of inclusion systems that are necessary for our work
here.

2. We develop inclusion systems for the categories of models of hybridized institutions; this yields the
concept of sub-model in hybridized institutions.

3. We develop preservation results by sub-models in hybridized institutions.

5.1. Inclusion systems
Inclusion systems were introduced in [18] as a categorical device supporting an abstract general study

of structuring of specification and programming modules that is independent of any underlying logic. They
have been used in a series of general module algebra studies such as [14, 17, 18, 22] but also for de-
veloping axiomatizability [13, 14, 33] and definability [1] results within the framework of the so-called
‘institution-independent model theory’ [14]. Inclusion systems capture categorically the concept of set-
theoretic inclusion in a way reminiscent of how the rather notorious concept of factorization system [8]
captures categorically the set-theoretic injections; however in many applications the former are more con-
venient than the latter. Here we first recall from the literature the basics of the theory of inclusion systems
that are necessary for the developments of this paper.
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The definition below can be found in the recent literature on inclusion systems (e.g. [14]) and differs
slightly from the original one of [18].

Definition 5.1 (Inclusion systems). 〈I, E〉 is a inclusion system for a category C if I and E are two sub-
categories with |I| = |E| = |C| such that

1. I is a partial order (with the ordering relation denoted by ⊆), and
2. every arrow f in C can be factored uniquely as f = ef ; if with ef ∈ E and if ∈ I .

The arrows of I are called abstract inclusions, and the arrows of E are called abstract surjections. The
domain of the inclusion if in the factorization of f is called the image of f and is denoted as Im(f) or
f(A) when A is a domain of f . An inclusion i : A→ B may be also denoted simply by A ⊆ B and we may
say that A is a sub-object of B.

The inclusion system

– is epic when all abstract surjections are epis, and

– is co-well-powered when for each A ∈ |C| the quotient class q(A) = {e : A→ B | e ∈ E}/∼=A is a
set, where ∼=A is the equivalence defined by e ∼=A e

′ if and only if there exists an isomorphism i ∈ C
such that e; i = e′.

In [12] it is shown that the class I of the abstract inclusions determines the class E of the abstract surjections.
In this sense, [12] gives an explicit equivalent definition of inclusion systems which uses only the class I of
the abstract inclusions.

Example 5.1. The standard example of inclusion system is that from Set, with set theoretic inclusions in
the role of the abstract inclusions and the surjective functions in the role of the abstract surjections. It is
easy to note that this is epic and co-well-powered.

Example 5.2. A Σ-model homomorphism h : M →M ′ in REL

– is closed when for each relation symbol π in Σ, Mπ = h−1(M ′π), and

– is strong when for each relation symbol π in Σ, h(Mπ) = M ′π.

A (S, TF, PF )-model homomorphism h : M →M ′ in PA

– is closed when for each σ ∈ PFw→s and each m ∈Mw, Mσ(m) is defined whenever M ′σ(hw(m)) is
defined, and

– is full when for each partial operation symbol σ ∈ PFw→s and each m ∈ Mw, if M ′σ(hw(m)) is
defined then there exists n ∈Mw such that Mσ(n) is defined and hw(m) = hw(n).

The inclusion systems listed below can be found in the model theory literature (e.g. [14]).

INSTITUTION INCLUSION SYSTEM E I

PL closed all homomorphisms identities
strong identities all homomorphisms

REL closed surjective homomorphisms closed sub-models
strong strong surjective homomorphisms plain sub-models

ALG standard surjective homomorphisms sub-algebras
PA closed epi homomorphisms closed sub-algebras

full surjective homomorphisms full sub-algebras
strong full surjective homomorphisms plain sub-algebras
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It is easy to note that all these inclusion systems are epic and co-well-powered.

Definition 5.2 (Quasi-variety). A sub-class of objectsQ ⊆ |C| of a category C with a designated inclusion
system

– is closed under sub-models when for each A ⊆ B, B ∈ Q implies A ∈ Q,

– is closed under small products when for any set I and objects Ai ∈ Q, for i ∈ I , we have that∏
i∈I Ai ∈ Q, and

– is quasi-variety (in C) when it is both closed under sub-models and under small products.

Fact 5.1. Any intersection of quasi-varieties is a a quasi-variety.

5.2. Inclusion systems for models in hybridized institutions

The following theorem provides a set of sufficient conditions for categories of models of hybridized
institutions to posses a proper inclusion system in the sense of having the necessary properties required for
developing initial semantics by means of quasi-varieties. These conditions have a rather technical nature
and are given with the intention to have them checked rather easily in the concrete situations.

Theorem 5.1. Given a base institution I, a hybridization (SignHI , SenHI ,Mod′, |=) of I, aHI-signature
(Σ,Nom,Λ), an inclusion system for the category of the (Nom,Λ)-models, and an inclusion system (IΣ, EΣ)
for the category of Σ-models, we assume the following conditions:

1. For each Mod′(Σ,Nom,Λ)-homomorphism h : (M,R) → (M ′, R′) let us factor each hi, i ∈ |R|,
through (IΣ, EΣ) as follows:

Mi

ehi∈E
Σ

��

hi

$$
hi(Mi) ⊆

//M ′h(i).

Let h(M) : |R| → |Mod(Σ)| be defined by h(M)i = hi(Mi). Then ({ehi | i ∈ |R|}, 1R) constitutes
a Mod′-homomorphism (M,R)→ (h(M), R).

2. For any ModHI(Σ,Nom,Λ)-homomorphism h : (M,R)→ (M ′, R′) such that (M,R), (M ′, R′) ∈
|Mod′(Σ,Nom,Λ)| and for each i ∈ |R|, hi = (Mi ⊆M ′i) we have that h is a Mod′-homomorphism.
The situation when in addition hst is abstract inclusion of (Nom,Λ)-models is denoted by (M,R) ⊆
(M ′, R′).

3. For each Mod′(Σ,Nom,Λ)-homomorphism h : (M,R) → (M ′, R′) let us factor hst through the
inclusion system of (Nom,Λ)-models as follows:

R

ehst
��

hst

""
h(R)

ihst

// R′.

Then there exists (∪ehstM,h(R)) ∈ |Mod′(Σ,Nom,Λ)| such that

– (M,R) ⊆ (ehst ;∪ehstM,R), and
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– the following universal property holds: for each Mod′-homomorphism (f, ehst) : (M,R) →
(N ′, h(R)) there exists an unique Mod′-homomorphism (f ′, 1h(R)) : (∪ehstM,h(R))→ (N ′, h(R))
such that the diagram below commutes

(M,R)
⊆ //

(f,1R) ((

(∪ehstM ◦ ehst , R)

(f ′◦ehst ,1R)

��

(∪ehstM,h(R))

(f ′,1h(R))

��
(N ′ ◦ ehst , R) (N ′, h(R))

and moreover, when {fi | i ∈ |R|} are inclusions, then {f ′j | j ∈ |h(R)|} are inclusions too.

Then Mod′(Σ,Nom,Λ) admits an inclusion system as follows:

– the abstract inclusions are the homomorphisms (M,R) ⊆ (M ′, R′), and

– the abstract surjections are the homomorphisms h : (M,R) → (M ′, R′) such that hst : R → R′ is
abstract surjection (of (Nom,Λ)-models) and M ′ = ∪hsth(M).

Proof. For any h : (M,R)→ (M ′, R′) let ∪hM abbreviate ∪hstM .
We first prove that if h : (M,R) → (M ′, R′) and h′ : (M ′, R′) → (M ′′, R′′) are abstract surjections

then their composition h;h′ is an abstract surjection too. Since hst and h′st are abstract surjections of
(Nom,Λ)-models it follows immediately that hst;h′st is abstract surjection of (Nom,Λ)-models too. It
remains to show that M ′′ = ∪h;h′(h;h′)(M).

In the commutative diagram below, for each i ∈ |R| and for each j ∈ |R′| we let (eh)i, (e1)i, (eh′)j ∈
EΣ, and (ih)i, (i1)i, (ih′)j ∈ IΣ (where each (e1)i; (i1)i is the factorization of (ih)i; (eh′)h(i)).

M
hmod //

eh ""

M ′ ◦ hst
h′mod◦hst //

eh′◦hst ''

M ′′ ◦ h′st ◦ hst

h(M)

e1 %%

ih

99

h′(M ′) ◦ hst
ih′◦hst

66

(h;h′)(M)

i1

77

Since eh; e1 consists of abstract inclusions and i1; (ih′◦hst) consists of abstract inclusions, by the uniqueness
property of factorizations it follows that the codomain of e1 is (h;h′)(M).

For any (g, 1R) : (N,R)→ (N ′, R) and any hst : R→ R′ abstract surjection of (Nom,Λ)-models, by
the universal property of (∪hN,R′) we define ∪hg : ∪hN → ∪hN ′ such that the diagram below commutes:

(N,R)
⊆ //

(g,1R)

��

(∪hN ◦ hst, R)

(∪hg ◦ hst,1R)
��

(N ′, R)
⊆
// (∪hN ′ ◦ hst, R)
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For each (N,R′), by the universal property of (∪h(N ◦ hst), R′) we define εN : ∪h(N ◦ hst) → N such
that the diagram below commutes:

(N ◦ hst, R)
⊆ //

=
))

(∪h(N ◦ hst) ◦ hst, R)

(εN◦hst,1R)

��
(N ◦ hst, R)

By the universal properties of (∪hh(M), R′) and of (∪h(M ′◦hst), R′) we obtain that both the inner squares
of the diagram below commute, hence the outer square commutes too.

(∪hh(M), R′)
(∪hih,1R′ ) //

(∪he1,1R′ )
��

(∪h(M ′ ◦ hst), R′)
(εM′ ,1R′ ) //

(∪h(eh′◦hst),1R′ )
��

(M ′, R′)

(eh′ ,1R′ )

��
(∪h(h;h′)(M), R′)

(∪hi1,1R′ )
// (∪h(h′(M ′) ◦ hst), R′)

(εh′(M′),1R′ )
// (h′(M ′), R′)

Since by the hypotheses of the theorem εM ′ consists of inclusions and since (M ′, R′) = (∪hh(M), R′)
(because h is abstract surjection) we have that ∪hih; εM ′ is an identity, hence ∪he1; (∪hi1; εh′(M ′)) = eh′ .
Since for each j ∈ |R′| we have that (eh′)j is an abstract surjection, by the uniqueness property of the
factorization we get that ∪hi1; εh′(M ′) is an identity, hence

(∪h(h;h′)(M), R′) = (h′(M ′), R′). (4)

If we showed that for each (N,R) we have that

(∪h;h′N,R′′) = (∪h′ ∪h N,R′′) (5)

then by considering ((h;h′)(M), R) in the role of (N,R), from (4) and from the fact that (M ′′, R′′) =
(∪h′h′(M ′), R′′) (since h′ is abstract surjection) it follows that (M ′′, R′′) = (∪h;h′(h;h′)(M), R′′). Mod-
ulo (5), this completes the proof that the abstract surjections are closed under composition.

We now prove the relation (5) by the uniqueness of (∪h;h′N,R′′) (which follows easily from its univer-
sal property) and by establishing that (∪h′∪hN,R′′) fulfills the universal property of (∪h;h′N,R′′). For any
(f, 1R) : (N,R)→ (N ′′◦h′st◦hst, R) by the universal property of (∪hN,R′) we get (f ′, 1R′) : (∪hN,R′)→
(N ′′◦h′st, R′) and by the universal property of (∪h′∪hN,R′′) we further get (f ′′, 1R′′) : (∪h′∪hN,R′′)→
(N ′′, R′′). The uniqueness of f ′′ propagates through the uniqueness of f ′. Moreover when f consists of
inclusions then f ′ consists of inclusions too which implies that f ′′ also consists of inclusions.

(N,R)
⊆ //

(f,1R) ''

((∪hN)◦hst, R)
⊆ //

(f ′◦hst,1R)

��

((∪h′∪hN)◦h′st◦hst, R)

(f ′′◦h′st◦hst,1R)tt
(N ′′ ◦ h′st ◦ hst, R)

(∪hN,R′)

(f ′,1R′ )

��

⊆ // ((∪h′∪hN)◦h′st, R′)

(f ′′◦h′st,1R′ )uu

(∪h′∪hN,R′′)

(f ′′,1R′′ )ww
(N ′′ ◦ h′st, R′) (N ′′, R′′)

22



Any homomorphism h : (M,R)→ (M ′, R′) gets factored as

(M,R)
h //

(ehmod
,1R)

��

eh

,,

(M ′, R′)

(h(M), R)
(h(M)⊆(∪ehst h(M))◦ehst ,ehst )

// (∪ehsth(M), h(R))

ih=(∪ehst h(M)⊆M ′◦ihst ,ihst )

OO

where

– ehst : R → h(R) and ihst : h(R) → R′ are the abstract surjection and the abstract inclusion that
correspond to the factorization of hst,

– ehmod
and ihmod

, respectively, consist of abstract surjections and abstract inclusions of Σ-models,
respectively, and

– (∪ehsth(M), h(R)) ⊆ (M ′ ◦ ihst , h(R)) is the unique extension of ihmod
given by the universal

property of (∪ehsth(M), h(R)).

R
hst //

ehst !!

R′ M
hmod //

ehmod ""

M ′ ◦ ihst ◦ ehst

h(R)

ihst

==

h(M)

ihmod

77

⊆
// (∪ehsth(M)) ◦ ehst

⊆

OO

Obviously (∪ehsth(M) ⊆ M ′ ◦ ihst , ihst) is an abstract inclusion. It is also straightforward to check that
(ehmod

; (h(M) ⊆ (∪ehsth(M)) ◦ ehst), ehst) is an abstract surjection. By the conditions of the theorem we
successively obtain that (ehmod

, 1R), (h(M) ⊆ (∪ehsth(M))◦ehst , ehst), and (∪ehsth(M) ⊆M ′◦ihst , ihst)
are Mod′-homomorphisms, which implies that our factorization of h happens inside Mod′.

In order to show the uniqueness property of the factorization let us assume a factorization

(M,R)
e //

h %%

(M,R)

i
��

(M ′, R′)

with e abstract surjection and i abstract inclusion and prove that e = eh and i = ih. By the uniqueness of
factorization in the category of (Nom,Λ)-models we get immediately that est = ehst , ist = ihst , and that
R = hst(R). Since imod consists of inclusions, by the uniqueness of the factorizations in through (IΣ, EΣ)
we get e(M) = h(M)

M
emod //

&&

M ◦ ehst
imod◦ehst
⊆

//M ′ ◦ ihst ◦ ehst

e(M)

⊆

OO

hence M = ∪ehste(M) = ∪ehsth(M). It follows that emod = (eh)mod and that imod = (ih)mod. 2

The inclusion system for Mod′(Σ,Nom,Λ) resulting from Thm. 5.1 may arise as a particular example
of a ‘Grothendieck inclusion system’ of [16]; however this requires category theory concepts and skills
much beyond the level of category theory of this paper which is meant to be rather elementary.
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Example 5.3 (HPL sub-models). Given a HPL-signature (P,Nom,Λ) we consider any of the strong or
of the closed inclusion system for the (Nom,Λ)-models and the strong inclusion system for the P -models.
Checking the first two conditions of Thm. 5.1 is rather straightforward. For the third condition, given
h : (M,R)→ (M ′, R′), for each j ∈ |R′| we define (∪ehstM)j = ∪hst(i)=jMi.

If we considered the T, S4, S5 variants of the standard version of HPL (see Ex. 3.1) then in order to
fulfill the conditions of Thm. 5.1 we have to consider only the closed inclusion system for the (Nom,Λ)-
models as the strong one would not do it since h(R) may not fulfill the respective conditions for T, S4 or
S5.

Example 5.4 (HREL′ sub-models). Given aHREL-signature (Σ,Nom,Λ) we consider any of the strong
or of the closed inclusion system for the (Nom,Λ)-models and the strong inclusion system for the Σ-
models. Checking the first two conditions of Thm. 5.1 is rather straightforward. For the third condition,
given h : (M,R)→ (M ′, R′), we define

– for each j ∈ |h(R)| and each i ∈ |R|, |(∪ehstM)j | = |Mi|,
– for each constant c in Σ, j ∈ |h(R)| and i ∈ |R|, ((∪ehstM)j)c = (Mi)c, and

– for each relation symbol π in Σ and each j ∈ |h(R)|, ((∪ehstM)j)π = ∪hst(i)=j(Mi)π.

For the case of the T, S4, S5 variants of the standard version of HREL′ we have the same restriction as
discussed in Ex. 5.3, namely that we can consider only the closed inclusion system for the (Nom,Λ)-
models.

Example 5.5 (HPA′ sub-models). Given a HPA-signature (Σ,Nom,Λ) we consider any of the strong or
of the closed inclusion system for the (Nom,Λ)-models and the strong inclusion system for the Σ-models.
Let us check the conditions of Thm. 5.1 in some detail.

1. Since for all i, j ∈ |R|, on the one hand Mi and Mj , and on the other hand M ′hst(i) and M ′hst(j), share
the same total algebra part and also hi = hj it follows that hi(Mi) and hj(Mj) share the same total
algebra part too and that ehi = ehj .
From the factorization of hi through the strong inclusion system of Σ-models we have that for each
partial operation symbol σ and each adequate list of arguments m, hi(Mi)σ(m) is defined if and
only if there exists m0 ∈ h−1

i (m) such that (Mi)σ(m0) is defined and moreover hi(Mi)σ(m) =
hi((Mi)σ(m0)). It is straightforward to check that this definition is independent of the choice of m0.
In order to complete the checking of this condition we have establish that (h(M), R) is a Mod′-model
which amounts to showing that for all i, j ∈ |R|, we have that

hi(Mi)σ(m) = hj(Mj)σ(m) when both are defined. (6)

We know that

hk(Mk)σ(m) = hk((Mk)σ(mk)) for some mk ∈ h−1
k (m), k ∈ {i, j} (7)

hk((Mk)σ(mk)) = (M ′hst)σ(hk(mk)), k ∈ {i, j}. (8)

Since hk(mk) = m and since (M ′, R′) is a Mod′-model we have that (6) follows from (7) and (8).
2. The second condition of Thm. 5.1 is straightforward.
3. For each j ∈ |h(R)|, (∪ehstM)j is defined as follows:

– We let the total algebra part of (∪ehstM)j to be that of Mi for any i ∈ |R|. Note the this does
not depend on the choice of i because (M,R) is Mod′-model.
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– For each partial operation symbol σ of Σ and each adequate list of argumentsm, ((∪ehstM)j)σ(m)
is defined if and only if there exists i ∈ h−1

st (j) such that (Mi)σ(m) is defined, and moreover
((∪ehstM)j)σ(m) = (Mi)σ(m). Note that according to the definition of constrained HPA
models in Ex. 3.4, ((∪ehstM)j)σ(m) is well-defined.

Example 5.6 (HALG ′ sub-models). Given a HALG ′-signature (Σ,Nom) we consider any of the strong
or of the closed inclusion system for the (Nom,Λ)-models and the standard inclusion system for the Σ-
models. Let us check the conditions of Thm. 5.1 in some detail.

1. For this condition we essentially have to show that for each (i, j) ∈ R≤ we have hi(Mi) ⊆ hj(Mj).
From (i, j) ∈ R≤ it follows that (hst(i), hst(j)) ∈ R′≤, hence M ′hst(i) ⊆ M ′hst(j). By the Diagonal-
Fill Lemma for inclusion systems (see [14]) there exists a homomorphism hi(Mi) → hj(Mj) such
that the diagram below commutes; from the uniqueness of factorizations it follows that this is an
inclusion.

Mi

ehi //

⊆
��

hi(Mi)

⊆
��

⊆ //M ′hst(i)

⊆
��

Mj ehj
// hj(Mj) ⊆

//M ′hst(j)

2. The second condition of Thm. 5.1 is straightforward.
3. Let us first note that sinceR≤ andR′≤ are complete lattices it follows that h(R)≤ is a complete lattice

too. For each j ∈ |h(R)|, (∪ehstM)j is defined as Msup{i | hst(i)=j}.
For each (f, 1R) : (M,R)→ (N ′ ◦ ehst , R) we let f ′j = fsup{i | hst(i)=j}.

5.3. Preservation by sub-models

Definition 5.3. In any institution I equipped with an inclusion system for each of its categories of models,
a Σ-sentence ρ is preserved by sub-models when for each sub-model M ′ ⊆M , M |= ρ implies M ′ |= ρ.

Example 5.7. The following preservation properties in PL, REL, ALG , PA are simple exercises and more-
over they are known from the literature (e.g. [14], etc.):

– the negations of atoms are preserved by the plain sub-models,

– the atoms are preserved by the closed sub-models,

– the equational atoms are preserved by the plain sub-models in REL and ALG ,

– the sentences preserved by the plain sub-models are closed under conjunction ∧, disjunction ∨, and
universal quantifications, and

– if ρ1 is preserved along abstract inclusions and ρ2 is preserved by sub-models then ρ1⇒ρ2is preserved
by sub-models.

Definition 5.4 (Local preservation by sub-models). In any hybridization of I, a (Σ,Nom,Λ)-sentence
ρ is locally preserved by sub-models when for each sub-model (M ′, R′) ⊆ (M,R) and each s ∈ |R′|,
(M,R) |=s ρ implies (M ′, R′) |=s ρ.

Proposition 5.1. The sentences that are locally preserved by sub-models are also preserved by sub-models.
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Proof. Let (M ′, R′) ⊆ (M,R) be a sub-model relationship and let us assume that (M,R) |= ρ. For any
s ∈ |R′|, since |R′| ⊆ |R| we have s ∈ |R|. From (M,R) |= ρ it follows that (M,R) |=s ρ. Since ρ is
locally preserved by sub-models it follows that (M ′, R′) |=s ρ. 2

Definition 5.5. A signature morphism ϕ : Σ→ Σ′ in an institution with inclusion systems for its categories
of models lifts forward (backwards) inclusions when for any Σ-models M ⊆ N and any ϕ-expansion M ′

(N ′) of M (N ) there exists a ϕ-expansion N ′ (M ′) of N (M ) such that M ′ ⊆ N ′.

Theorem 5.2. In any hybridization of an institution I, that admits an inclusion system as described in
Thm. 5.1:

1. Each nominal is locally preserved by sub-models.
2. If ρ ∈ SenI(Σ) is preserved by sub-models in I then ρ is locally preserved by sub-models in the

hybridization.
3. If ρ1 and ρ2 are locally preserved by sub-models then ρ1 ∧ ρ2 and ρ1 ∨ ρ2 are also locally preserved

by sub-models.
4. If ρ1 is locally preserved along inclusions and ρ2 is locally preserved by sub-models then ρ1⇒ ρ2 is

locally preserved by sub-models.
5. If ρ is locally preserved by sub-models then each @iρ is also locally preserved by sub-models.
6. If ρ are locally preserved by sub-models then [λ](ρ) is also locally preserved by sub-models.
7. If χ lifts forward (backwards) inclusions and ρ is locally preserved by sub-models then (∀χ)ρ ((∃χ)ρ)

is locally preserved by sub-models.

Proof. Let us fix two (Σ,Nom,Λ)-models (M,R) and (M ′, R′) such that (M ′, R′) ⊆ (M,R) with respect
to the inclusion system resulting from Thm. 5.1 and s ∈ |R′|.

1. Assume (M,R) |=s i. This means s = Ri. Since R′ is sub-model of R (in REL) we have that
Ri = R′i. It follows that s = R′i which implies (M ′, R′) |=s i.

2. Assume (M,R) |=s ρ. This means Ms |=I ρ. By the hypothesis that ρ is preserved by sub-models
in I it follows that M ′s |=I ρ which means (M ′, R′) |=s ρ.

3. Assume (M,R) |=s ρ1 ∧ ρ2. This means that (M,R) |=s ρ1 and that (M,R) |=s ρ2. Since both ρ1

and ρ2 are locally preserved by sub-models it follows that (M ′, R′) |=s ρ1 and that (M ′, R′) |=s ρ2, hence
(M ′, R′) |=s ρ1 ∧ ρ2.

A similar argument may be developed for showing that ρ1 ∨ ρ2 is locally preserved by sub-models.
4. Assume (M,R) |=s ρ1 ⇒ ρ2. We want to obtain that (M ′, R′) |=s ρ1 ⇒ ρ2. Let us assume

that (M ′, R′) |=s ρ1. Since ρ1 is locally preserved along inclusions it follows that (M,R) |=s ρ1, hence
(M,R) |=s ρ2. Since ρ2 is locally preserved by sub-models we obtain that (M ′, R′) |=s ρ2.

5. Assume (M,R) |=s @iρ. This means (M,R) |=Ri ρ. Since R′ is sub-model of R (in REL) we
have that Ri = R′i. Because ρ is locally preserved by sub-models it follows that (M ′, R′) |=R′

i ρ, hence
(M ′, R′) |=s @iρ.

6. Assume (M,R) |=s [λ](ρ1, . . . , ρn). We want to obtain that for each (s, s1, . . . , sn) ∈ R′λ, there
exists 1 ≤ k ≤ n such that (M ′, R′) |=sk ρ. Since R′ is sub-model of R (in REL) we have that R′λ ⊆ Rλ,
hence (s, s1, . . . , sn) ∈ Rλ. Thus there exists 1 ≤ k ≤ n such that (M,R) |=sk ρk. Because ρk is locally
preserved by sub-models it follows that (M ′, R′) |=s′ ρk.

7. Assume (M,R) |=s (∀χ)ρ. We want to obtain that (M ′, R′) |=s (∀χ)ρ. Let (M ′, R′) be any χ-
expansion of (M ′, R′). By the forward lifting hypothesis there exists a χ-expansion (M,R) of (M,R) such
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that (M ′, R′) ⊆ (M,R). Since (M,R) |=s ρ and because ρ is locally preserved by sub-models it follows
that (M ′, R′) |=s ρ.

Now we assume that (M,R) |=s (∃χ)ρ and under the backwards lifting hypothesis we prove that
(M ′, R′) |=s (∃χ)ρ. There exists a χ-expansion (M,R) of (M,R) such that (M,R) |=s ρ. By the
backwards lifting hypothesis there exists a χ-expansion (M ′, R′) of (M ′, R′) such that (M ′, R′) ⊆ (M,R).
Because ρ is locally preserved by sub-models it follows that (M ′, R′) |=s ρ, hence (M ′, R′) |=s (∃χ)ρ. 2

Example 5.8. The last two items of Ex. 5.7 may be derived from the previous items of Ex. 5.7 via the result
of Thm. 5.2 by considering |R| and |R′| singleton sets.

The following examples of preservation by sub-models may be established by recursion on the structure
of the sentences by application of Thm. 5.2 and at the end by application of Prop. 5.1. In the application
of Thm. 5.2, the ⇒ steps require the application of Prop. 4.1. The base steps require preservation results
in corresponding base institutions; these may be found in Ex. 5.7 and in Ex. 4.1. The steps corresponding
to the quantifications are justified by noting that in all our examples the signature extensions with nominal
variables and with base institution variables lift forward inclusions.

– InHPL: (∀i, j)(((@iπ) ∧ (@jπ))⇒@i2j).

– InHREL′: (∀x, y)(π(x, y)⇒ [λ](x = y)).

– InHALG ′: @i( ∀©X)t = t′.

– InHALG ′: (∀X)((t1 = t2)⇒2( ∀©Y )t′1 = t′2).

6. Products of models in hybridized institutions

This section consists of two parts:

1. We develop a method to establish the existence of products of models in hybridized institutions.
2. We develop results about preservation by products in hybridized institutions.

6.1. Existence of products of models in hybridized institutions

The following result may be obtained as a particular case of the general result on existence of limits in
Grothendieck categories of [36]. We give it here an explicit construction and proof that is needed in the
applications and in the examples.

Proposition 6.1. If ModI(Σ) has products then ModHI(Σ,Nom,Λ) has products of models as follows.
For each family {(M i, Ri) | i ∈ I} of (Σ,Nom,Λ)-models its product (M,R) is defined by

– R =
∏
i∈I R

i (product of (Nom,Λ)-models), and

– for each k = (ki)i∈I ∈ |R| =
∏
i∈I |Ri|, Mk =

∏
i∈IM

i
ki

(product of Σ-models).

Proof. We define the projections {pi : (M,R)→ (M i, Ri) | i ∈ I} as follows.

– pist is the projection R → Ri in the category of the (Nom,Λ)-models; note that |R| =
∏
i∈I |Ri|,

that for each n ∈ Nom, Rn = (Rin)i∈I , and that for each λ ∈ Λn we have that Rλ = {(s1, . . . , sn) |
(si1, . . . , s

i
n) ∈ Riλ, i ∈ I}, and

– pimod : M →M i ◦pist is defined such that for each k ∈ |R|, (pimod)k : Mk →M i
ki

is the correspond-
ing projection in the category of the Σ-models.
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For any family of (Σ,Nom,Λ)-model homomorphisms {hi : (M ′, R′) → (M i, Ri) | i ∈ I} there exists
an unique h : (M ′, R′)→ (M,R) defined as follows:

– hst is the unique homomorphism of (Nom,Λ)-models such that for each i ∈ I , hst; pist = hist, and

– for each j ∈ |R′|, hj is the unique homomorphism of Σ-models such that for each i ∈ I , hj ; (pi)hst(j) =
(hi)j .

(M,R)
pi // (M i, Ri) R

pist // Ri Mhst(j)

(pi)hst(j)//M i
hist(j)

(M ′, R′)

h

OO

hi

88

R′

hst

OO

hist

==

M ′j

hj

OO

(hi)j

99

2

Prop. 6.1 develops products of non-constrained models and may be applied directly only to Ex. 6.1
below. However often products of constrained models may be obtained as designated products of non-
constrained models as given by Prop. 6.1; this is the case for Ex. 6.2 (HREL′), Ex. 6.3 (HPA′), and Ex. 6.4
(HALG ′) below.

Example 6.1 (Products ofHPL-models). Recall that in PL, the product of a family {M i | i ∈ I} of
P -models is given by the intersection ∩i∈IM i.

Hence by Prop. 6.1,HPL has products of models as given by the construction described in Prop. 6.1.

Example 6.2 (Products ofHREL′-models). In Prop. 6.1 we have established that REL has products of
models, hence again by Prop. 6.1 we obtain thatHREL has products of models. Let us call the products of
models in REL that have been described in Prop. 6.1, cartezian products.

In order to establish that HREL′ has products of models we show that for any family {(M i, Ri) |
i ∈ I} ⊆ |Mod′(Σ,Nom,Λ)| their product (M,R) in ModHREL(Σ,Nom,Λ) that is constructed from
cartezian products of Σ-models, i.e. for each k ∈ |R|, Mk is the cartezian product

∏
i∈IM

i
ki

, is a product
in Mod′(Σ,Nom,Λ):

– For any j, k ∈ |R|we have the cartezian products of sets |Mj | =
∏
i∈I |M i

ji
| and |Mk| =

∏
i∈I |M i

ki
|.

Because each (M i, Ri) is a Mod′-model we have that |M i
ji
| = |M i

ki
|, hence because cartezian prod-

ucts are unique we get |Mj | = |Mk|.
– For any constant c of Σ and for any j, k ∈ |R|, because (M i

ji
)c = (M i

ki
)c it follows that (Mj)c =

((M i
ji

)c)i∈I = ((M i
ki

)c)i∈I = (Mk)c.

Hence (M,R) ∈ |Mod′(Σ,Nom,Λ)|. It is straightforward to check further that the projections pi : (M,R)→
(M i, Ri) also belong to Mod′(Σ,Nom,Λ). Moreover, if each hi from the proof of Prop. 6.1 is in Mod′(Σ,Nom,Λ)
then the mediating homomorphism h is also in Mod′(Σ,Nom,Λ).

Example 6.3 (Products ofHPA′-models). In PA, any family {M i | i ∈ I} of Σ-models has products as
follows.

1. We consider the cartezian product of the underlying universes |M | =
∏
i∈I |M i| with projections

pi : |M | → |M i|.
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2. For each operation σ of Σ and m adequate list of arguments, Mσ(m) is defined if and only if for
each i ∈ I , M i

σ(mi) is defined (mi denotes the list of arguments obtained from m by applying the
projection pi to each of the arguments). WhenMσ(m) is defined its value isMσ(m) = (M i

σ(mi))i∈I .

Let us call the product defined above a cartezian product.
In order to establish that HPA′ has products of models we do the same as in Ex. 6.2 above, namely we

show that for any family {(M i, Ri) | i ∈ I} ⊆ |Mod′(Σ,Nom,Λ)| their product (M,R) in ModHPA(Σ,Nom,Λ)
that is constructed from cartezian products of Σ-models, is a product in Mod′(Σ,Nom,Λ). The constraint
on the underlying universes of (M,R) may be checked as in Ex. 6.2 above. For the other constraint on
(M,R) let us consider j, k ∈ |R|, σ operation in Σ and m adequate list of arguments and let us assume
that both (Mj)σ(m) and (Mk)σ(m) are defined. This implies that for each i ∈ I , both (M i

ji
)σ(mi) and

(M i
ki

)σ(mi) are defined. Since (M i, Ri) is a Mod′-model it follows that (M i
ji

)σ(mi) = (M i
ki

)σ(mi).
Hence (Mj)σ(m) = (Mk)σ(m).

Example 6.4 (Products ofHALG ′-models). In order to establish thatHALG ′ has products of models we
first note that the products of complete lattices yield complete lattices and then we proceed as in Ex. 6.2
and Ex. 6.3 above. More precisely, we show that the product (M,R) of any family {(M i, Ri) | i ∈ I} ⊆
|Mod′(Σ,Nom)| in ModHALG(Σ,Nom,Λ) that is constructed from cartezian products of Σ-models, is a
product in Mod′(Σ,Nom). The specific constraint on (M,R), namely that if (j, k) ∈ R≤ then Mj is a sub-
algebra of Mk, follows easily from the fact that for each i ∈ I , we have that (ji, ki) ∈ Ri≤ which implies
that M i

ji
is a sub-algebra of M i

ki
, hence the cartezian product

∏
i∈IM

i
ji

is a sub-algebra of the cartezian
product

∏
i∈IM

i
ki

. The corresponding property for projections and for the mediating homomorphisms
follow easily; we skip these here.

6.2. Preservation by products

Definition 6.1. In any institution a sentence ρ is preserved by products when for each product of models∏
i∈IMi if for each i ∈ I , Mi |= ρ then

∏
i∈IMi |= ρ.

Example 6.5. In the institutions PL, REL, ALG and PA the following preservation are simple exercises;
moreover they are well known from the literature (e.g. [14], etc.):

– all atoms are preserved by products,

– the sentences preserved by products are closed under conjunction ∧ and universal and existential
quantifications, and

– if ρ1 is preserved along product projections and ρ2 is preserved by products then ρ1⇒ρ2 is preserved
by products.

Definition 6.2 (Local preservation by products). In any hybridization of an institution I, a (Σ,Nom,Λ)-
sentence ρ is locally preserved by products when for each product (M,R) of a family of (Σ,Nom,Λ)-
models {(M i, Ri) | i ∈ I} and each s ∈ |R|, {(M i, Ri) |=pist(s) ρ | i ∈ I} implies (M,R) |=s ρ.

Without loss of generality in what follows we assume that R is the cartezian product of {(M i, Ri) | i ∈ I}.

Proposition 6.2. The sentences that are locally preserved by products are also preserved by products.
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Proof. Let us consider a product (M,R) of a family {(M i, Ri) | i ∈ I}. Without loss of generality we may
assume that R is the cartezian product of {Ri | i ∈ I}. Let us assume that for each i ∈ I , (M i, Ri) |= ρ.
Then for each s = (si)i∈I ∈ |R|, we have that for each i ∈ I , (M i, Ri) |=si ρ. Because ρ is locally
preserved by products it follows that (M,R) |=s ρ. 2

Definition 6.3. In an institution a signature morphism χ : Σ → Σ′ lifts products forward (backwards)
when for each product of Σ-models {pi :

∏
i∈IMi → Mi | i ∈ I} and each expansion(s) M ′ (M ′i , i ∈ I)

of
∏
i∈IMi (Mi, i ∈ I) there exists a χ-expansion {p′i :

∏
i∈IM

′
i → M ′i | i ∈ I} of {pi :

∏
i∈IMi →

Mi | i ∈ I} which is a product.

Theorem 6.1.

1. Each nominal is locally preserved by products.
2. If ρ ∈ SenI(Σ) is preserved by products in the base institution I then ρ is locally preserved by

products in the hybridization.
3. If ρ1 and ρ2 are locally preserved by products then ρ1 ∧ ρ2 is also locally preserved by products.
4. If ρ1 is locally preserved along product projections and ρ2 is locally preserved by products then
ρ1⇒ ρ2 is locally preserved by products.

5. If ρ is locally preserved by products then each @jρ is also locally preserved by products.
6. If ρ is locally preserved by products and λ is a binary modality, then [λ](ρ) is locally preserved by

products.
7. If ρ are locally preserved by products, then 〈λ〉(ρ) is also locally preserved by products.
8. If χ lifts forward (backwards) products and ρ is locally preserved by products then (∀χ)ρ ((∃χ)ρ) is

locally preserved by products.

Proof. Let (M,R) be a product
∏
i∈I(M

i, Ri) of (Σ,Nom,Λ)-models with projections pi : (M,R) →
(M i, Ri), i ∈ I , and let s ∈ |R| with s = (si)i∈I (where si = pist(s)).

1. Assume (M i, Ri) |=si n ∈ Nom, i ∈ I . This means (Ri)n = si, i ∈ I . It follows that Rn =
((Ri)n)i∈I = (si)i∈I = s. Hence (M,R) |=s n.

2. Assume (M i, Ri) |=si ρ, i ∈ I , for ρ ∈ SenI(Σ). This means M i
si
|=I ρ, i ∈ I . Since ρ is preserved

by products in I it follows that Ms |=I ρ hence (M,R) |=s ρ.
3. Assume (M i, Ri) |=si ρ1 ∧ ρ2, i ∈ I . This means (M i, Ri) |=si ρk, i ∈ I , k ∈ {1, 2}. Since ρk,

k ∈ {1, 2}, is locally preserved by products it follows that (M,R) |=s ρk, k ∈ {1, 2}, hence (M,R) |=s

ρ1 ∧ ρ2.
4. Assume (M i, Ri) |=si ρ1⇒ ρ2, i ∈ I . We want to show that (M,R) |=s ρ1⇒ ρ2. If (M,R) |=s ρ1,

since ρ1 is locally preserved along product projections it follows that for each i ∈ I , (M i, Ri) |=si ρ1.
Hence for each i ∈ I , (M i, Ri) |=si ρ2. Since ρ2 is locally preserved by products it follows that (M,R) |=s

ρ2.
5. Assume (M i, Ri) |=si @jρ, i ∈ I . This means (M i, Ri) |=Ri

j ρ. Since Rj = (Rij)i∈I by the local
preservation hypothesis it follows that (M,R) |=Rj ρ. Hence (M,R) |=s @jρ.

6. Assume (M i, Ri) |=si [λ](ρ), i ∈ I . We want to show that for each s′ such that (s, s′) ∈ Rλ,
(M,R) |=s′ ρ. Then for each i ∈ I , (si, s′i) ∈ Riλ hence (M i, Ri) |=s′i ρ. Since ρ is locally preserved by
products, (M,R) |=s′ ρ.

7. Assume (M i, Ri) |=si 〈λ〉(ρ). We want to show that there exists s1, . . . , sn such that (s, s1, . . . , sn) ∈
Rλ and for each 1 ≤ k ≤ n, (M,R) |=sk ρ. By our assumption for each i ∈ I , there exists si1, . . . , s

i
n such
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that (si, si1, . . . , s
i
n) ∈ Riλ and such that for each 1 ≤ k ≤ n, (M i, Ri) |=sik ρk. For each 1 ≤ k ≤ n we

define sk = (sik)i∈I . Then because each ρk is locally preserved by products, it follows that (M,R) |=sk ρk.
Note that (s, s1, . . . , sn) ∈ Rλ. Hence (M,R) |=s 〈λ〉(ρ1, . . . , ρn).

8. Assume (M i, Ri) |=si (∀X)ρ, i ∈ I . We want to show that (M,R) |=s (∀X)ρ. Let (M,R) be
any χ-expansion of (M,R). Since χ lifts products forward, for each i ∈ I there exists a χ-expansion
(M i, Ri) of (M i, Ri) such that (M,R) is a product of the family {(M i, Ri) | i ∈ I}. Then for each i ∈ I ,
(M i, Ri) |=si ρ and because ρ is locally preserved by products it follows that (M,R) |=s ρ.

Now let us assume (M i, Ri) |=si (∃X)ρ, i ∈ I . We want to show that (M,R) |=s (∃X)ρ. For
each i ∈ I there exists (M i, Ri) a χ-expansion of (M i, Ri) such that (M i, Ri) |=si ρ. Since χ lifts
products backwards it follows that there exists a χ-expansion (M,R) of (M,R) which is a product of the
family {(M i, Ri) | i ∈ I}. Since ρ is locally preserved by products it follows that (M,R) |=s ρ, hence
(M,R) |=s (∃X)ρ. 2

Example 6.6. The last two items of Ex. 6.5 may be derived from the previous items of Ex. 6.5 via the result
of Thm. 6.1 by considering |R| and |R′| singleton sets.

The following examples of preservation by sub-models may be established by recursion on the structure
of the sentences by application of Thm. 6.1 and at the end by application of Prop. 6.2. In the application
of Thm. 5.2, the ⇒ steps require the application of Prop. 4.1. The base steps require preservation results
in corresponding base institutions; these may be found in Ex. 6.5 and in Ex. 4.1. The steps corresponding
to the quantifications are justified by noting that in all our examples the signature extensions with nominal
variables and with base institution variables lift products forward.

– InHPL: (∀i, j)(((@iπ) ∧ (@jπ))⇒@i2j).

– InHREL′: (∀x, y)(π(x, y)⇒ [λ](x = y)).

– InHALG ′: @i( ∀©X)t = t′.

– InHALG ′: (∀X)((t1 = t2)⇒2( ∀©Y )t′1 = t′2).

7. Initial semantics in hybridized institutions

In this section we join our results developed above for establishing initial semantics in hybridized insti-
tutions.

The following is a straightforward consequence of Prop. 5.1 and of Prop. 6.2.

Corollary 7.1. If ρ is (locally) preserved by sub-models and products then ρ∗ is a quasi-variety.

At the heart of our method for establishing initial semantics for hybridized institutions lies the following
abstract relationship between quasi-varieties and initiality. It may be found in various slightly different
forms in the categorical literature on quasi-varieties; the form presented here is taken from [14].

Proposition 7.1. Consider a category C with an initial object 0C, small products, and with a co-well-
powered epic inclusion system. Then each quasi-variety Q of C has an initial object 0Q. Moreover the
unique arrow 0C → 0Q is abstract surjection.

The following two results deal with the special conditions on the inclusion systems required by Prop. 7.1.
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Proposition 7.2. The inclusion system for Mod′(Σ,Nom,Λ) defined in Thm. 5.1 is epic when (IΣ, EΣ) is
epic.

Proof. Let h : (M,R) → (M ′, R′) and f, g : (M ′, R′) → (M ′′, R′′) in Mod′(Σ,Nom,Λ) such that
h; f = h; g. We have to prove that f = g.

That fst = gst follows by the epi property of hst which is a surjective homomorphism of (Nom,Λ)-
models.

For each s ∈ |R|, from hs; fhst(s) = hs; ghst(s) and by the assumption that (IΣ, EΣ) is epic we have
that ihs ; fhst(s) = ihs ; ghst(s). Since M ′ = ∪hsth(M), by the uniqueness part of the universal property of
(ihmod

, 1R) we get that fmod = gmod.

M
ehmod // h(M)

ihmod

⊆
//

((

M ′ ◦ hst
fmod◦hst
��

M ′

fmod

��
M ′′ ◦ fst ◦ hst M ′′ ◦ fst

This completes the proof that f = g. 2

Example 7.1. From Ex. 5.2 and from Prop. 7.2 we obtain that the inclusion systems for HPL, HREL′,
HPA′,HALG ′ are epic.

Proposition 7.3. The inclusion system for Mod′(Σ,Nom,Λ) defined in Thm. 5.1 is co-well-powered when
(IΣ, EΣ) is co-well-powered.

Proof. For any model (M,R) of the hybridization we may easily establish that

card(q(M,R)) ≤ card(q(R))× card(
∏
i∈|R|

q(Mi))

by noting that for each abstract surjection h : (M,R)→ (M ′, R′) when we factor each hs, s ∈ |R|, through
the inclusion system (IΣ, EΣ),

M
hmod //

ehmod ''

M ′ ◦ hst

h(M)

⊆

OO

then M ′ = ∪hstM is uniquely determined by h(M). 2

Example 7.2. From Ex. 5.2 and from Prop. 7.3 we obtain that the inclusion systems for HPL, HREL′,
HPA′,HALG ′ are co-well-powered.

The following initial semantics result is obtained directly by joining the results of Prop. 7.1, Cor. 7.1,
Thm. 5.1, Fact 5.1, Prop. 7.2 and Prop. 7.3.

Corollary 7.2 (Initial semantics). Let us consider a signature (Σ,Nom,Λ) in a hybridized institution
(SignHI ,SenHI ,Mod′, |=) such that Mod′(Σ,Nom,Λ) satisfies the following conditions:
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1. it has small products,
2. it has an epic and co-well powered inclusion system (IΣ, EΣ) for the category of Σ-models which

together with a fixed choice between the strong and the closed inclusion systems for the (Nom,Λ)-
models satisfies the conditions of Thm. 5.1, and

3. it has an initial model 0(Σ,Nom,Λ).

If each sentence in E ⊆ SenHI(Σ,Nom,Λ) is (locally) preserved by sub-models and products then E∗ has
an initial model 0E . Moreover, the unique model homomorphism 0(Σ,Nom,Λ) → 0E is an abstract surjection
with respect to the inclusion system determined through Thm. 5.1.

Example 7.3. In order to apply Cor. 7.2 to our benchmark examples HPL, HREL′, HPA′ and HALG ′ it
remains only to check the existence of 0(Σ,Nom,Λ) as the other conditions have been discussed in examples
above. In all these cases let us denote the presumed initial model 0(Σ,Nom,Λ) by (M,R). Then:

– in ModHPL(P,Nom): |R| = Nom, Rλ = ∅, and for each i ∈ Nom, Mi = ∅,
– in ModHREL′

(Σ,Nom,Λ): |R| = Nom, for each λ ∈ Λ, Rλ = ∅, and for each i ∈ Nom, |Mi| is the
set of the constants of Σ and for each relation symbol π in Σ, (Mi)π = ∅,

– in ModHPA′
(Σ,Nom,Λ): |R| = Nom, for each modality symbol λ in Λ, Rλ = ∅, and for each

i ∈ Nom, the underlying total algebra of Mi is the initial term algebra for the total operation symbols
and for each partial operation symbol σ in Σ, dom((Mi)σ) = ∅, and

– in ModHALG′
(Σ,Nom): |R| = Nom ∪ {⊥,>}, R≤ = {(⊥, n), (n,>) | n ∈ Nom}, Rλ = ∅, and

for each i ∈ |R|, the underlying total algebra of Mi is the initial Σ-algebra.

Example 7.4. In the concrete situations of interest one obstacle for the application of the initial semantics
result given by Cor. 7.2 is related to the application of Thm. 5.2. The notion of sub-model determined by
Thm. 5.1 relies in general upon strong inclusion systems for ModI(Σ) (see Ex. 5.3, Ex. 5.4 and Ex. 5.5)
which prohibits the preservation by sub-models of some of the base institution atomic sentences. For ex-
ample, an atom π in PL is not preserved by sub-models of the strong inclusion system of ModPL(P ) and
hence it is also not preserved by sub-models in ModHPL(P,Nom). This means that we cannot make use
of Thm. 5.2 in conjunction with Cor. 7.2 in order to establish that sentences such as @iπ may be used for
initial semantics specifications. However, sentences such as @iπ are quite expected properties to be stated
at the level of formal specifications.

Fortunately there is a simple technical solution to this problem. The sentences that somehow fall outside
the scope of the application of Thm. 5.2 may sometimes instead be considered as constraints on the models.
In our example of @iπ this means that we consider the sub-functor Mod′ of ModHPL determined by the
models (M,R) that satisfy (M,R) |= @iπ. It is rather straightforward to check that the conditions of
Cor. 7.2 are still satisfied, the most relevant part being in fact the checking of the conditions of Thm. 5.2 for
Mod′(P,Nom).

8. Conclusion

In this paper

• we have recalled the hybridization of institutions developed in [30] and have upgraded it to the ab-
stract concept of constrained models,
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• we have developed a concept of quasi-variety for models of hybridized institutions, the most technical
part being that of establishing general conditions for inclusion systems for categories of models of
hybridized institutions,

• we have developed preservation results by sub-models and by products in hybridized institutions; in
this process we have introduced notions of ‘local’ preservation, and

• we have put all the above results together for developing a general method and result for the existence
of initial semantics in hybridized institutions.

Given the high level of abstraction of our developments, our result are applicable to a wide variety of hybrid
logics, that include various logical system at the base level, employ many forms of quantifications, and
constrain the models in numerous ways. This is especially important within the current context of the high
proliferation in the number of modal and hybrid logics for formal specification, including various logical
combinations underlying computing paradigms combinations.
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[19] Răzvan Diaconescu and Petros Stefaneas. Ultraproducts and possible worlds semantics in institutions. Theoretical Computer
Science, 379(1):210–230, 2007.

[20] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for specification and programming. Journal of the
Association for Computing Machinery, 39(1):95–146, 1992.
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[22] Joseph Goguen and Grigore Roşu. Composing hidden information modules over inclusive institutions. In From Object-
Orientation to Formal Methods, volume 2635 of Lecture Notes in Computer Science, pages 96–123. Springer, 2004.

[23] Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra semantics and continuous algebras. Journal
of the Association for Computing Machinery, 24(1):68–95, January 1977. An early version is “Initial Algebra Semantics”,
with James Thatcher, IBM T.J. Watson Research Center, Report RC 4865, May 1974.

[24] George Grätzer. Universal Algebra. Springer, 1979.
[25] H. Kaphengst and Horst Reichel. Initial algebraic semantics for non-context-free languages. In Marek Karpinski, editor,

Fundamentals of Computation Theory, pages 120–126. Springer, 1977. Lecture Notes in Computer Science, Volume 56.
[26] Saunders Mac Lane. Categories for the Working Mathematician. Springer, second edition, 1998.
[27] John Lloyd. Foundations of Logic Programming. Springer, 1984.
[28] Anatoly Malcev. The Metamathematics of Algebraic Systems. North-Holland, 1971.
[29] Manuel Martins, Alexandre Madeira, and Luis Barbosa. Reasoning about complex requirements in a uniform setting. Elec-

tronic Proceeding of TICTTL, Third International Congress in Tools for Teaching Logic, 1-4 June Salamanca, 2011.
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